Pure Mathematical Sciences, Vol. 12, 2023, no. 1, 1 - 19 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/pms.2023.91586

Nearly Ω – Boundedness in L – Topological Space

Najah A. Alsaeidi

Department of Mathematics, Faculty of Applied Science Umm Al-Qura University Makkah Al Mukarramah, Saudi Arabia

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2023 Hikari Ltd.

Abstract

In this paper, we introduce and study the notion of nearly Ω – boundedness on arbitrary L – sets in L – topological spaces by using the notion of δ – upper limit of Ω – nets. Several characterizations of nearly Ω – boundedness in terms of convergence theory of constant α -nets, α -ideals are obtained. We prove that the notion is good extension, productive and topologically invariant.

Keywords: Molecules, R – neighborhoods, L – topological space, δ – limit and δ – cluster points, Ω – nets, constant α – nets, α – filters, α – ideals, nearly Ω – compact and nearly Ω – bounded sets

1. Introduction

Boundedness, as a natural generalization of relative compactness was considered by several authors (see [12] and [13]). In depth analysis of boundedness and its various weaker forms was done by Lamprinos in [13] and [14]. A subset A of a space X is said to be bounded if every open cover of X has a finite subfamily which covers A. In 1997 Georgiou and Papadopoulos [7] introduced the notion of nearly Ω – compact, nearly (α,β) -compact topological and fuzzy topological spaces, nearly Ω – bounded, nearly (α,β) -bounded sets and fuzzy sets. Then he give the characterizations of nearly compact topological and fuzzy topological spaces of weakly θ – upper limit and fuzzy weakly θ – upper limit of nets and fuzzy nets. Finally he give the characterizations of the nearly bounded sets and fuzzy sets of weakly θ – upper limit and fuzzy weakly θ – upper limit of nets and fuzzy nets. In 1997 Georgiou and Papadopoulos [8] gave characterizations of fuzzy nearly compactness by used the notion of fuzzy weakly θ – upper limit of fuzzy nets. Also, he studied new fuzzy compactness and fuzzy boundedness in fuzzy topological spaces. In 2000 Georgiou and Papadopoulos

[10] introduced and studied fuzzy boundedness by used the notion of fuzzy upper limit of fuzzy nets.

Recently, Georgiou and Papadopoulos in [9] and [10] extended be the concept of bounded set to fuzzy topology and introduced the notion of fuzzy boundedness using the fuzzy compactness given by Change [2], which is not good extension of ordinary compactness. Hence the notion of fuzzy boundedness in [9] is not good extension of ordinary bounded and so it is unsatisfactory.

In This paper, we introduce and study the concept of nearly Ω – boundedness on arbitrary L – sets in L – topological spaces along the line of nearly Ω – compactness defined by Georgiou and Papadopoulos [9] and remoted neighborhood due to Wang [18]. Then we give new characterizations and properties of nearly Ω – boundedness in terms of convergence theory of constant α -nets, α -filters and α -ideals. We prove that the notion is good extension, productive and topologically invariant.

2. Preliminaries

Through this paper $L = L(\leq, \vee, \wedge, ')$ denotes a completely distributive complete lattice with a smallest element 0 and a largest element $1 \ (0 \neq 1)$ and with an order reversing involution on it. An $\alpha \in L$ is called a molecule of L if $\alpha \neq 0$ and $\alpha \leq \nu \vee \gamma$ implies $\alpha \leq \nu$ or $\alpha \leq \gamma$ for all $\nu, \gamma \in L$. The set of all molecules of L is denoted by M(L). Let X be a nonempty set. L^X denotes the family of all mappings from X to L. The elements of L^X are called L-subsets on X. L^X can be made into a lattice by inducing the order and involution from L. We denote the smallest element and the largest element of L^X by 0_X and 1_X , respectively. If $\alpha \in L$, then the constant mapping $\underline{\alpha}: X \to \{\alpha\}$ is L-subset [11]. An L-point (or molecule on L^X), denoted by x_α , $\alpha \in M(L)$ is a L-subset which is defined by $x_\alpha(y) = \begin{cases} \alpha: x = y \\ 0: x \neq y \end{cases}$.

The family of all molecules of L^X is denoted by $M(L^X)$ [19]. For $\mu \in L^X$ and $\alpha \in L$ we defined the set $\mu_{w\alpha} = \{x \in X : \mu(x) \geq \alpha\}$, which it is called weak α -cut of μ . The set $\mu_{s\alpha} = \{x \in X : \mu(x) \not\leq \alpha\}$, it is called strong α -cut of μ and $Supp(\mu) = \{x \in X : \mu(x) > 0\}$ is called support of μ [15]. For any $\lambda \in L^X$ and $\alpha \in M(L)$ with $\alpha' \geq \alpha$, we have $(\lambda_{w\alpha})' \subseteq (\lambda')_{w\alpha}$. For $\Psi \subset L^X$, we define $2^{(\Psi)}$ bythe set $\{\omega \subset \Psi : \omega \text{ is finite subfamily of } \Psi\}$. An L-topology on X is a subfamily τ of L^X closed under arbitrary unions and finite intersections. The pair (L^X, τ) is called an L-topological space (or L-ts, for short) [20]. If (L^X, τ) is an L-ts, then for each $\eta \in L^X$, $cl(\eta)$, $int(\eta)$ and η' will denote the closure, interior and complement of η . A mapping $f: L^X \to L^Y$ is said to be an L-valued

Zadeh function induced by a mapping $f: X \to Y$, iff $f(\mu)(y) = \bigvee \{\mu(x): f(x) = y\}$ for every $\mu \in L^X$ and every $y \in Y$ [19]. An L-ts (L^X, τ) is called fully stratified if for each $\alpha \in L$, $\underline{\alpha} \in \tau$ [15]. If (L^X, τ) is an L-ts, then the family of all crisp open sets in τ is denoted by $[\tau]$ i.e., $(X, [\tau])$ is a crisp topological space [16].

Definition 2.1 [17]: If (L^X, τ) is L-ts, then $\mu \in L^X$ is called regular open set iff $\mu = \operatorname{int}(cl(\mu))$. The family of all regular open sets is denoted by

 $RO(L^X, \tau)$. The complement of the regular open set is called regular closed set and satisfy $\mu = cl(\text{int}(\mu))$. The family of all regular closed sets is denoted by $RC(L^X, \tau)$.

Definition 2.2 [21]: Let (L^X, τ) be an L-ts and $x_\alpha \in M(L^X)$. Then $\lambda \in \tau'$ is called an remoted neighborhood (R-nbd, for short) of x_α if $x_\alpha \notin \lambda$. The set of all R-nbds of x_α is called remoted neighborhood system and is denoted by R_{x_α} .

Definition 2.3 [21]: Let (L^X, τ) be an L-ts, $\mu \in L^X$ and $\alpha \in M(L)$. Then $\Psi \subset \tau'$ is called an:

- (i) α -remoted neighborhood family of μ , briefly α -RF of μ , if for each L-point $x_{\alpha} \in \mu$ there is $\lambda \in \Psi$ such that $\lambda \in R_{x_{\alpha}}$.
- (ii) $\overline{\alpha}$ -remoted neighborhood family of μ , briefly $\overline{\alpha}$ -RF of μ , if there exists $\gamma \in \beta^*(\alpha)$ such that Ψ is a γ -RF of μ , where $\beta^*(\alpha) = \beta(\alpha) \cap M(L)$, and $\beta(\alpha)$ denotes the union of all the minimal sets relative to α .

Definition 2.4 [5]: Let (L^X,τ) be an L-ts, $\mu\in L^X$ and $\alpha\in M(L)$. Then $\Psi\subset RC(L^X,\tau)$ is called an α -regular closed remoted neighborhood family of μ , briefly α -RCRF of μ , if for each L-point $x_\alpha\in\mu$ there is $\lambda\in\Psi$ such that $\lambda\in R_{x_\alpha}$.

Definition 2.5 [18]: Let (L^X, τ) be an L-ts, $\mu \in L^X$ and $\alpha \in M(L)$. An α -RF $\Psi = \{\eta_j : j \in J\}$ of μ is called:

- (i) Directed if $\eta_1, \eta_2 \in \Psi$ there is $\eta_3 \in \Psi$ such that $\eta_3 \leq \eta_1 \wedge \eta_2$.
- (ii) Regular if:
 - (a) For each $j \in J$ there is $\lambda_j \in RO(L^X, \tau) \setminus \{1_X\}$ such that $\eta_i \leq \lambda_i$.

(b) The family $\{cl(\lambda_i): j \in J\}$ is α -RF of μ .

