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Abstract

In this paper, based on the Lp Minkowski problem for p > 1, we
define the general Lp Blaschke addition and general Lp Blaschke bodies,
reapectively, and obtain the extremal values of their volume and Lp
affine surface area. Further, as the applications, we study two negative
forms of the Shephard problems.
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1 Introduction

LetKn denote the set of convex bodies (compact, convex subsets with nonempty
interiors) in Euclidean space Rn. For the set of convex bodies containing the
origin, the set of convex bodies containing the origin in their interiors and
the set of origin-symmetric convex bodies in Rn, we write Kno , Kn(0) and Knos,
respectively. Fno denotes the set of all bodies in Kn(0) which have a positive
continuous curvature function. Sno denotes the set of star bodies (about the
origin) in Rn. Let Sn−1 denote the unit sphere in Rn, and let V (K) denote
the n-dimensional volume of a body K. Let B denote the standard Euclidean
unit ball in Rn and write ωn = V (B) for its volume.
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A convex body is uniquely determined by its support function. The support
function of K ∈ Kn, h(K, ·), is defined on Sn−1 by

h(K, u) = max{u · x : x ∈ K}. (1.1)

Let δ denote the Hausdorff metric on Kn; i.e., for K,L ∈ Kn, δ(K,L) =
|hK − hL|∞, where | · |∞ denotes the sup-norm on the space of continuous
functions, C(Sn−1).

Based on the classical Minkowski problem, the Blaschke sum S(K#L, ·)
(Usually when working with Blaschke sum, translations do not matter) of
K,L ∈ Kn is defined by (see [21])

S(K#L, ·) = S(K, ·) + S(L, ·), (1.2)

where S(K, ·) denotes the surface area of K.
In [4], the Blaschke body of K ∈ Kn is defined by

S(∇K, ·) =
1

2
S(K, ·) +

1

2
S(−K, ·). (1.3)

With respect to the Blaschke body ∇K, Firey get the following inequality
in [3]:
Theorem 1.A. If K ∈ Kno , then

V (∇K) ≥ V (K),

with equality holds if and only if K is origin-symmetric.
Similarly, in [18] Petty also get a corresponding result for affine surface

area as follows:
Theorem 1.B. If K ∈ Kno , then

Ω(∇K) ≥ Ω(K),

with equality holds if and only if K is origin-symmetric.
The notion of Lp Blaschke additon was given by Lutwak (see [15]). For

K,L ∈ Kn(os), n 6= p ≥ 1, Lp Blaschke additon, K#pL ∈ Kn(os), of K and L is
defined by

Sp(K#pL, ·) = Sp(K, ·) + Sp(L, ·), (1.4)

where Sp(K, ·) denotes the Lp-surface area measure of K ∈ Kno .
The Lp Minkowski problem for p > 1 with even case was proved by Lutwak

in [15]. In the general case, non-even case, the following results was proved
by Chou and Wang [1] and Hug, Lutwak, Yang and Zhang [10], with different
methods, respectively (also see [21]).
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Theorem 1.C. Let n 6= p > 1. Let φ be a finite Borel measure on Sn−1

which is positive on each open hemisphere of Sn−1. Then there exists a unique
convex body K ∈ Kno such that

dφ = h1−p
K dS(K, ·).

More over, if φ is discrete, then K is a polytope in Kn(o), and for general φ, if
p > n, then K ∈ Kn(o).

Combining with the definition of Lp Blaschke combination, Lutwak in [15]
gave the concept of Lp Blaschke body as follows: For K ∈ Kn0 , the Blaschke
body ∇pK ∈ Knos is given by

Sp(∇pK, ·) =
1

2
Sp(K, ·) +

1

2
Sp(−K, ·). (1.5)

Lutwak [15] also get the following result:
Theorem 1.D. If K ∈ Kno , n 6= p > 1, then

V (∇pK) ≥ V (K),

with equality holds if and only if K is origin-symmetric.
Combining with the Theorem 1.C and (1.2), we define the general Lp

Blaschke addition as follows: For K,L ∈ Kno , p ≥ 1, the general Lp Blaschke
addition, K]pL ∈ Kno , is defined by

