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Abstract 

 

This study presents the generalization of methods based on parameterization 

proposed for solving integer programming problems with linear objectives and 

linear constraints. Initially, the method based on parameterization, proposed for 

solving 2, 3, and 4-variable integer linear programming problems, is generalized to 

n-variable integer linear programming problems. The proposed method relies on 

the parameterization obtained from Diophantine equations. Using this 

parameterization, the original problem is reformulated as another integer linear 

programming problem that can be solved more efficiently using simple 

mathematical programming. The method can be used regardless of the number of 

constraints of the problem and also provides all alternative solutions to the decision 

maker. It is demonstrated with some examples that this method provides an efficient 

algorithm.  

 

Keywords: Linear integer programming, Linear Diophantine equations, Optimal 

hyperplane, Pure integer programming problems, Optimal solution 

 

 

1 Introduction 
 

 

Integer Programming is a linear programming problem in which some or all of the 

variables take integer (or discrete) values by adding the condition of being integer  
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to the linear programming model. Integer programming is also known as discrete 

optimization or combinatorial optimization. Due to the nature of many problems 

encountered in practice, there are many situations where all or some of the variables 

in the problem must be integer values. For example, since it would be invalid in 

practice to define some products produced in enterprises as fractional in terms of 

quantity, it is necessary to express the transactions that are considered as variables 

in terms of production as integers. Integer Programming is needed to solve the 

problems encountered in many fields such as planning, transportation, production, 

telecommunications, security, modeling, foresight, finance, investment, insurance 

and so on, which branches of science such as business, economics, engineering, 

statistics, and mathematics deal with. Many studies have been done in the field of 

integer programming. Many studies have been made in the field of Integer 

Programming. Notable contributions include the works of Gomory, Dantzig, and 

Land and Doig [4, 6, 7]. Gomory [6] outlined a finite algorithm for obtaining integer 

solutions to linear programs. Dantzig [4] reviewed some of the successes in the use 

of linear programming methods for solving discrete variable extremum problems. 

Markowitz and Manne [8] presented a general approach susceptible to individual 

variations, depending upon the problem and the judgment of the user. Land and 

Doig [7] developed the branch boundary method, which is one of the most preferred 

methods in solving integer programming (IP) problems. Joseph [9] presented a 

linear programming formulation and a parametric formulation of ILP to determine 

the contribution of the endpoints to the optimal ILP solution. It has been shown that 

this formulation is equivalent to the standard formulation and thus can be used to 

solve the ILP problem. Pandian and Jayalakshmi [12] developed a method, also 

called variable reduction method, based on mathematical concepts for classes of 

pure integer linear programming problems. Tsai et al. [21] developed a global 

optimization approach to find all solutions of a general ILP problem and presented 

an algorithm for finding all alternative optimum solutions of an ILP problem. 

Mohammed et al. [11] formulated a general personnel scheduling problem with 

hourly requirement patterns as a linear programming problem. Genova and 

Guliashki [5] reviewed methods and approaches for solving integer linear problems 

belonging to the class of NP-hard optimization problems in the last 50 years. 

Hossain and Hasan [10] proposed an algorithm for solving a large-scale integer 

programming problem based on the column generation method and used the 

proposed algorithm to solve capital budgeting and planning. Shinto and Sushama 

[15] provided a test that examines whether the approximate solution from Relaxed 

Linear Programming (RLP) is an optimal solution in ILP, using the concept of the 

Linear Diophantine Equation in their study. In addition, they proposed a 

modification of the branch-bound method to reach the optimal solution of the ILP 

problem even when the approximate solution obtained from RLP does not satisfy 

the optimality conditions. Bertsimas et al. [1] proposed a method for solving ILP 

problems, which provides a natural generalization for Farkas Lemma. The method 

is based on algebraic geometry and gives a natural way to do sensitivity analysis. 

This path also gives the systematic ordering of all viable solutions and the structural 

information of the appropriate Integer Programming set. Dang and Ye [3] proposed  
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an alternative method for solving integer programming problems called the "fixed 

point iterative method. Pedrosa [13] presented an evolutionary algorithm for 

solving linear integer programs based on the strategy of separating variables into 

integer subset and continuous subset. Simsek Alan et al. [16] developed an 

alternative method based on parameterization obtained from Diophantine equations 

for solving integer linear programming (ILP) problems with two variables. Later, 

this method was developed to solve ILP problems with three variables and four 

variables [17-18]. Simsek Alan [19] proposed an algorithm to find solutions for an 

ILP problem using basic computer programming, considering the lower and upper 

bounds of decision variables. Although this method is easily applicable and 

effective, as the number of variables increases, the processing time becomes longer 

and its applicability decreases. Therefore, the importance of developing more 

efficient and useful new methods and algorithms to overcome ILP problems is 

obvious. 