Definition 2.6 [3]: Let (D, \leq) be a directed set. Then the mapping $S:D\to L^X$ and denoted by $S=\{\mu_n:n\in D\}$ is called a net of L-subsets in X. Specially, the mapping $S:D\to M(L^X)$ is said to be a molecular net in L^X . If $\mu\in L^X$ and for each $n\in D, S\in \mu$ then S is called a net in μ .

Remark 2.7 [10]: We denote by Ω a class of directed sets. Let $S = \{\mu_n : n \in D\}$ be a net of L-subsets in L^X . If $D \in \Omega$, then this net is called Ω – net.

Definition 2.8 [21]: Let (L^X, τ) be an L-ts and $S = \{S(n) : n \in D\}$ be a molecular net in L^X . S is called an molecular α -net $(\alpha \in M(L))$, if for each $\gamma \in \beta^*(\alpha)$ there exists $n \in D$ such that $\vee (S(m)) \geq \gamma$ whenever $m \geq n$, where $\vee (S(m))$ is the height of the molecular S(m). If $\vee (S(m)) = \alpha$ for each $m \in D$, then $\{S(m) : m \in D\}$ is called constant molecular α -net.

Definition 2.9 [21]: Let $S = \{S(n) : n \in D\}$ and $T = \{T(m) : m \in E\}$ be a be molecular nets in (L^X, τ) . Then T is said to be is a molecular subnet of S if there is a mapping $f : E \to D$ satisfies the following conditions:

- (i) $T = S \circ f$
- (ii) For each $n \in D$ there is $m \in E$ such that $f(l) \ge n$ for each $l \in E$, $l \ge m$.

Definition 2.10 [3]: Let (L^X, τ) be an L-ts and $\Delta = \{\mu_n : n \in D\}$ be a net of L-subsets in (L^X, τ) and $x_\alpha \in M(L^X)$.

Then:

- (i) x_{α} is called a δ -limit point of Δ , in symbols $\Delta \xrightarrow{\delta} x_{\alpha}$ if for each $\eta \in R_{x_{\alpha}}$ there is an $m \in D$ such that $\mu_n \notin cl(\operatorname{int}(\eta))$ for all $n \in D$, $n \geq m$. The union of all δ -limit points of Δ are denoted by δ -lim(Δ).
- (ii) x_{α} is called a δ -cluster (δ -adherent) point of Δ , in symbols $\Delta \propto x_{\alpha}$ if for each $\eta \in R_{x_{\alpha}}$ and for each $n \in D$ there is an $m \in D$ such that $m \geq n$ and $\mu_n \notin cl(\operatorname{int}(\eta))$. The union of all δ -cluster points of Δ are denoted by $\delta.\overline{\lim(\Delta)}$.

If $\delta \underline{\lim(\Delta)} = \delta .\overline{\lim(\Delta)} = \mu$, then we say that μ is $\delta - \lim$ of Δ , or we say that Δ $\delta - \text{converges to } \mu$, in symbol $\delta .\lim(\Delta) = \mu$.

The δ -limit and δ -cluster points of a molecular net are defined similarly in [21].

Definition 2.11 [10]: Let (L^X, τ) be an L-ts, $\mu \in L^X$. Then μ is called nearly Ω -compact (or $N..\Omega$ -compact) set in (L^X, τ) if every Ω -net $\{\eta_n : n \in D\}$ of closed L-subsets in L^X such that $\delta.\overline{\lim}(\eta_n)(x) < \alpha$ for each $x \in X$ there exists $n_\circ \in D$ for which $\eta_n = 0_X$, for every $n \in D$, $n \ge n_\circ$.

Definition 2.12 [6]: An L-ts (L^X, τ) is said to be :

- (i) LR_2 -space (regular space) iff for all $\alpha \in M(L)$, $x \in X$ and for each $\lambda \in R_{x_\alpha}$ there is $\eta \in R_{x_\alpha}$, $\rho \in \tau'$ such that $\eta \vee \rho = 1_X$ and $\lambda \wedge \rho = 0_X$.
- (ii) LSR_2 space (semi regular space) iff for all $x_\alpha \in M(L^X)$ and for each $\lambda \in R_{x_\alpha}$ there is $\eta \in R_{x_\alpha}$ such that $\lambda \le cl(\operatorname{int}(\eta))$.

Theorem 2.13 [17]: If (L^X, τ) is LR_2 – space, then it is LSR_2 – space

Definition 2.14 [23]: The nonempty family $\mathcal{F} \subset L^X$ is called an L-filter if the following conditions satisfies, for each $\mu_1, \mu_2 \in L^X$

- $(i) 0_x \notin \mathbf{F}$
- (ii) If $\mu_1 \le \mu_2$ and $\mu_1 \in \mathcal{F}$, then $\mu_2 \in \mathcal{F}$.
- (iii) If $\mu_1, \mu_2 \in \mathcal{F}$, then $\mu_1 \wedge \mu_2 \in \mathcal{F}$.

Definition 2.15 [23]: A filter \mathcal{F} in L^X is called an α -filter ($\alpha \in M(L)$), if for every $\lambda \in \mathcal{F}$, $\bigvee_{x \in X} \lambda(x) \ge \alpha$.

Definition 2.16 [23]: Let (L^X, τ) be an L-ts and \mathcal{F} be an L- filter in L^X . Then $x_\alpha \in M(L^X)$ is called δ -cluster point of \mathcal{F} , in symbol $\mathcal{F} \propto^\delta x_\alpha$ if for each $\lambda \in \mathcal{F}$ and each $\mu \in R_{x_\alpha}$, $\lambda \not\leq cl(\operatorname{int}(\mu))$. The union of all δ -cluster points of \mathcal{F} are denoted by $\delta.adh(\mathcal{F})$

Definition 2.17 [22]: The nonempty family $I \subset L^X$ is called an ideal if the following conditions satisfies, for each $\mu_1, \mu_2 \in L^X$

- $(i)1_X \notin I$
- (ii) If $\mu_1 \le \mu_2$ and $\mu_2 \in I$, then $\mu_1 \in I$.
- (iii) If $\mu_1, \mu_2 \in I$, then $\mu_1 \vee \mu_2 \in I$.

Definition 2.18 [22]: Let I be an ideal in an L-ts (L^X, τ) and $\alpha \in M(L)$. Then I is said to be an α -ideal, if $\bigvee_{x \in X} \eta(x) < \alpha$ for each $\eta \in I$.

Definition 2.19 [22] : Let I be an ideal in $\operatorname{an} L$ -ts (L^X, τ) and $\alpha \in M(L)$. Then $x_\alpha \in M(L^X)$ is called δ -cluster point of I, in symbol $I \propto^\delta x_\alpha$ if for each $\lambda \in I$ and each $\mu \in R_{x_\alpha}$, $\lambda \vee cl(\operatorname{int}(\mu)) \neq 1_X$. The union of all δ -cluster points of I are denoted by $\delta.adh(I)$.

Theorem 2.20 [4]: Let \mathcal{F} be an L-filter in an L-ts (L^X, τ) and $S(\mathcal{F})$ be the L-molecular net induced by \mathcal{F} . Then $\delta.adh(\mathcal{F}) = \delta.adh(S(\mathcal{F}))$.

Theorem 2.21 [4]: Suppose that S is an L-net in an L-ts (L^X, τ) and $\mathcal{F}(S)$ is the L-filter induced by S. Then $\delta.adh(S) = \delta.adh(\mathcal{F}(S))$.

Theorem 2.22 [4]: Suppose that I is an ideal in an L-ts (L^X, τ) and S(I) is the L-molecular net induced by I. Then $\delta.adh(I) = \delta.adh(S(I))$.

3. Nearly Ω – Boundedness in L -topological spaces

In this section, we introduce the concept of nearly Ω -bounded sets in L-topological spaces. Then we obtain several characterizations of nearly Ω -bounded sets.

Definition 3.1. Let (L^X, τ) be an L-ts, $\mu \in L^X$ and $\alpha \in M(L)$, then $\mu \in L^X$ is called Nearly Ω -bounded (or, $N . \Omega$ – bounded) set in (L^X, τ) if every Ω -net $\{\rho_n : n \in D\}$ of closed L-subsets in L^X such that $\delta.\overline{\lim}(\rho_n)(x) < \alpha$ for each $x \in X$ there exists $n_{\circ} \in D$ for which $\rho_n \wedge \mu = 0_X$, for every $n \in D$, $n \geq n_{\circ}$.

Remark 3.2. We note that every Ω -net of L-subsets of X is a net of L-subsets of X. But if Ω is the class of all directed sets, then Ω -net and a net of L-subsets of X are equivalent.

The following example show that the converse is not true in general.