Sp(K]pL, ·) = Sp(K, ·) + Sp(L, ·), (1.6)

where Sp(K, ·) denotes the Lp-surface area measure of K ∈ Kno .
Now, by combining with the definition of general Lp Blaschke additon and

Theorem 1.C, we define the general Lp Blaschke bodies as follows: For K ∈ Kno ,
p ≥ 1 and τ ∈ [−1, 1], the general Lp Blaschke body, ∇τ

pK, of K is defined by

Sp(∇τ
pK, ·) = f1(τ)Sp(K, ·) + f2(τ)Sp(−K, ·), (1.7)

where

f1(τ) =
1 + τ

2
, f2(τ) =

1− τ
2

. (1.8)

If p = 1, we denote ∇τK = ∇τ
1K and (1.7) is

S(∇τK, ·) =
1 + τ

2
S(K, ·) +

1− τ
2

S(−K, ·). (1.9)

From (1.8), we have that
f1(τ) + f2(τ) = 1; (1.10)

f1(−τ) = f2(τ), f2(−τ) = f1(τ). (1.11)
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From (1.7), it easily follows that

∇τ
pK = f1(τ) ·K]pf2(τ) · (−K). (1.12)

Besides, by (1.5), (1.7) and (1.8), we see that if τ = 0, then ∇0
pK = ∇pK;

if τ = ±1, then ∇+1
p K = K, ∇−1

p K = −K.
The main results of this paper can be stated as follows: First, we give the

extremal values of the volume of general Lp Blaschke bodies.
Theorem 1.1. If K ∈ Kno , n > p > 1, τ ∈ [−1, 1], then

V (∇pK) ≥ V (∇τ
pK) ≥ V (K). (1.13)

If τ 6= 0, equality holds in the left inequality if and only if K is origin-
symmetric, if τ 6= ±1, then equality holds in the right inequality if and only if
K is also origin-symmetric.

Moreover, based on the Lp affine surface area (see (2.2)), we give another
class of extremal values for general Lp Blaschke bodies.
Theorem 1.2. If K ∈ Kno , n > p > 1, τ ∈ [−1, 1], then

Ωp(∇pK) ≥ Ωp(∇τ
pK) ≥ Ωp(K). (1.14)

If τ 6= 0, equality holds in the left inequality if and only if K is origin-
symmetric, if τ 6= ±1, then equality holds in the right inequality if and only if
K is also origin-symmetric.

Theorems 1.1-1.2 belong to part of a new and rapidly evolving asymmetric
Lp Brunn-Minkowski theory that has its origins in the work of Ludwig, Haberl
and Schuster (see [5, 6, 7, 8, 13, 14]). For the studies of asymmetric Lp Brunn-
Minkowski theory, also see [2, 9, 19].

The notion of Lp-projection body was introduced by Lutwak, Yang and
Zhang [17]. For each K ∈ Kno and p ≥ 1, the Lp-projection body, ΠpK, of K
is the origin-symmetric convex body whose support function is given by

hpΠpK(u) =
1

nωncn−2,p

∫
Sn−1

| u · v |p dSp(K, v), (1.15)

for all u ∈ Sn−1, and

cn,p =
ωn+p

ω2ωnωp−1

.

Here Sp(K, ·) denotes the Lp-surface area measure of K ∈ Kno . Lutwak [10]
showed that the measure Sp(K, ·) is absolutely continuous with respect to the
classical surface area measure S(K, ·) of K, and has Radon-Nikodym derivative

dSp(K, ·)
dS(K, ·)

= h1−p
K .
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The unusual normalization of definition (1.15) is chosen so that for the unit
ball, B, we have ΠpB = B. In particular, for p = 1, the convex body Π1K is
a dilate of the classical projection body ΠK of K and Π1B = B.

For further results on Lp-projection bodies, see also [11, 12, 20].
As the application of Theorem 1.1, we extend the scope of negative solutions

of Shephard problems from origin-symmetric star bodies to star bodies.
Theorem 1.3. Let K ∈ Kno and p > 1, if K is not origin-symmetric, then
there exists L ∈ Kno such that

ΠpL ⊂ ΠpK,

but
V (L) > V (K).