 

In this study, the method based on the parametrization derived from Diophantine 

equations, developed for two-variable Integer Linear Programming (ILP) problems 

in Simsek Alan et al. [16], for three-variable ILP problems in Simsek Alan [17], 

and four-variable ILP problems in Simsek Alan [18], has been generalized for n-

variable ILP problems. The generalized method reformulates the given ILP problem 

using this parametrization and can be solved with basic computer programming 

techniques. A numerical example is provided to demonstrate the application of the 

method, and it is implemented in the MAPLE programming language. 

The rest paper is organized as follows: Required information is presented in 

Section 2. The solution method is handled in Section 3. The proposed algorithm is 

given in section 4. Our numerical examples and conclusions are presented in 

Section 5 and Section 6, respectively. 

 

 

2 Preliminaries 
 

In this section, brief requried information are presented.  

 

Definition 1 [2]: The mathematical formulation of an ILP problem is described 

below: 

𝑃1:

{
 

 
𝑀𝑎𝑥(𝑀𝑖𝑛)∑ 𝑐𝑗𝑥𝑗

𝑛
𝑗=1

  
                                                                  

  
∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≤ 𝑏𝑖                                                                            

 𝑥𝑗 ≥ 0 and integer, (i = 1,2, …m, j = 1,2, …n) 
  
  (1) 

 

Definition 2 [14]: Consider the objective hyperplane  

∑𝑐𝑗 𝑥𝑗 = 𝑧, 

where each 𝑐𝑗 ∈ 𝑍, which is a linear Diophantine equation in integers. Let =

𝑔𝑑𝑐(𝑐𝑗 , 𝑐𝑗 ≠ 0, 𝑗 = 1,2, … , 𝑛). It has an integer solution if and only if 𝑑|𝑧. 
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Additionally, if a linear Diophantine equation has an integer solution, there will be 

infinitely many solutions for this equation (Schrijver 1986). 

 

Theorem 1[2]:
 
(𝑥1, 𝑥2, … , 𝑥𝑛, 𝑧 ) is a solution of the problem if and only if 

(𝑥1, 𝑥2, … , 𝑥𝑛) satisfies all constraints of 𝑃1 .(𝑥1, 𝑥2, … , 𝑥𝑛 ) satisfies the objective 

function (maximum or minimum) defined in Definition 1. 

 

 

3 Solution method 
 

ILP algorithms take advantage of the computational methods and results of 

linear programming that yield successful results. Likewise, our algorithm uses these 

computational methods to find solutions to ILP problems. It starts with solving the 

LP problem.  

Let 𝑥 denote the optimum solution of RLP and 𝑧𝐿𝑃 the optimum value of the 

objective function. That is 𝑧𝐿𝑃 = 𝑐
𝑇𝑥. Let 𝑥∗ denotes the integer solution of the 

ILP. If 𝑧∗ denotes the value of the objective function corresponding to the integer 

solution 𝑥∗ of the ILP. Then 𝑧∗ is an integer less than or equal to 𝑧𝐿𝑃. That is 

 𝑧∗ ≤ 𝑐𝑇𝑥. Since 𝑧∗ ≤ 𝑐𝑇𝑥, let 𝑧∗ = ⌊𝑧𝐿𝑃⌋, the greatest integer less than or equal to 

𝑧𝐿𝑃. If 𝑥∗ ∈ 𝑍𝑛, then the integer solution 𝑥∗ has been found. If 𝑥∗ ∉ 𝑍𝑛, then 

according to [20], the ILP problem 𝑃1 is reformulated as the following ILP 

problem 𝑃2. 

𝑃2:

{
 
 
 

 
 
 ∑𝑐𝑗𝑦𝑗

𝑛

𝑗=1  

= ⌊𝑧𝐿𝑃⌋                                                                                                        

∑ 𝑑𝑖𝑗𝑦𝑗

𝑛−1

𝑗=1

≤ 𝑒𝑖                                                                                                

   𝑦𝑗 ≥ 0  and integer, (𝑖 = 1, 2, … ,𝑚,   𝑗 = 1, 2, … , (𝑛 − 1))                   

(2) 

As a result of the proposition given above, If the problem 𝑃2 is solved, the optimal 

solution of the ILP problem 𝑃1 is obtained. For this, first, parameterization is made 

according to the optimal ⌊𝑧𝐿𝑃⌋ value. Then, by taking into account the lower and 

upper bounds of the decision variables, it is investigated whether there are integer 

points that satisfy the equations ∑ 𝑐𝑗𝑦𝑗
𝑛
𝑗=1 = ⌊𝑧𝐿𝑃⌋, and  ∑ 𝑑𝑖𝑗𝑦𝑗

𝑛−1
𝑗=1 ≤ 𝑒𝑖. If such 

integer points exist, the desired optimal solution is found. If there is more than one 

optimal solution, they are alternative solutions. If no integer points are satisfying 

the equations ∑ 𝑐𝑗𝑦𝑗
𝑛
𝑗=1 = ⌊𝑧𝐿𝑃⌋, and ∑ 𝑑𝑖𝑗𝑦𝑗

𝑛−1
𝑗=1 ≤ 𝑒𝑖, This process is repeated for 

maximum (minimum) problems by decreasing (increasing) the optimal 𝑧∗ value by 

one unit until optimal solutions are found. 