Example 3.3. Let L = X = [0,1] and let $\tau = \{0_X, 1_X, \mu\}$, where $\mu \in L^X$ such that $\mu(x) = \begin{cases} \frac{1}{3} : x = 0 \\ 0 : x \neq 0 \end{cases}$

Clearly, the pair (L^X, τ) is L-ts. Let $S = \{\mu_n : n \in N\}$ such that $\mu_n = x_{.25}$ for every $n \in N$. Then S is a net of L-subsets of X. But S is not Ω -net, since D = N is not class of all directed sets.

Theorem 3.4. Let (L^X, τ) be an L-ts. If $\mu \in L^X$ is Ω -bounded [1], then μ is $N.\Omega$ -bounded set.

Proof. Let $\mu \in L^X$ be an Ω -bounded set and let $\{\rho_n : n \in D\}$ be an Ω -net of closed L-subsets in L^X such that $\delta.\overline{\lim}(\rho_n)(x) < \alpha$ for each $x \in X$, then for each $x \in X$ there is $\eta \in R_{x_\alpha}$ and there is $m \in D$ such that $\rho_n \leq cl(\operatorname{int}(\eta))$ for all $n \geq m$, since $cl(\operatorname{int}(\eta)) \leq \eta$, then $\rho_n \leq \eta$. Since μ is Ω -bounded set, then there exists $n_\circ \in D$ for which $\rho_n \wedge \mu = 0_X$, for every $n \in D$, $n \geq n_\circ$. Hence μ is $N.\Omega$ -bounded set.

Example 3.5. Let L = [0,1], X = N and let $\tau = \{0_X, x_5, 1_X\}$. Then (L^X, τ) is L-ts. Let $S = \{x_5 : x \in X\}$ be an Ω -net, then 1_X is not Ω -bounded set. Now, let $S = \{x_\alpha : x \in X, \alpha \in L\}$ be an Ω -net, then 1_X is $N \cdot \cdot \cdot \Omega$ -bounded set.

Definition 3.6. Let (L^X, τ) be an L-ts and $x_\alpha \in M(L^X)$. If $\mu \in L^X$ is closed and $N.\Omega$ – bounded set, then μ is called $N\Omega B$ – remoted neighborhood of x_α ($N\Omega BR$ – nbd, for short) of x_α if $x_\alpha \notin \mu$. The set of all $N\Omega BR$ – nbds of x_α is denoted by $N\Omega BR_{x_\alpha}$.

We note that $\Omega BR_{x_{\alpha}} \subseteq N\Omega BR_{x_{\alpha}} \subseteq R_{x_{\alpha}}$.

Example 3.7. By Example 3.5., let $S = \{x_3 : x \in X\}$ be an Ω -net, then $\mu = x_4$ is not Ω -bounded set. Now, let $S = \{x_\alpha : x \in X, \alpha \le .4\}$ be an Ω -net, then μ is $N.\Omega$ -bounded set.

Definition 3.8. Let (L^X, τ) be an L-ts and $\mu \in L^X$. Then $x_\alpha \in M(L^X)$ is called $N\Omega$ -bounded adherent point of μ and write $x_\alpha \in N\Omega cl(\mu)$ iff $\mu \nleq \lambda$ for each $\lambda \in N\Omega BR_{x_\alpha}$. If $\mu = N\Omega cl(\mu)$, then μ is called $N\Omega$ -closed L-subset. The family of all $N\Omega$ -closed L-subsets is denoted by $N\Omega C(L^X, \tau)$ and its complement is called the family of all $N\Omega$ -open L-subsets and denoted by $N\Omega O(L^X, \tau)$.

Theorem 3.9. Let (L^X, τ) be an L-ts and let $\mu \in L^X$. Then the following statements are true::

- (i) $\mu \le cl(\mu) \le N\Omega \cdot cl(\mu)$ and $N\Omega \cdot cl(\mu) \le \Omega \cdot cl(\mu)$.
- (ii) If $\eta \in L^X$ and $\mu \leq \eta$ then $N\Omega \cdot cl(\mu) \leq N\Omega \cdot cl(\eta)$.
- (iii) $N\Omega .cl(N\Omega .cl(\mu)) = N\Omega .cl(\mu)$.
- (iv) $N\Omega cl(\mu) = \land \{ \eta \in L^X : \eta \in N\Omega C.(L^X, \tau), \mu \leq \eta \}$.
- **Proof.** (i) Let $x_{\alpha} \in M(L^{X})$ such that $x_{\alpha} \notin N\Omega.cl(\mu)$, then there exists $\lambda \in N\Omega BR_{x_{\alpha}}$ such that $\mu \leq \lambda$. Since $N\Omega BR_{x_{\alpha}} \subseteq R_{x_{\alpha}}$ and so $\lambda \in R_{x_{\alpha}}$ and hence $x_{\alpha} \notin cl(\mu)$. Thus $cl(\mu) \leq N\Omega.cl(\mu)$.
- (ii) Let $x_{\alpha} \in M(L^{X})$ such that $x_{\alpha} \notin N\Omega.cl(\eta)$, then there exists $\lambda \in N\Omega BR_{x_{\alpha}}$ such that $\eta \leq \lambda$. Since $\mu \leq \eta$, then $\mu \leq \lambda$ and so $x_{\alpha} \notin N\Omega.cl(\mu)$. Thus $N\Omega.cl(\mu) \leq N\Omega.cl(\eta)$.
- (iii) Suppose $x_{\alpha} \in M(L^X)$ such that $x_{\alpha} \in N\Omega . cl(N\Omega . cl(\mu))$. According to Definition 3.8. we have $N\Omega . cl(\mu) \not\leq \lambda$ for each $\lambda \in N\Omega BR_{x_{\alpha}}$. Hence, there exists $y_{\gamma} \in M(L^X)$ such that $y_{\gamma} \in N\Omega . cl(\mu)$ with $y_{\gamma} \notin \lambda$ and so $\mu \not\leq \lambda$, that is, $x_{\alpha} \in N\Omega . cl(\mu)$. This shows that $N\Omega . cl(N\Omega . cl(\mu)) \leq N\Omega . cl(\mu)$. On other hand, $\mu \leq N\Omega . cl(\mu)$ follows from (i) and so $N\Omega . cl(\mu) \leq N\Omega . cl(N\Omega . cl(\mu))$. Therefore, $N\Omega . cl(N\Omega . cl(\mu)) = N\Omega . cl(\mu)$.
- (iv) On account of (i) and (iii). $N\Omega.cl(\mu)$ is an $N\Omega$ -closed set containing μ , and so $N\Omega.cl(\mu) \ge \land \{\eta \in L^X : \eta \in N\Omega C.(L^X, \tau), \mu \le \eta\}$. Conversely, in case $x_\alpha \in M(L^X)$ sand $x_\alpha \in N\Omega.cl(\mu)$, then $\mu \not\le \lambda$ for each $\lambda \in N\Omega BR_{x_\alpha}$. Hence, if η is an $N\Omega$ -closed set containing μ , then $\eta \not\le \lambda$, and then $x_\alpha \in N\Omega.cl(\eta) = \eta$. This implies that $N\Omega.cl(\mu) \le \land \{\eta \in L^X : \eta \in N\Omega C.(L^X, \tau), \mu \le \eta\}$. Hence

$$N\Omega . cl(\mu) = \land \{ \eta \in L^X : \eta \in N\Omega C.(L^X, \tau), \mu \leq \eta \}$$

From Theorem 3.9., one can see that every $N\Omega$ -closed L-subset is closed L-subset, but the inverse is not true since every closed L-subset is not $N\Omega$ -bounded set in general as the following example shows.

Example 3.10. By Example 3.5., let $\mu = x_5$, then μ is closed L-subset because $\mu \in \tau'$ where $\tau' = \{0_X, x_5, 1_X\}$. Now, μ is not $N.\Omega$ -bounded. In fact, we suppose that Ω -net $S = \{x_5 : x \in X\}$, then μ is not $N.\Omega$ -bounded set.

Definition 3.11. Let (L^X,τ) be an L-ts and S be a molecular net in L^X . Then $x_\alpha \in M(L^X)$ is called $N\Omega$ -bounded limit point of S, (or S $N\Omega$ -converges to x_α) in symbol $S \xrightarrow{N\Omega} x_\alpha$ if for every $\mu \in N\Omega BR_{x_\alpha}$ there is an $n \in D$ such that

 $m \in D$ and $m \ge n$ we have $S(m) \notin \mu$. The union of all $N\Omega$ -bounded limit points of S is denoted by $N\Omega.\lim(S)$.