Let p→ 1 in Theorem 1.3, we have that
Corollary 1.1. Let K ∈ Kno , if K is not origin-symmetric, then there exists
L ∈ Kno such that

ΠL ⊂ ΠK,

but
V (L) > V (K).

Remark 1.1. For the Shephard problems, Petty (see [18]) gave that negative
solution L ∈ Knos. Obviously, Corollary 1.1 extend Petty’s result.

Similarly, applying Theorem 1.2, we get the form of Lp affine surface areas
for the negative solutions of Shephard problems.
Theorem 1.4. For K ∈ Kno , p > 1, if K is not origin-symmetric, then there
exists L ∈ Kno , such that

ΠpL ⊂ ΠpK,

but
Ωp(L) > Ωp(K).

Let p→ 1 in Theorem 1.4, we have that
Corollary 1.2. Let K ∈ Kno , if K is not origin-symmetric, then there exists
L ∈ Kno such that

ΠL ⊂ ΠK,

but
Ω(L) > Ω(K).

Remark 1.2. For the Shephard problems for affine surface area, Petty (see
[18]) gave that negative solution L ∈ Knos. Obviously, Corollary 1.2 extend
Petty’s result.

In this paper, the proofs of Theorems 1.1-1.4 will be given in Section 4. In
Section 3, we obtain some properties of general Lp Blaschke bodies.
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2 Preliminary Notes

2.1 Lp Mixed Volume Let K1, K2 ∈ Kn0 , p ≥ 1, and λ1, λ2 ≥ 0 (not both 0).
The Lp Minkowski addition λ1 ·K1 +p λ2 ·K2 is a convex body whose support
function is given by (see [21])

h(λ1 ·K1 +p λ2 ·K2, ·)p = λ1h(K1, ·)p + λ2h(K2, ·)p.

For p ≥ 1, the Lp-mixed volume Vp(K,L) of K,L ∈ Kno , can be defined by

n

p
Vp(K,L) = lim

ε→0+

V (K +p ε · L)− V (K)

ε
.

In [15], Lutwak has shown that for p ≥ 1, and each K ∈ Kno , there exists
a positive Borel measure Sp(K, ·) on Sn−1, such that the Lp-mixed volume
Vp(K,L) has the following integral representation:

Vp(K,L) =
1

n

∫
Sn−1

hp(L, u)dSp(K, u),

for all L ∈ Kno . The Lp-Minkowski inequality states that for K,L ∈ Kno and
p ≥ 1

Vp(K,L) ≥ V (K)(n−p)/nV (L)p/n, (2.1)

with equality for p = 1 if and only if K and L are homothetic, for p > 1 if and
only if K and L are dilates.

2.2 Lp Affine Surface Area

In [16], Lutwak defined the Lp-affine surface area Ωp(K) by using the
Brunn-Minkowski-Fiery theory as follows:

n−
p
nΩp(K)

n+p
n = inf{nVp(K,Q∗)V (Q)

p
n : Q ∈ Sno }. (2.2)

Here E∗ is the polar set of a non-empty set E which be defined by (see [21])

E∗ = {x ∈ Rn : x · y ≤ 1, for all y ∈ E}.

Lemma[21] 2.1. For K ∈ Kno , p ≥ 1 then

Ωp(φK) = Ωp(K)

for all φ ∈ SL(n).

An immediate consequence of Lemma 2.1 is

Ωp(−K) = Ωp(K).
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A convex bodyK ∈ Kno is said to have a Lp-curvature function [16] fp(K, ·) :
Sn−1 → R, if its Lp-surface area measure Sp(K, ·) is absolutely continuous with
respect to spherical Lebesgue measure S, and

dSp(K, ·)
dS

= fp(K, ·). (2.3)

In [16], Lutwak proved that if K ∈ Fno and p ≥ 1, then the Lp-affine surface
area of K have the integral representation

Ωp(K) =
∫
Sn−1

fp(K, u)
n
n+pdS(u). (2.4)