 

The proposed algorithm for solving ILP problems consists of the following 

steps. 

Step 0: Load LP problem P1. 
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Step 1: Solve the relaxed LP problem P1 to find the optimal solution 𝑥∗. 
 

Step 2: If the optimal solution (𝑥1, 𝑥2, … , 𝑥𝑛)  is an integer, then the IP problem has 

been solved. Stop. Otherwise, go to Step 3.  

 

Step 3: Set 𝑐𝑇𝑥 = ⌊𝑧𝐿𝑝⌋. 
 

Step 4: Replace 𝑦1, 𝑦2, … , 𝑦𝑛 by 𝑥1 , 𝑥2, … , 𝑥𝑛 in the equation 𝑐𝑇𝑥 = 𝑧∗, 
respectively. 

 

Step 5: Get an arbitrary variable 𝑦𝑖 from the variables 𝑦1 , 𝑦2, … , 𝑦𝑛 in the equation 

𝑐𝑇𝑦 = ⌊𝑧𝐿𝑃⌋. 
 

Step 6: Replace 𝑦1 , 𝑦2, … , 𝑦𝑖 , . . , 𝑦𝑛  by the variables 𝑥1, 𝑥2, … , 𝑥𝑛 in constraints, 

respectively. 

 

Step 7: Determine the domain interval of the variables 𝑦1, 𝑦2, … , 𝑦𝑛. 
 

Step 8: Is the domain interval meaningful? If it is meaningful, go to step 9. 

Otherwise, replace⌊𝑧𝐿𝑃⌋ − 1 (⌊𝑧𝐿𝑃⌋ + 1) by ⌊𝑧𝐿𝑃⌋, in the maximization 

(minimization) problem and return to step 3. 

 

Step 9: If there is an integer solution (𝑦1, 𝑦2, … , 𝑦𝑖−1, 𝑦𝑖+1, . . , 𝑦𝑛) that satisfies the 

system of inequalities, go to step 10. Otherwise, replace ⌊𝑧𝐿𝑃⌋ − 1 (⌊𝑧𝐿𝑃⌋ + 1) by 

⌊𝑧𝐿𝑃⌋ in the maximization (minimization) problem and return to step 3. 

 

Step 10: Calculate the value of 𝑦𝑖 using the integer points 

(𝑦1, 𝑦2, … , 𝑦𝑖−1, 𝑦𝑖+1, . . , 𝑦𝑛). 
 

Step 11: If 𝑦𝑖 ∈ 𝑍
+, then the IP problem has been solved. go to step 12. If the 

solution found is more than one, they are the alternative optimal solutions. If 𝑦𝑖 ∉
𝑍+, replace ⌊𝑧𝐿𝑃⌋ by ⌊𝑧𝐿𝑃⌋ − 1 (⌊𝑧𝐿𝑃⌋ + 1) in the maximization (minimization) 

problem and return to step 3. 

 

Step 12: Write integer points (𝑦1, 𝑦2, … , 𝑦𝑖, . . , 𝑦𝑛). 
 

Step13: Stop. 
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Figure 1: Flowchart of the Solution Method for Integer Linear Programming 

Problems 
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4 Numerical experiment 
 

In this section, we solve a maximization problem using our method, and we 

code this example in the MAPLE programming language. 

 

Example 4.1. Solve the following ILP problem. 

 

Step 0: 

 

1P  Max 35𝑥1 + 85𝑥2 + 135𝑥3 + 10𝑥4 + 25𝑥5 + 2𝑥6 + 94𝑥7       

Subject to 

2𝑥1 + 3𝑥2 + 9𝑥3 + 0.5𝑥4 + 2𝑥5 + 0.1𝑥6 + 4𝑥7 ≤ 25 
 

𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥3 ≥ 0, 𝑥4 ≥ 0, 𝑥5 ≥ 0, 𝑥6 ≥ 0, 𝑥7 ≥ 0 and integer. 

 

Step 1: If the relaxed LP problem is solved, 𝑃1: (𝑥1, 𝑥2, 𝑥3,  𝑥4,  𝑥5,  𝑥6, 𝑥7) =
(0 , 8.3333, 0, 0, 0, 0, 0) and the optimum value 𝑧∗ = 708 is obtained. 

 

Step 2: There is no integer solution, goto step 3. 