Definition 3.12. Let (L^X, τ) be an L-ts and S be a molecular net in L^X . Then $x_{\alpha} \in M(L^X)$ is called $N\Omega$ -bounded cluster point of S, in symbol $S \propto^{N\Omega} x_{\alpha}$ if for every $\mu \in N\Omega BR_{x_{\alpha}}$ and every $n \in D$ there is an $m \in D$ such that $m \ge n$ and $S(m) \notin \mu$. The union of all $N\Omega$ -bounded cluster points of S is denoted by $N\Omega \cdot adh(S)$.

Theorem 3.13. (The goodness of $N\Omega$ -bounded**ness**) Let $(L^{X_i}, \omega_L(T))$ be the induced L-ts by the ordinary space (X,T), $\alpha \in M(L)$ and $\mu \in L^X$. Then μ is $N.\Omega$ -bounded in $(L^{X_i}, \omega_L(T))$ iff $\mu_{\omega\alpha} = \{x \in X : \mu(x) \geq \alpha\}$ is $N.\Omega$ -bounded in (X,T).

Proof. Let $\mu \in L^X$ be an $N..\Omega-$ bounded and $\{k_n : n \in D\}$ be an Ω -net of closed subsets in X such that $\delta.\overline{\lim}(k_n)(x) = \phi$ for each $x \in X$. Then the family $\{1_{k_n} : n \in D\}$ is Ω -net of closed L-subsets in L^X such that $\delta.\overline{\lim}(1_{k_n})(x) = 0_X < \alpha$ for each $x \in X$, since μ is $N..\Omega-$ bounded, there is $n_\circ \in D$ for which $1_{k_n} \wedge \mu = 0_X$ for every $n \in D, n \geq n_\circ$ and so $(1_{k_n} \wedge \mu)_{\omega\alpha} = (1_{k_n})_{\omega\alpha} \cap \mu_{\omega\alpha} = k_n \cap \mu_{\omega\alpha} = \phi$ for every $n \in D, n \geq n_\circ$. Thus $\mu_{\omega\alpha}$ is $N..\Omega-$ bounded in (X,T).

Conversely, suppose that $\mu_{\omega\alpha}$ is $N.\Omega$ -bounded for any $\alpha \in M(L)$ and $\{\rho_n: n \in D\}$ is an Ω -net of closed L-subsets in L^X such that $\delta.\overline{\lim}(\rho_n)(x) < \alpha$ for each $x \in X$. Then the family $\{(\rho_n)_{\omega\alpha}: n \in D\}$ is Ω -net of closed subsets in X such that $\delta.\overline{\lim}(\rho_n)_{\omega\alpha} = \phi$ for each $x \in X$. Since $\mu_{\omega\alpha}$ is $N\Omega$ -bounded for any $\alpha \in M(L)$ there is $n_\circ \in D$ for which $(\rho_n)_{\omega\alpha} \cap \mu_{\omega\alpha} = \phi$ for every $n \in D$, $n \geq n_\circ$ therefore $\rho_n \wedge \mu = 0_X$ for every $n \in D$, $n \geq n_\circ$. Thus μ is $N.\Omega$ -bounded in $(L^{X_i}, \omega_L(T))$.

Theorem 3.14. Let (L^X, τ) be an L-ts and let $\mu \in L^X$. Then:

- (i) If μ is $N.\Omega$ -compact, then μ is $N.\Omega$ -bounded.
- (ii) If μ is closed and $N.\Omega$ bounded, then μ is $N.\Omega$ compact.
- (iii) If η is $N.\Omega$ -bounded and $\mu \le \eta$, then μ is $N.\Omega$ -bounded.
- (iv) If η is $N \cdot \Omega$ compact and $\mu \leq \eta$, then μ is $N \cdot \Omega$ bounded.
- (v) If $\mu_1, \mu_2, ..., \mu_m$ are $N.\Omega$ bounded sets, then $\bigvee_{i=1}^m \mu_i$ is $N.\Omega$ bounded.

Proof. (i) Let μ be an $N.\Omega-$ compact and let $\{\rho_n:n\in D\}$ be an Ω -net of closed L-subsets such that $\delta.\overline{\lim}(\rho_n)(x)<\alpha$ for each $x\in X$. Then for every $x_\alpha\in M(L^X)$ there exists $\lambda_{x_\alpha}\in R_{x_\alpha}$ and an element $n_{x_\alpha}\in D$ such that $\rho_n\leq cl(\operatorname{int}(\lambda_{\epsilon_\alpha}))$ for each $n\in D$, $n\geq n_{x_\alpha}$. Clearly, the family $\Psi=\{cl(\operatorname{int}(\lambda_{x_\alpha})):x_\alpha\in M(L^X)\}$ is an α -RF of μ . Since μ is $N.\Omega-$ compact, then there exists $n_\circ\in D$ for which $\rho_n=0_X$ for every $n\in D$, $n\geq n_\circ$. Thus $cl(\operatorname{int}(\lambda_{\epsilon_\alpha}))\wedge\mu=0_X$ and hence $\rho_n\wedge\mu=0_X$ for every $n\in D$, $n\geq n_\circ$. Hence μ is $N.\Omega-$ bounded.

- (ii) Let μ be an $N.\Omega$ -bounded and let $\{\rho_n:n\in D\}$ be an Ω -net of closed L-subsets such that $\delta.\overline{\lim}(\rho_n)(x)<\alpha$ for each $x\in X$. Since μ is $N.\Omega$ -bounded, then there is $n_{\circ}\in D$ such that $\rho_n\wedge\mu=0_X$ for every $n\in D$, $n\geq n_{\circ}$. Since μ is closed, then $\rho_n\wedge\mu=\mu=0_X$ and so $\rho_n=0_X$. Hence μ is $N.\Omega$ -compact.
- (iii) Let η be an $N..\Omega$ bounded and let $\{\rho_n:n\in D\}$ be an Ω -net of closed L-subsets such that $\delta.\overline{\lim}(\rho_n)(x)<\alpha$ for each $x\in X$. Since η is $N..\Omega$ bounded, then there is $n_{\circ}\in D$ such that $\rho_n\wedge\eta=0_X$ for every $n\in D$, $n\geq n_{\circ}$. Since $\mu\leq\eta$, then $\rho_n\wedge\mu=0_X$ for every $n\in D$, $n\geq n_{\circ}$. Hence μ is $N..\Omega$ bounded.
- (iv) Let η be an $N.\Omega-$ compact and let $\{\rho_n:n\in D\}$ be an Ω -net of closed L-subsets such that $\delta.\overline{\lim}(\rho_n)(x)<\alpha$ for each $x\in X$. Since η is $N.\Omega-$ compact, then there is $n_{\circ}\in D$ such that $\rho_n=0_X$ for every $n\in D$, $n\geq n_{\circ}$ and so $\rho_n\wedge\eta=0_X$. Since $\mu\leq\eta$, then $\rho_n\wedge\mu=0_X$ for every $n\in D$, $n\geq n_{\circ}$. Hence μ is $N.\Omega-$ bounded.
- (v) Let $\mu_1, \mu_2, ..., \mu_n$ be an $N.\Omega$ -bounded sets and let $\{\rho_n : n \in D\}$ be an Ω -net of closed L-subsets such that $\delta.\overline{\lim}(\rho_n)(x) < \alpha$ for each $x \in X$. Since μ_i is $N.\Omega$ -bounded for each i=1,2,...,m, then there exists $n_{\circ} \in D$ such that $\rho_n \wedge \mu_1 = 0_X$, $\rho_n \wedge \mu_2 = 0_X$,..., $\rho_n \wedge \mu_m = 0_X$ for every $n \in D$, $n \geq n_{\circ}$. Thus there is $n_{\circ} \in D$ such that $\rho_n \wedge (\bigvee_{i=1}^m \mu_i) = 0_X$ for every $n \in D$, $n \geq n_{\circ}$. Hence $\bigvee_{i=1}^m \mu_i$ is $N.\Omega$ -bounded.

Example 3.15. Let $X = \{x\}$, L = [0,1] and let $\tau = \{0_X, 1_X, x_{\frac{1}{4}}, x_{\frac{8}{9}}\}$. Then (L^X, τ) is L-ts, we suppose that $S = \{x_{\alpha} : x \in X, \alpha \le \frac{1}{2}\}$ is Ω -net, then by

remark 3.2, we have $\mu = x_{\frac{1}{2}} \in M(L^X)$ is $N..\Omega$ -bounded set but is not $N..\Omega$ compact set.

Theorem 3.16. Let (L^X, τ) be an L-ts, $\phi \neq Y \subseteq X$ and $\mu \in L^X$. If μ is $N..\Omega$ – bounded set in (L^X, τ) , then μ is $N..\Omega$ – bounded set in (L^Y, τ_Y) .