Wang and Leng in [22] defined the ith Lp-mixed affine surface area as
follows: For K,L ∈ Fno , p ≥ 1 and real i, the ith Lp-mixed affine surface area,
Ωp,i(K,L), of K and L is defined by

Ωp,i(K,L) =
∫
Sn−1

fp(K, u)
n−i
n+pfp(L, u)

i
n+pdS(u). (2.5)

In the case i = −p, we write Ωp,−p(K,L) = Ω−p(K,L) and see by (2.11) that

Ω−p(K,L) =
∫
Sn−1

fp(K, u)fp(L, u)−
p

n+pdS(u). (2.6)

Obviously,

Ω−p(K,K) = Ωp(K). (2.7)

For the ith Lp-mixed affine surface area, Wang and Leng in [22] proved the
following Minkowski inequality. Theorem 2.A. If K,L ∈ Fno , p ≥ 1, i ∈ R,
then for i < 0 or i > n,

Ωp,i(K,L)n ≥ Ωp(K)n−iΩp(L)i; (2.8)

for 0 < i < n, inequality (2.8) is reversed. In every case, equality holds for
p = 1 if and only if K and L are homothetic, for n 6= p > 1 if and only if K
and L are dilates. For i = 0 or i = n, (2.8) is an identity.

For i = −p in (2.8), we get that if K,L ∈ Fno , p ≥ 1, then

Ω−p(K,L)n ≥ Ωp(K)n+pΩp(L)−p, (2.9)

with equality for p = 1 if and only if K and L are homothetic, for n 6= p > 1
if and only if K and L are dilates.
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3 Some Properties of General Lp Blaschke Bod-

ies

In this section, we give some properties of general Lp Blaschke bodies.
Theorem 3.1. If K ∈ Kno , p > 1 and τ ∈ [−1, 1], then

∇−τp K = ∇τ
p(−K) = −∇τ

pK.

Proof. From (1.10) and (1.11), we obtain that for p > 1 and τ ∈ [−1, 1], we
have that for any u ∈ Sn−1,

Sp(∇−τp K, u) = f1(−τ)Sp(K, u) + f2(−τ)Sp(−K, u)

= f2(τ)Sp(K, u) + f1(τ)Sp(−K, u)

= Sp(∇τ
p(−K), u)

Hence, we get
∇−τp K = ∇τ

p(−K).

Further, we have that for any u ∈ Sn−1,

Sp(−∇τ
pK, u) = Sp(∇τ

pK,−u)

= f1(τ)Sp(K,−u) + f2(τ)Sp(K,−u)

= f1(τ)Sp(−K, u) + f2(τ)Sp(−K, u)

= Sp(∇τ
p(−K), u).

Hence, we get
∇τ
p(−K) = −∇τ

pK.

Theorem 3.2. For K ∈ Kno , p > 1 and τ ∈ [−1, 1], if τ 6= 0, then ∇τ
pK =

∇−τp K if and only if K ∈ Knos.
Proof. From (1.7), we get that for all u ∈ Sn−1

Sp(∇τ
pK, u) = f1(τ)Sp(K, u) + f2(τ)Sp(−K, u), (3.1)

Sp(∇−τp K, u) = f2(τ)Sp(K, u) + f1(τ)Sp(−K, u). (3.2)

Hence, if K ∈ Knos, i.e., K = −K. This combining with (3.1) and (3.2), we get

Sp(∇τ
pK, u) = Sp(∇−τp K, u).

Thus,
∇τ
pK = ∇−τp K.
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Conversely, if ∇τ
pK = ∇−τp K, then together with (3.1) and (3.2) to yield

[f1(τ)− f2(τ)]Sp(K, u) = [f1(τ)− f2(τ)]Sp(−K, u).

Since f1(τ)− f2(τ) 6= 0 when τ 6= 0, thus it follows that Sp(K, u) = Sp(−K, u)
for all u ∈ Kn−1, i.e., K ∈ Knos.