 

Step 3: Set 35𝑥1 + 85𝑥2 + 135𝑥3 + 10𝑥4 + 25𝑥5 + 2𝑥6 + 135𝑥3 + 94𝑥7 =
708. 

 

Step 4: If is 𝑦1, 𝑦2, … , 𝑦7 replaced by 𝑥1, 𝑥2, … , 𝑥7 in the Diophantine equation 

35𝑥1 + 85𝑥2 + 135𝑥3 + 10𝑥4 + 25𝑥5 + 2𝑥6 + 135𝑥3 + 94𝑥7 = 708, 

the equation 5𝑦1 + 85𝑦2 + 135𝑦3 + 10𝑦4 + 25𝑦5 + 94𝑦7 = 708 is obtained.  

 

Step 5: From the equation 5𝑦1 + 85𝑦2 + 135𝑦3 + 10𝑦4 + 25𝑦5 + 94𝑦7 = 708, 

𝑦6 =
708 − (35𝑦1 + 85𝑦2 + 135𝑦3 + 10𝑦4 + 25𝑦5 + 94𝑦7)

2
 

is found. 

 

Step 6: If 𝑦1,  𝑦2, 𝑦3,  𝑦4, 𝑦5,
708−(35𝑦1+85𝑦2+135𝑦3+10𝑦4+25𝑦5+94𝑦7)

2
, 𝑦7 are 

replaced by 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7 in the constraints, respectively, the 

inequality −5𝑦1 + 25𝑦2 − 45𝑦3 + 5𝑦5 + 14𝑦7 ≥ 208 is obtained. 

 

Step 7-8:The domain interval of the variables is found as 0 ≤ 𝑦1 ≤ 12,  0 ≤ 𝑦2 ≤
8, 0 ≤ 𝑦3 ≤ 2, 0 ≤ 𝑦4 ≤ 50,  0 ≤ 𝑦5 ≤ 12,  0 ≤ 𝑦6 ≤ 250,  0 ≤ 𝑦7 ≤ 6 . 

 

Step 9: There is no integer point (𝑦1, 𝑦2, 𝑦3, 𝑦5, 𝑦7) that satisfies the inequality 

−5𝑦1 + 25𝑦2 − 45𝑦3 + 5𝑦5 + 14𝑦7 ≥ 208. Therefore, Optimal value 708 is 

replaced by optimal value 707 and return to step 3 and the steps of the given 

algorithm are applied. If this process continues until the optimal solution is found,  
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for the optimal value 700, 35𝑥1 + 85𝑥2 + 135𝑥3 + 10𝑥4 + 25𝑥5 + 2𝑥6 +
135𝑥3 + 94𝑥7 = 700 is obtained. If the parametric variable 𝑦6 is obtained from 

this equation, 𝑦6 =
700−(35𝑦1+85𝑦2+135𝑦3+10𝑦4+25𝑦5+94𝑦7)

2
 found. If 𝑦1, 𝑦2,

𝑦3,  𝑦4, 𝑦5,
708−(35𝑦1+85𝑦2+135𝑦3+10𝑦4+25𝑦5+94𝑦7)

2
, 𝑦7  are replaced by 𝑥1, 𝑥2, 𝑥3,  𝑥4,

𝑥5, 𝑥6, 𝑥7, rescpectively, in the constraints, the inequality −5𝑦1 + 25𝑦2 − 45𝑦3 +
5𝑦5 + 14𝑦7 ≥ 200 is obtained. The integer points (0, 8, 0, 0, 0, 10, 0), (0, 8, 0, 1, 

0, 5, 0), (0, 8, 0, 2, 0, 0, 0) satisfy this inequality, and 𝑦6 also positive integers. 

Consequently, the optimal value of our problem is 700, and the optimal solutions 

are (0, 8, 0, 0, 0, 10, 0), (0, 8, 0, 1, 0, 5, 0), (0, 8, 0, 2, 0, 5, 0). The summarized 

results of Example 4.1 are presented in Table 4.1. 

 

 
  

 

 



Solving integer programming problems                                                                                                                                                                                        35 

 

 

Table 4.1. Summarized results of example 4.1 
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5 Conclusion 

 
In this study, a novel iterative method for solving general Integer Linear 

Programming (ILP) problems is proposed using parameterization. The method 

introduces a simple and effective algorithm, employing basic algebraic operations 

and elementary mathematical programming. Compared to other methods for 

solving ILP problems, our approach offers several advantages, which are as 

follows: 

1. All Alternative Solutions: Unlike many traditional methods that focus only 

on finding the optimal solution, our approach systematically identifies all 

alternative solutions to ILP problems. 

2. Speed and Efficiency: The method solves larger problems in less time and 

uses resources more efficiently. 

3. Memory Usage: It manages memory efficiently for large problems. 

4. Flexibility: The method can be applied to various ILP problems, unlike 

other methods that are often limited to specific problem types. 
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