Proof. Let μ be an $N..\Omega-$ bounded set in (L^X,τ) and $\phi \neq Y \subseteq X$. Let $\{\rho_n: n \in D\}$ be an Ω -net of closed L-subsets in Y such that $\delta.\overline{\lim}(\rho_n)(y) < \alpha$, for each $y \in Y$. Then $\{\rho_n = \eta_n \land Y: n \in D, \eta_n \text{ is closed } L-\text{subsets in } X\}$. Hence $\{\eta_n: n \in D\}$ is an Ω -net of closed L-subsets in X such that $\delta.\overline{\lim}(\eta_n)(x) < \alpha$, for each $x \in X$. Since μ is $N..\Omega-$ bounded set in (L^X,τ) , then there exists $n_\circ \in D$ for which $\eta_n \land \mu = 0_X$, for every $n \in D$, $n \ge n_\circ$ and so $(\eta_n \land Y) \land \mu = 0_Y$. Hence $\rho_n \land \mu = 0_Y$ and so μ is $N..\Omega-$ bounded set in (L^Y,τ_Y) .

Theorem 3.17. Let $\{\mu_n:n\in D\}$ be a net of closed L-subsets in L^X such that $\mu_{n_1}\leq \mu_{n_2}$ then $\delta.\overline{\lim}(\mu_n)\leq \wedge\{\mu_n:n\in D\}$ iff $n_2\leq n_1$.

Proof. Let $x_{\alpha} \in \delta.\overline{\lim}(\mu_n)$ and let $x_{\alpha} \notin \land \{\mu_n : n \in D\}$. Hence there exists $n_{\circ} \in D$ such that $x_{\alpha} \notin \mu_{n_{\circ}}$. Let $\rho = \mu_{n_{\circ}}$, then $\rho \in R_{x_{\alpha}}$. Since $x_{\alpha} \in \delta.\overline{\lim}(\mu_n)$ and $\rho \in R_{x_{\alpha}}$, there is $n \in D$, $n \ge n_{\circ}$ such that $\mu_n \le \mu_{n_{\circ}} = \rho$, i.e., $\mu_n \le cl(\operatorname{int}(\rho))$. This contradicts the hypothesis that $x_{\alpha} \in \delta.\overline{\lim}(\mu_n)$. Thus $x_{\alpha} \in \land \{\mu_n : n \in D\}$.

Theorem 3.18. Let (L^X,τ) be an L-ts and $\mu \in L^X$. Then μ is $N..\Omega-$ bounded set iff for each α -RF Ψ of 1_X , there exists $\Psi_{\circ} \in 2^{(\Psi)}$ such that Ψ_{\circ} is an α -RCRF of μ .

Proof. Let $\mu \in L^X$ be an $N.\Omega$ -bounded set and let $\Psi \subseteq \tau'$ be an α -RF of 1_X . Let $D=2^{(\Psi)}$ be the set of all finite subsets of Ψ directed by inclusion and let $\{\eta_\Psi: \Psi \in D\}$ be a net of closed L-subsets in L^X such that $\eta_\Psi = \wedge \{cl(\operatorname{int}(\rho)): \rho \in \Psi\}$ Obviously, $\eta_{\Psi_1} \leq \eta_{\Psi_2}$ iff $\Psi_2 \subseteq \Psi_1$. Hence by Theorem 3.17. it follows that $\delta.\overline{\lim}(\eta_\Psi) \leq \wedge \{\eta_\Psi: \Psi \in D\}$.

So $(\land \{\eta_{\Psi} : \Psi \in D\})(x) = \land (\land \{cl(\operatorname{int}(\rho)) : \rho \in \Psi\})(x) < \alpha$ for each $x \in X$. Thus $\delta.\overline{\lim}(\eta_{\Psi}) < \alpha$ for each $x \in X$. Since μ is $N.\Omega$ —bounded set, then there exists an element $\Psi_{\circ} \in D$ for which $\eta_{\Psi} \land \mu = 0_X$ for every $\Psi \in D$, $\Psi \ge \Psi_{\circ}$. By the

above we have $\eta_{\Psi_{\circ}} \wedge \mu = 0_X$ and so for each $x_{\alpha} \in \mu$ there is $cl(\operatorname{int}(\rho)) \in \Psi_{\circ}$ such that $cl(\operatorname{int}(\rho)) \in R_X$. Thus $\Psi_{\circ} \in 2^{(\Psi)}$ is an α -RCRF of μ .

Conversely, suppose that $\mu \in L^X$ satisfies the condition. We prove that μ is $N..\Omega$ – bounded set. Let $\{\eta_n:n\in D\}$ be a net of closed L -subsets in L^X such that $\delta.\overline{\lim}(\eta_n)(x)<\alpha$, for each $x\in X$. Then for every molecular $x_\alpha\in M(L^X)$ there exists $\rho_x\in R_{x_\alpha}$ and $n_x\in D$ such that $\eta_n\leq cl(\operatorname{int}(\rho_x))$ for every $n\in D$, $n\geq n_x$. Since $\rho_x\in R_{x_\alpha}$ for every $x\in X$, then the family $\Psi=\{\rho_x:x\in X \ and \ \alpha\in M(L)\}$ is an α -RF of 1_X . By assumption there exist $\Psi_\circ=\{cl(\operatorname{int}(\rho_{x^i})):i=1,2,...,k\}\in 2^{(\Psi)}$ such that Ψ_\circ is an α -RCRF of μ . Put $\rho=\bigwedge_{i=1}^k\rho_{x^i}$, then $cl(\operatorname{int}(\rho))\in R_{x_\alpha}$. Since D is a directed set, there is $n_\circ\in D$ such that $n_\circ\geq n_{x^i}$ for every i=1,2,...,k. Then for every $n\in D$, $n\geq n_\circ$ we have $\eta_n\leq cl(\operatorname{int}(\rho))$, whenever $n\geq n_\circ$. Since $cl(\operatorname{int}(\rho))\wedge\mu=0_X$, then $\eta_n\wedge\mu=0_X$ for every $n\in D$, $n\geq n_\circ$. Thus μ is $N..\Omega$ -bounded set.

Corollary 3.19. An L-ts (L^X, τ) is $N ... \Omega$ – compact iff for each α -RF Ψ of 1_X , there exists $\Psi_{\circ} \in 2^{(\Psi)}$ such that Ψ_{\circ} is an α -RCRF of 1_X .

Proof. Let (L^X,τ) be an $N.\Omega-$ compact. Then 1_X is $N.\Omega-$ compact. let $\Psi \subseteq \tau'$ be an α -RF of 1_X . Let $D=2^{(\Psi)}$ be the set of all finite subsets of Ψ directed by inclusion and let $\{\mu_{\Psi}:\Psi\in D\}$ be a net of closed L-subsets in L^X such that $\mu_{\Psi}=\wedge\{cl(\operatorname{int}(\rho)):\rho\in\Psi\}$. Obviously, $\mu_{\Psi_1}\leq\mu_{\Psi_2}$ iff $\Psi_2\subseteq\Psi_1$. Hence by Theorem 3.17. it follows that $\delta.\overline{\lim}(\mu_{\Psi})\leq \wedge\{\mu_{\Psi}:\Psi\in D\}$. Hence $(\wedge\{\mu_{\Psi}:\Psi\in D\})(x)=\wedge(\wedge\{cl(\operatorname{int}(\rho)):\rho\in\Psi\})(x)<\alpha$ for all $x\in X$. Thus $\delta.\overline{\lim}(\mu_{\Psi})<\alpha$ for all $x\in X$. Since 1_X is an $N.\Omega-$ compact, then there exists an element $\Psi_{\circ}\in D$ for which $\mu_{\Psi}=0_X$ for every $\Psi\in D$, $\Psi\geq\Psi_{\circ}$. By the above we have $\mu_{\Psi_{\circ}}=0_X$ and so $x_{\alpha}\notin\mu_{\Psi_{\circ}}=\wedge\{cl(\operatorname{int}(\rho)):\rho\in\Psi_{\circ}\}$ for each $x_{\alpha}\in M(L^X)$ and hence $\Psi_{\circ}\in 2^{(\Psi)}$ is an α -RCRF of 1_X .