From Theorem 3.2, it immediately obtains the following corollary.
Corollary 3.1. For K ∈ Kno , p > 1 and τ ∈ [−1, 1], If K is not origin-
symmetric, then ∇τ

pK = ∇−τp K if and only if τ = 0.
Theorem 3.3. If K ∈ Knos, p > 1 and τ ∈ [−1, 1], then

∇τ
pK = K.

Proof. Since K ∈ Knos, i.e., K = −K, by (1.10), we know for any u ∈ Sn−1

Sp(∇τ
pK, u) = f1(τ)Sp(K, u) + f2(τ)Sp(−K, u) = Sp(K, u).

That is
∇τ
pK = K.

Theorem 3.3. If K ∈ Kno , p > 1 and τ ∈ [−1, 1], if φ ∈ SL(n), then

∇τ
pφK = φ∇τ

pK. (3.3)

Proof. From Vp(K,Q) = Vp(φK, φQ) for any K,Q ∈ Kno and φ ∈ SL(n), we
have

Vp(φ∇τ
pK,Q) = Vp(∇τ

pK,φ
−1Q)

= Vp(f1(τ) ·K]pf2(τ) · (−K), φ−1Q)

= f1(τ)Vp(K,φ
−1Q) + f2(τ)Vp(−K,φ−1Q)

= f1(τ)Vp(φK,Q) + f2(τ)Vp(−φK,Q)

= Vp(f1(τ) · φK]pf2(τ) · (−φK), φ−1Q)

= Vp(∇τ
pφK,Q).

So (3.3) is proved.

4 Proofs of Theorems

In this section, we complete the proofs of Theorems 1.1-1.4.
Proof of Theorem 1.1. By (1.10) and (1.12), we get for any τ ∈ [−1, 1] and

Q ∈ Kno ,

Vp(∇τ
pK,Q) = Vp(f1(τ) ·K]pf2(τ) · (−K), Q)

= f1(τ)Vp(K,Q) + f2(τ)Vp(−K,Q)

≥ V (Q)
p
n [f1(τ)V (K)

n−p
n + f2(τ)V (−K)

n−p
n ]

= V (Q)
p
nV (K)

n−p
n .
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Let Q = ∇τ
pK

V (∇τ
pK)

n−p
n ≥ V (K)

n−p
n

Therefore, we obtain for n > p > 1,

V (∇τ
pK) ≥ V (K). (4.1)

This gives the right inequality of (1.13).
Clearly, equality holds in (4.1) if τ = ±1. Besides, if τ 6= ±1, then by the

condition of equality in (2.1), we see that equality holds in (4.1) if and only
if K and −K are dilates, this yields K = −K, i.e., K is an origin-symmetric
convex body. This means that if τ 6= ±1, then equality holds in the right
inequality of (1.13) if and only if K is origin-symmetric.

Now, we prove the left inequality of (1.13). From (1.5) and (1.7), we know
that for any u ∈ Sn−1,

Sp(∇τ
pK, u) + Sp(∇−τp K, u) = f1(τ)Sp(K, u) + f2(τ)Sp(−K, u)

+f2(τ)Sp(K, u) + f1(τ)Sp(−K, u)

= Sp(K, u) + Sp(−K, u)

= 2Sp(∇pK, u)

= Sp(2 · ∇pK, u).

So
∇τ
pK]p∇−τp K = 2 · ∇pK.

By 2 · ∇pK = 2
1

n−p∇pK, we get

V (2 · ∇pK)
n−p
n = 2V (∇pK)

n−p
n .

For any τ ∈ [−1, 1] and Q ∈ Kno , we have

Vp(2 · ∇pK,Q) = Vp(∇τ
pK]p∇−τp K,Q)

= Vp(∇τ
pK,Q) + Vp(∇−τp K,Q)

≥ V (Q)
p
n [V (∇τ

pK)
n−p
n + V (∇−τp K)

n−p
n ]

= V (Q)
p
n [V (∇τ

pK)
n−p
n + V (−∇τ

pK)
n−p
n ].