Conversely, suppose that 1_X satisfies the condition. We prove that 1_X is $N..\Omega-$ compact. Let $\{\mu_n:n\in D\}$ be a net of closed L-subsets in L^X such that $\delta.\overline{\lim}(\eta_n)(x)<\alpha$, for each $x\in X$. Then for every molecular $x_\alpha\in M(L^X)$ there exists $\rho_x\in R_{x_\alpha}$ and $n_x\in D$ such that $\mu_n\leq cl(\operatorname{int}(\rho_x))$ for every $n\in D$, $n\geq n_x$. Since $\rho_x\in R_{x_\alpha}$ for every $x\in X$, then the family

 $\Psi = \{ \rho_x : x \in X \text{ and } \alpha \in M(L) \} \text{ is an } \alpha \text{-RF of } 1_X \text{. By assumption there exist } \Psi_\circ = \{ cl(\operatorname{int}(\rho_{x^i})) : i = 1, 2, ..., k \} \in 2^{(\Psi)} \text{ such that } \Psi_\circ \text{ is an } \alpha \text{-RCRF of } 1_X \text{. Then } (\forall x \in X) \ (\exists cl(\operatorname{int}(\rho_{x^i})) \in \Psi_\circ, i \leq k) \ (cl(\operatorname{int}(\rho_{x^i})) \in R_{x_\alpha}) \text{. Put } \rho = \bigwedge_{i=1}^k \rho_{x^i}, \text{ then } cl(\operatorname{int}(\rho)) \in R_{x_\alpha} \text{. Since } D \text{ is a directed set, there is } n_\circ \in D \text{ such that } n_\circ \geq n_{x^i} \text{ for every } i = 1, 2, ..., k \text{. Hence for every } n \in D, \ n \geq n_\circ \text{ we have } \mu_n \leq cl(\operatorname{int}(\bigwedge_{i=1}^k \rho_{x^i})) \text{ and so } \mu_n \leq cl(\operatorname{int}(\rho)), \text{ whenever } n \geq n_\circ \text{. Since } cl(\operatorname{int}(\rho)) = 0_X, \text{ then } \mu_n = 0_X \text{ for every } n \in D, \ n \geq n_\circ \text{. Hence } 1_X \text{ is } N..\Omega - \text{compact.}$

Theorem 3.20. Let (L^X, τ) be an L-ts and $\mu \in L^X$ is $N..\Omega$ -bounded set. Then μ is Ω - bounded set if (L^X, τ) is LR_2 -space.

Proof. Let $\mu \in L^X$ be an $N..\Omega$ -bounded and let and let $\Psi = \{\rho_j : j \in J\} \subseteq \tau'$ be an α -RF of 1_X . Then for each $x_\alpha \in M(L^X)$ there is $\rho \in \Psi$ such that $\rho \in R_{x_\alpha}$. Since (L^X, τ) is LR_2 -space, then by Theorem 2.13 we have $\tau' = RC(L^X, \tau)$. Since μ is $N..\Omega$ -bounded set, then there is $\Psi_\circ \in 2^{(\Psi)}$ such that Ψ_\circ is an α -RCRF of μ , since $\tau' = RC(L^X, \tau)$, then Ψ_\circ is an α -RF of μ . This shows that μ is Ω -bounded set

4. α -Nets characterizations of $N.\Omega$ - Boundedness

In this section we give several characterizations of $N.\Omega$ -Boundedness in terms of both δ -upper limit of Ω -nets of L-subsets and δ -cluster points of constant molecular α -nets.

Theorem 4.1. Let (L^X, τ) be an L-ts, $\alpha \in M(L)$ and $\mu \in L^X$. Then μ is $N.\Omega$ -bounded iff for each constant molecular α -net S contained in μ has δ -cluster point in X with height α .

Suppose that μ is $N.\Omega$ – bounded, $S = \{S(n) : n \in D\}$ is a constant molecular α -net in μ . If S does not have any δ -cluster point in X with height α . Then for all $x_{\alpha} \in M(L^{X})$, x_{α} is not δ cluster point of S and so there exists $\lambda_x \in R_{x_\alpha}$ and $n_x \in D$ such that $S(m) \in cl(\operatorname{int}(\lambda_x))$ $m \in D$ and $m \ge n_x$. for every Put $\Psi = \{cl(\operatorname{int}(\lambda_x)) : x \in X \text{ and } \alpha \in M(L)\}, \text{ then } \Psi \text{ is an } \alpha \text{-RF of } 1_x \text{. Since } \mu \text{ is}$ $N.\Omega$ – bounded, then by Theorem 3.18. there exist

 $\Psi_{\circ} = \{cl(\operatorname{int}(\lambda_{x^{i}})) : i = 1, 2, \dots, k\} \in 2^{(\Psi)} \text{ such that } \Psi_{\circ} \text{ is an } \alpha \operatorname{-RCRF} \text{ of } \mu \text{ . Hence,}$ for each $i \leq k$ we have $n_{x^{i}} \in D$ when $m \geq n_{x^{i}}$, $S(m) \in cl(\operatorname{int}(\lambda_{x^{i}}))$. Since D is a directed set, then there is $n_{\circ} \in D$ such that $n_{\circ} \geq n_{x^{i}}$ $(i = 1, 2, \dots, k)$. Hence $S(m) \in cl(\operatorname{int}(\lambda_{x^{1}})) \wedge cl(\operatorname{int}(\lambda_{x^{2}})) \wedge \dots \wedge cl(\operatorname{int}(\lambda_{x^{k}}))$ whenever $m \geq n_{\circ}$. This means that S(m) not have α -RCRF in Ψ_{\circ} and so Ψ_{\circ} is not α -RCRF of μ . This contradicts the hypothesis that μ is $N.\Omega$ -bounded. Thus S has a δ -cluster point in X with height α .

Conversely, suppose that μ is not $N.\Omega$ – bounded. Then by Theorem 3.18. there exist $\alpha \in M(L)$ and a family Ψ which is an α -RF of 1_X , but for any family $\Psi_{\circ} \in 2^{(\Psi)}$, we have Ψ_{\circ} is not α -RCRF of μ . Then there exists molecule $x_{\alpha} \in \mu$ with height α such that for each $cl(\operatorname{int}(\lambda)) \in \Psi_{\circ}$, $cl(\operatorname{int}(\lambda)) \in R_{x_{\alpha}}$ we have $x_{\alpha} \leq \wedge \Psi_{\circ}$ and x_{α} is denoted by $(x(\Psi_{\circ}))_{\alpha}$. Since $2^{(\Psi)}$ is a directed set with relation \leq , then $S = \{(x(\Psi_{\circ}))_{\alpha} : \Psi_{\circ} \in 2^{(\Psi)}\}$ is a constant molecular α -net in μ . Take an arbitrary point y_{α} in X with height α , since Ψ is an α -RF of 1_X , then there is $\lambda \in \Psi$ such that $\lambda \in R_{y_{\alpha}}$. Hence for each $\Psi_{\circ} \in 2^{(\Psi)}$ such that $cl(\operatorname{int}(\lambda)) \in \Psi_{\circ}$ there is $(x(\Psi_{\circ}))_{\alpha} \leq \wedge \Psi_{\circ} \leq cl(\operatorname{int}(\lambda))$, i.e., $S \leq cl(\operatorname{int}(\lambda))$. This shows that y_{α} is not a δ -cluster point of S, which contradicts to the hypothesis. Thus μ is $N.\Omega$ -bounded.

Theorem 4.2. Let $\{(L^{X_i}, \tau_i) : i = 1, 2, ..., m\}$ be an L-ts's and μ_i be an $N.\Omega$ -boundedset in (L^{X_i}, τ_i) for each i = 1, 2, ..., m, then the product set $\mu = \prod_{i=1}^{m} \mu_i$ is an $N.\Omega$ -bounded in the product space.

Proof. Let $\mu_i \in L^{X_i}$ be an $N.\Omega-$ bounded set for each i=1,2,...,m and let $\{\rho_n:n\in D\}$ be an Ω -net of closed L-subsets in L^X such that $\delta.\overline{\lim}(\rho_n)(x)<\alpha$ for each $x\in X$. Therefore there is $n_{\circ_1}\in D$ such that $\rho_n\wedge\mu_1=0_{X_1}$, for every $n\in D,\ n\geq n_{\circ_1}$, there is $n_{\circ_2}\in D$ such that $\rho_n\wedge\mu_2=0_{X_2}$ for every $n\in D,\ n\geq n_{\circ_2}$, ..., there is $n_{\circ_m}\in D$ such that $\rho_n\wedge\mu_m=0_{X_m}$ for every $n\in D,\ n\geq n_{\circ_m}$. Thus for each Ω -net $\{\rho_n:n\in D\}$ of closed L-subsets in L^X there is $n_{\circ_i}\in D$ such that $\rho_n\wedge(\prod_{i=1}^m\mu_i)=0_X$ for every $n\in D,\ n\geq n_{\circ_n}$, $i=\{1,2,...,m\}$. Put $\mu=\prod_{i=1}^m\mu_i$ and therefore for each Ω -net $\{\rho_n:n\in D\}$ of closed L-subsets in L^X there is

 $n_{\circ} \in D$ such that $\rho_n \wedge \mu = 0_X$ for every $n \in D$, $n \ge n_{\circ}$. Hence $\mu = \prod_{i=1}^m \mu_i$ is $N.\Omega$ – bounded in L^X .