Let Q = 2 · ∇pK, This gives that for n > p > 1,

V (∇pK) ≥ V (∇τ
pK). (4.2)

This just the left inequality of (1.13).
Obviously, if τ = 0, then equality holds in (4.2). If τ 6= 0, according to

the equality condition of (2.1), we see that equality holds in (4.2) if and only
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if ∇τ
pK and ∇−τp K are dilates, this implies ∇τ

pK = ∇−τp K. Therefore, using
Corollary 3.1, we obtain that if K is not origin-symmetric body, then equality
holds in (4.2) if and only if τ = 0. This shows that if τ 6= 0, then equality
holds in the left inequality of (1.13) if and only if K is origin-symmetric.

Proof of Theorem 1.2. From definition (1.7) and (2.3), we have that

fp(∇τ
pK, u) = f1(τ)fp(K, u) + f2(τ)fp(−K, u).

By (2.6), we get

Ω−p(∇τ
pK,Q) =

∫
Sn−1

fp(∇τ
pK, u)fp(Q, u)−

p
n+pdS(u)

= f1(τ)
∫
Sn−1

fp(K, u)fp(Q, u)−
p

n+pdS(u)

+f2(τ)
∫
Sn−1

fp(−K, u)fp(Q, u)−
p

n+pdS(u)

= f1(τ)Ω−p(K,Q) + f2(τ)Ω−p(−K,Q).

By Lemma 2.1, we know Ωp(K) = Ωp(−K). Let Q = ∇τ
pK and combine with

(2.9), we know
Ωp(∇τ

pK) ≥ Ωp(K), (4.3)

i.e., the right inequality of (1.14) is obtained.
Clearly, equality holds in (4.3) if τ = ±1. If τ 6= ±1, equality of (4.3)

holds if and only if K and −K are dilates. This yields K = −K, thus K is an
origin-symmetric star body. Therefore, if τ 6= ±1, equality holds in the right
inequality of (1.14) if and only if K is origin-symmetric.

Further, we complete proof of the left inequality of (1.14). From Theorem
3.1, we know that

∇−τp K = −∇τ
pK.

Thus, (3.1) and (3.2) can be written as

∇pK =
1

2
· ∇τ

pK]p
1

2
· ∇−τp K.

Similar to the proof of inequality (4.3), we have

Ω−p(2 · ∇pK,Q) = Ω−p(∇τ
pK]p∇−τp K,Q)

= Ω−p(∇τ
pK,Q) + Ω−p(∇−τp K,Q)

= Ω−p(∇τ
pK,Q) + Ω−p(−∇τ

pK,Q)

Let Q = 2 · ∇pK and combine with (2.9), we know

Ωp(∇pK) ≥ Ωp(∇τ
pK). (4.4)

This yields the left inequality of (1.14).
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Similar to the proof of equality in inequality (4.2), we easily know that
equality holds in (4.4) if and only if ∇τ

pK = ∇−τp K when τ 6= 0. Hence, if
τ 6= 0, using Theorem 3.2 to get equality holds in the left inequality of (1.14)
if and only if K is origin-symmetric.

In order to prove Theorems 1.3-1.4, the following lemma is required.
Lemma 4.1. If K ∈ Kn

o , p > 1 and τ ∈ [−1, 1], then

Πp(∇τ
pK) = ΠpK.

Proof. From definition (1.10) and by (1.3), we have that

hpΠp(∇τpK) =
1

nωncn−2,p

∫
Sn−1

| u · v |p dSp(∇τ
pK, v)

= f1(τ)
1

nωncn−2,p

∫
Sn−1

| u · v |p dSp(K, v)

+f2(τ)
1

nωncn−2,p

∫
Sn−1

| u · v |p dSp(−K, v)

= f1(τ)
1

nωncn−2,p

∫
Sn−1

| u · v |p dSp(K, v)

+f2(τ)
1

nωncn−2,p

∫
Sn−1

| u · v |p dSp(K,−v)

=
1

nωncn−2,p

∫
Sn−1

| u · v |p dSp(K, v) = hpΠpK(u)

i.e.
Πp(∇τ

pK) = ΠpK.

Proof of Theorem 1.3. Since K is not origin-symmetric convex body, thus
from Theorem 1.1, we know that if τ 6= ±1, then

V (∇τ
pK) > V (K).