Theorem 4.3. If $f_L:(L^X,\tau)\to (L^Y,\Delta)$ is almost continuous mapping and $\mu\in L^X$ is $N.\Omega$ -bounded, then $f_L(\mu)$ is $N.\Omega$ -bounded.

Proof. Suppose that $\mu \in L^X$ is $N.\Omega$ – bounded and $S = \{\rho_n : n \in D\}$ is an Ω -net of closed L -subsets in L^Y such that $\delta.\overline{\lim}(\rho_n)(y) < \alpha$ for each $y \in Y$. Then $(\forall y \in Y, \alpha \in M(L)) (\exists \eta \in R_{y_\alpha}) (\exists m \in D) (\rho_n \leq cl(\operatorname{int}(\eta))) (\forall n \geq m)$. Since f_L is almost continuous mapping, then $f_L^{-1}(S) = \{f_L^{-1}(\rho_n) : n \in D\}$ is an Ω -net of closed L -subsets in L^X such that $(\forall x \in X, x \in f^{-1}(y), \alpha \in M(L))$ $(\exists f_L^{-1}(\eta) \in R_{x_\alpha}) (\exists m \in D) (f_L^{-1}(\rho_n) \leq f_L^{-1}(cl(\operatorname{int}(\eta))) = cl(\operatorname{int}(f_L^{-1}(\eta))))$ $(\forall n \geq m)$ and so $\delta.\overline{\lim}(f_L^{-1}(\rho_n))(x) < \alpha$ for each $x \in X$. Now, since μ is $N.\Omega$ – bounded, then there is $n_\circ \in D$ such that $f_L^{-1}(\rho_n) \wedge \mu = 0_X$ for each $n \in D$, $n \geq n_\circ$. Thus $f_L(f_L^{-1}(\rho_n) \wedge \mu) \leq f_L f_L^{-1}(\rho_n) \wedge f_L(\mu) = f_L(0_X) = 0_Y$ and so $\rho_n \wedge f_L(\mu) = 0_Y$. Hence $f_L(\mu)$ is $N.\Omega$ – bounded.

Theorem 4.4. If (L^X, τ) is L-ts, $\mu \in L^X$ and $x_\alpha \in M(L^X)$, $x_\alpha \in N\Omega..cl(\mu)$, then there exists a molecular net S in μ such that S is $N\Omega$ -converges to x_α .

Proof. Let $x_{\alpha} \in M(L^X)$ such that $x_{\alpha} \in N\Omega cl(\mu)$, then $\mu \not\leq \lambda$ for each $\lambda \in N\Omega BR_{x_{\alpha}}$. Since $\mu \not\leq \lambda$, then there exists $\alpha(\mu,\lambda) \in M(L)$ such that $x_{\alpha(\mu,\lambda)} \in \mu$ with $x_{\alpha(\mu,\lambda)} \not\in \lambda$. The pair $(N\Omega BR_{x_{\alpha}}, \geq)$ is a directed set and so we can define a molecular net $S: N\Omega BR_{x_{\alpha}} \to M(L^X)$ as follows $S(\lambda) = x_{\alpha(\mu,\lambda)}$ for each $\lambda \in N\Omega BR_{x_{\alpha}}$. Hence S is a molecular net in μ . Now let $\eta \in N\Omega BR_{x_{\alpha}}$ such that $\lambda \leq \eta$, so we have there exists $S(\eta) = x_{\alpha(\mu,\eta)} \not\in \eta$ and so $S(\eta) = x_{\alpha(\mu,\eta)} \not\in \lambda$. Hence S is $N\Omega$ -converges to x_{α} .

Theorem 4.5. Let $S = \{S(n) : n \in D\}$ and $T = \{T(n) : n \in D\}$ be a molecular nets in an L-ts (L^X, τ) such that $T(n) \ge S(n)$ for each $n \in D$ and $x_\alpha \in M(L^X)$. Then the following results are true :

- (i) S is $N\Omega$ -converges to x_{α} , then T is $N\Omega$ -converges to x_{α} .
- (ii) x_{α} is $N\Omega$ -cluster point of S, then x_{α} is $N\Omega$ -cluster point of T.

- **Proof.** (i) Let $x_{\alpha} \in M(L^X)$ such that S be $N\Omega$ -converges to x_{α} , then for each $\lambda \in N\Omega BR_{x_{\alpha}}$ there exists $n \in D$ such that for each $m \in D$ and $m \ge n$ then $S(m) \notin \lambda$. Since $T(n) \ge S(n) > \lambda$, and so for each $\lambda \in N\Omega BR_{x_{\alpha}}$ there exists $n \in D$ such that for each $m \in D$ and $m \ge n$ then $T(m) \notin \lambda$. This shows that T is $N\Omega$ -converges to x_{α} .
- (ii) Let $x_{\alpha} \in M(L^X)$ such that x_{α} is $N\Omega$ -cluster point of S, then for each $\lambda \in N\Omega BR_{x_{\alpha}}$ and each $n \in D$ there exists $m \in D$ such that $m \ge n$ then $S(m) \not\in \lambda$. Since $T(n) \ge S(n)$ for each $n \in D$, then $T(n) \ge S(n) > \lambda$. Thus for each $\lambda \in N\Omega BR_{x_{\alpha}}$ and for each $n \in D$ there exists $m \in D$ such that $m \ge n$ then $T(m) \not\in \lambda$. This shows that x_{α} is $N\Omega$ -cluster point of T.

Theorem 4.6. Assume that $S = \{S(n) : n \in D\}$ is a molecular net in an L-ts (L^X, τ) and $x_\alpha \in M(L^X)$. Then the following results are true:

- (i) x_{α} is $N\Omega$ -cluster point of S iff there exists a subnet T of S such that T is $N\Omega$ -converges to x_{α} .
- (ii) If x_{α} is $N\Omega$ -cluster point of S, then T is $N\Omega$ -converges to x_{α} for each subnet T of S.
- **Proof.** (i) Provided that $S = \{S(n) : n \in D\}$ and x_{α} is $N\Omega$ -cluster point of S, then for each $\lambda \in N\Omega BR_{x_{\alpha}}$ and each $n \in D$ there is $k \in D$ such that $S(k) \notin \lambda$ and $k \geq n$. Taking $k = g(n,\lambda)$, we get a mapping $g: D \times N\Omega BR_{x_{\alpha}} \to D$ with $S(g(n,\lambda)) \notin \lambda$. Put $E = D \times N\Omega BR_{x_{\alpha}}$ and we define the relation \leq on E as follows: $(n_1,\lambda_1) \leq (n_2,\lambda_2)$ iff $n_1 \leq n_2$ and $\lambda_1 \leq \lambda_2$, then (E, \leq) is a directed set. For each $(n,\lambda) \in E$, we choose $T(n,\lambda) = S(g(n,\lambda))$, then $T = \{T(n,\lambda) : (n,\lambda) \in E\}$ is a subnet of S. Because:
- (*) There exists mapping $f: E \to D$ define as follows $f(n, \lambda) = n$ and $T = S \circ f$.
- $(**) \text{ Let } n_1 \in D \text{ , then there exists } (n_1,\lambda_1) \in E \text{ and } (n_1,\lambda_1) \leq (n_2,\lambda_2) \in E$ iff $n_1 \leq n_2$ and $\lambda_1 \leq \lambda_2$, $f(n_2,\lambda_2) = n_2 \geq n_1$. Now we prove that T is $N\Omega$ -converges to x_α , let $\lambda \in N\Omega BR_{x_\alpha}$ and $n \in D$, so $(n,\lambda) \in E$. Therefore for each $(n,\lambda) \in E$ and $(n,\lambda) \leq (m,\eta)$ then $T(m,\eta) = S(g(m,\eta)) \notin \eta$ and $\lambda \leq \eta$, so $T(m,\eta) \notin \lambda$. Thus T is $N\Omega$ -converges to x_α .

Conversely, it follows directly from Definition 2.9. (ii) It follows directly from Definition 2.9.

Theorem 4.7. Let (L^X, τ) be an L-ts, $\alpha \in M(L)$ and $\mu \in L^X$. Then μ is $N.\Omega$ -bounded iff every α -filter $\mathcal F$ containing μ as an element has a δ -cluster point in X with height α .