Choose ε > 0, such that V
(
(1− ε)∇τ

pK
)
> V (K). Therefore, let L = (1 −

ε)∇τ
pK (for τ = 0, L ∈ Kn

os; for τ 6= 0, L ∈ Kn
o ), then

V (L) > V (K).

But from Lemma 4.1, and notice that

Πp ((1− ε)K) = (1− ε)
n−p
p ΠpK,

we can get

ΠpL = Πp

(
(1− ε)∇τ

pL
)

= (1− ε)
n−p
p Πp(∇τ

pK) = (1− ε)
n−p
p ΠpK ⊂ ΠpK.
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Proof of Theorem 1.4. Since K is not origin-symmetric convex body, thus
by Theorem 1.2, we know that for τ 6= ±1,

Ωp(∇τ
pK) > Ωp(K).

Choose ε > 0, such that Ωp

(
(1− ε)∇τ

pK
)
> Ωp(K). Therefore, let L =

(1− ε)∇τ
pK, then L ∈ Kn

o and

Ωp(L) > Ωp(K).

But, similar to the proof of Theorem 1.3, we may obtain ΠpL ⊂ ΠpK.
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principle, Math. Ann., 352 (2012), 517-542.
https://doi.org/10.1007/s00208-011-0640-9

[10] D. Hug, E. Lutwak, D. Yang and G. Y. Zhang, On the Lp Minkowski
Problem for Polytopes, Discrete Comput. Geom., 33 (2005), 699-715.
https://doi.org/10.1007/s00454-004-1149-8

[11] A. Koldobsky, Fourier Analysis in Convex Geometry, Mathematical Sur-
veys and Monographs, 116. American Mathematical Society, Providence,
RI, 2005. https://doi.org/10.1090/surv/116

[12] L. J. Liu and B. W. He, Fourier transform and Lp mixed projections of
bodies, Bull. Korean. Mat. Soc., 47 (2010), 1011-1023.
https://doi.org/10.4134/bkms.2010.47.5.1011

[13] M. Ludwig, Minkowski valuations, Trans. Amer. Math. Soc., 357 (2005),
4191-4213. https://doi.org/10.1090/s0002-9947-04-03666-9

[14] M. Ludwig, Intersection bodies and valuations, Amer. J. Math., 128
(2006), 1409-1428. https://doi.org/10.1353/ajm.2006.0046

[15] E. Lutwak, The Brunn-Minkowski-Firey theory I: mixed volumes and the
minkowski problem, J. Differential Geom., 38 (1993), 131-150.
https://doi.org/10.4310/jdg/1214454097

[16] E. Lutwak, The Brunn-Minkowski-Firey theory II: affine and geominimal
surface areas, Adv. Math., 118 (1996), 244-294.
https://doi.org/10.1006/aima.1996.0022

[17] E. Lutwak, D. Yang and G. Y. Zhang, Lp affine isoperimetric inequalities,
J. Differential Geom., 56 (2000), 111-132.
https://doi.org/10.4310/jdg/1090347527

[18] C. M. Petty, Projection bodies, Proc. Coll. Convexity, Copenhagen, 1965,
Kφbenhavns Univ. Math. Inst., 1967, 234-241.

[19] L. Parapatits, SL(n)-contravariant Lp-Minkowski valuations, Trans.
Amer. Math. Soc., 366 (2014), 1195-1211.
https://doi.org/10.1090/s0002-9947-2013-05750-9

[20] D. Ryabogin and A. Zvavitch, The Fourier transform and Firey projec-
tions of convex bodies, Indiana. Univ. Math. Journal, 53 (2004), 667-682.
https://doi.org/10.1512/iumj.2004.53.2399

[21] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, 2nd edn,
Cambridge University Press, Cambridge, 2014.



General Lp Blaschke bodies and applications 31

[22] W. D. Wang and G. S. Leng, Lp mixed affine surface area, J. Math. Anal.
Appl., 335 (2007), 341-354. https://doi.org/10.1016/j.jmaa.2007.01.046

Received: May 22, 2025; Published: June 12, 2025