Proof. Suppose that μ is $N.\Omega$ -bounded and \mathcal{F} is an α -filter containing μ as an element $(\alpha \in M(L))$, then $\lambda \wedge \mu \in \mathcal{F}$ for each $\lambda \in \mathcal{F}$, hence $\bigvee_{x \in X} (\lambda \wedge \mu)(x) \geq \alpha$ for each $\lambda \in \mathcal{F}$ and for each $x_{\alpha} \in M(L^X)$ there exists a molecule $x_{(\lambda,\alpha)} \in \lambda \wedge \mu$ with height α . Put $S(\mathcal{F}) = \{x_{(\lambda,\alpha)} : (\lambda,\alpha) \in \mathcal{F} \times M(L)\}$. In $\mathcal{F} \times M(L)$ we define the relation that $(\lambda_1,\alpha_1) \geq (\lambda_2,\alpha_2)$ iff $\lambda_1 \leq \lambda_2$ and $\alpha_1 \geq \alpha_2$. Then $\mathcal{F} \times M(L)$ is a directed set with this relation and $S(\mathcal{F})$ is a constant molecular α -net in μ . Since μ is $N.\Omega$ -bounded, then by Theorem 4.1., $S(\mathcal{F})$ has a δ -cluster point in X with height α , say x_{α} . So by Theorem 2.20, \mathcal{F} δ -cluster to x_{α} as well.

Conversely, suppose that the condition is satisfied and $S = \{S(n): n \in D\}$ is a constant molecular α -net in μ . Let $\lambda_{\rm m} = \vee(S(n))$ for each $m \in D$, $n \geq m$. Since D is a directed set, then the family $\{\lambda_{\rm m}: m \in D\}$ can generate a filter $\mathcal{F}(S)$. Since S is a constant molecular α -net, then for each $\alpha \in M(L)$ $(\exists n \in D)$ $(\forall m \in D, m \geq n)$ $(\vee(S(m)) = \alpha)$, hence $\vee(\lambda_{\rm m}(x)) = \vee(\vee(S(n))) = \alpha$, $n \geq m$ and so $\vee(\lambda_{\rm m}(x)) = \alpha$. Since $\mathcal{F}(S)$ is produced by $\{\lambda_{\rm m}: m \in D\}$, then for each $\lambda \in \mathcal{F}(S)$ contains some λ_m and therefore $\vee(\lambda(x)) = \alpha$. Hence $\mathcal{F}(S)$ is an α -filter. By assumption, $\mathcal{F}(S)$ has a δ -cluster point in X with height α , say x_{α} . Thus for each $\mu \in R_{x_{\alpha}}$ and for each $\lambda \in \mathcal{F}(S)$. In particular, λ_m we have $\lambda_m \not\leq cl(\operatorname{int}(\mu))$, and by Theorem 2.21 We have S has a δ -cluster point x_{α} and by Theorem 4.1. we have μ is $N.\Omega$ -bounded.

Theorem 4.8. If a set μ in an L-ts (L^X, τ) is $N \cdot \Omega$ bounded, then every α -ideal I in L^X and $\mu \notin I$ has a δ -cluster point in X with height α .

Proof. Let I be an α -ideal in L^X and $\mu \in L^X$ be an $N.\Omega$ -bounded with $\mu \notin I$. Then for each $\eta \in I$ we have $\bigvee_{x \in X} (\eta)(x) < \alpha$, and then for each $\alpha \in M(L)$ there exists a molecule $S(\eta,\alpha) = x_{(\eta,\alpha)} \notin \eta$. Put $D(I) = \{(\eta,\alpha): x_{(\eta,\alpha)} \in \mu, \ \eta \in I \ and \ x_{(\eta,\alpha)} \notin \eta\}$. In D(I) we define the relation that $(\eta_1,\alpha_1) \geq (\eta_2,\alpha_2)$ iff $\eta_1 \geq \eta_2$. Then $(D(I),\geq)$ is a directed set with this relation and $S(I) = \{S(\eta,\alpha) = x_{(\eta,\alpha)}: (\eta,\alpha) \in D(I)\}$ is a constant molecular α -net in μ . Since μ is $N.\Omega$ -bounded, then by Theorem 4.1., S(I) has a δ -cluster point in X with height α , say x_α , by Theorem 2.22., we have x_α is also a δ -cluster point of I.

References

- [1] N. A. Alsaeidi, Ω -Boundedness in L-topological space, *Pioneer J. Math and Math. Sci.*, **30** (2020), no. 2, 85-106.
- [2] C. L. Chang, Fuzzy topological spaces, *J. Math. Anal. Appl.*, **24** (1968), 182-190. https://doi.org/10.1016/0022-247x(68)90057-7
- [3] S. L.Chen and J. S. Cheng, On convergence of nets of L-fuzzy sets, J. Fuzzy Math., 2 (1994), 517-524.
- [4] S. L. Chen, *U*-convergence and *L*-fuzzy *U*-sets, *J. Information Sci.*, **87** (1995), no. 4, 205- 213. https://doi.org/10.1016/0020-0255(95)00125-5
- [5] S. L.Chen and S. T. Chen, A new extension of fuzzy convergence, *Fuzzy Sets and Systems*, **10** (2000), no. 9, 199-204. https://doi.org/10.1016/s0165-0114(98)00048-7
- [6] J. Fang, and B. L. Ren, A set of new separation axioms in L-fuzzy topological spaces, Fuzzy sets and Systems, **84** (1996), 97-102.
- [7] D. N. Georgiou and B. K. Papadopoulos, On nearly compact topological and fuzzy topological spaces, *Res. Com. Dem. Uni.*, (1997) 1-18.
- [8] D. N. Georgiou and B. K. Papadopoulos, Fuzzy nearly compactness and convergence, *Res. Com. Dem. Uni.*, (1997) 1-14.
- [9] D. N. Georgiou and B. K. Papadopoulos, Boundedness and fuzzy sets, *J. Fuzzy Math.*, **6** (1998), no. 4, 941-955.
- [10] D. N. Georgiou and B. K. Papadopoulos, On fuzzy boundedness, *Panamerican Math. J.*, **10** (2000), no. 1, 25-43.
- [11] J. A. Goguen, *L* -fuzzy sets, *J. Math. Anal. Appl.*, **18** (1967), no. 1, 145-174. https://doi.org/10.1016/0022-247x(67)90189-8
- [12] S. T. Hu, Boundedness in topological spaces, *J. Math. Pure. Appl.*, **28** (1949), 287-320.
- [13] P. T. Lamprinos, A topological notion of boundedness, *Manuscripta Math.*, **10** (1973), 289-296. https://doi.org/10.1007/bf01332770
- [14] P. T. Lamprinos, Some weaker forms of topologicalboundedness, *Ann. de la Soc. Sci. de Brux.*, **90** (1976), 109-124.

- [15] Y. M. Liu, *Completely Distributive Lawand Induced Spaces*, Preprints of Second 1FSA Congress, 1987, 460-463.
- [16] R Lowen, Fuzzy topological space and fuzzy compactness, *J. Math. Anal. Appl.*, **56** (1976), 621-633. https://doi.org/10.1016/0022-247x(76)90029-9
- [17] H. Meng and G. Meng, Almost N compact sets in L -fuzzy topological spaces, Fuzzy Sets and Systems, **91** (1997) 115-122. https://doi.org/10.1016/s0165-0114(96)00123-6
- [18] G. J. Wang, A new fuzzy compactness defined by fuzzy nets, *J. Math. Anal. Appl.*, **94** (1983), 1-23. https://doi.org/10.1016/0022-247x(83)90002-1
- [19] G. J. Wang, Generalized topological molecular lattice, *Sci. Sinica. Ser. A.*, **8** (1984), 785-789.
- [20] G. Wang and L. Hu, On induced fuzzy topological spaces, *J. Math. Anal. Appl.*, **108** (1985), 495-506. https://doi.org/10.1016/0022-247x(85)90040-x
- [21] G. J. wang, Theory of topological molecular lattices, *Fuzzy Sets and System*, **47** (1992), no. 3, 351-376. https://doi.org/10.1016/0165-0114(92)90301-j
- [22] Z. Q. Yang, Ideal in topological molecular lattices, *Acta Mathematica Sinica*, **29** (1986), no. 2, 276-279.
- [23] D. S. Zhao, The *N*-compactness in *L*-fuzzy topological spaces, *J. Math. Anal. Appl.*, **128** (1987), 64-79. https://doi.org/10.1016/0022-247x(87)90214-9

Received: December 1, 2023; Published: December 15, 2023