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Abstract

In this paper, we introduce and study the notion of nearly Q-
boundedness on arbitrary L —sets in L —topological spaces by using the notion of
o —upper limit of Q —nets. Several characterizations of nearly Q2 —boundedness
in terms of convergence theory of constant a-nets, o-ideals are obtained. We
prove that the notion is good extension, productive and topologically invariant.

Keywords: Molecules, R—neighborhoods, L —topological space, ¢ — limit and
o — cluster points, Q —nets, constant o —nets, «—filters, a—ideals, nearly Q —
compact and nearly Q —bounded sets

1. Introduction

Boundedness, as a natural generalization of relative compactness was
considered by several authors (see [12] and [13]). In depth analysis of
boundedness and its various weaker forms was done by Lamprinos in [13] and
[14]. A subset A of a space X is said to be bounded if every open cover of X has a
finite subfamily which covers A. In 1997 Georgiou and Papadopoulos [7]
introduced the notion of nearly Q —compact, nearly (a,B)-compact topological
and fuzzy topological spaces, nearly Q —bounded, nearly (a,)-bounded sets and
fuzzy sets. Then he give the characterizations of nearly compact topological and
fuzzy topological spaces of weakly & —upper limit and fuzzy weakly 6 —upper
limit of nets and fuzzy nets. Finally he give the characterizations of the nearly
bounded sets and fuzzy sets of weakly & —upper limit and fuzzy weakly 6 —upper
limit of nets and fuzzy nets. In 1997 Georgiou and Papadopoulos [8] gave
characterizations of fuzzy nearly compactness by used the notion of fuzzy weakly
6 —upper limit of fuzzy nets. Also, he studied new fuzzy compactness and fuzzy
boundedness in fuzzy topological spaces. In 2000 Georgiou and Papadopoulos
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[10] introduced and studied fuzzy boundedness by used the notion of fuzzy upper
limit of fuzzy nets.

Recently, Georgiou and Papadopoulos in [9] and [10] extended be the concept
of bounded set to fuzzy topology and introduced the notion of fuzzy boundedness
using the fuzzy compactness given by Change [2], which is not good extension of
ordinary compactness. Hence the notion of fuzzy boundedness in [9] is not good
extension of ordinary bounded and so it is unsatisfactory.

In This paper, we introduce and study the concept of nearly Q —boundedness
on arbitrary L—sets in L —topological spaces along the line of nearly Q-
compactness defined by Georgiou and Papadopoulos [9] and remoted
neighborhood due to Wang [18]. Then we give new characterizations and
properties of nearly Q —boundedness in terms of convergence theory of constant
a-nets, o-filters and o-ideals. We prove that the notion is good extension,
productive and topologically invariant.

2. Preliminaries

Through this paper L=L(<,v,A,”) denotes a completely distributive
complete lattice with a smallest element 0 and a largest element 1 (0 1) and with
an order reversing involution on it. An « € L is called a molecule of L if a #0
and a <vvy implies a <v or a <y forall v,y e L. The set of all molecules of

L is denoted by M(L). Let X be a nonempty set. L* denotes the family of all

mappings from X to L. The elements of L* are called L—subsets on X . L*
can be made into a lattice by inducing the order and involution from L. We

denote the smallest element and the largest element of L* by O, and 1,,
respectively. If « e L, then the constant mapping o : X — {a} is L —subset [11].
An L -point (or molecule on L*), denoted by x,, a e M(L) is a L -subset
a:x=y
0:xzy

The family of all molecules of L* is denoted by M (L*) [19]. For uz € L
and a € L we defined the set u, ={xe X :u(X)>a}, which it is called weak
a-cut of . The set p, ={xe X : u(X) £ a}, it is called strong « -cut of 4 and
Supp(r) ={x € X : u(x) >0} is called support of x [15]. For any A e L*and
aeM(L) with a'>a, we have (4,,) < (1), For ¥ c L*, we define 2"
bythe set {ow ¥ :wis finite subfamily of W}. An L -topology on Xis a
subfamily 7 of L* closed under arbitrary unions and finite intersections. The pair
(L*,7) is called an L —topological space (or L —ts, for short) [20]. If (L*, 7) is an
L -ts, then for each 77 e€L*,cl(), int(7) and ' will denote the closure,

which is defined by x,(y) = {

interior and complement of 7. A mapping f :L* — L' is said to be an L -valued
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Zadeh function induced by a mapping f: XY, iff
f (L)(y) = Au(x): f(x)=y}for every pelXand every yeY[19]. An L-ts
(L™, 7) is called fully stratified if foreach o e L, @ € 7 [15]. If (L*,7) isan L

-ts, then the family of all crisp open sets inz is denoted by [7] i.e., (X,[z]) isa
crisp topological space [16].

Definition 2.1 [17]: If (L*,z) is L-ts, then ueL” is called regular
open set iff g =int(cl(x)). The family of all regular open sets is denoted
by
RO(L*, 7). The complement of the regular open set is called regular closed set
and satisfy z =cl(int(z)). The family of all regular closed sets is denoted by

RC(L*,7).

Definition 2.2 [21]: Let (L*,z) be an L-ts and x, e M(L*). Then
A e’ is called an remoted neighborhood ( R-nbd, for short ) of x, ifx, ¢ A.
The set of all R-nbds of x_ is called remoted neighborhood system and is denoted
by R, .

Definition 2.3 [21]: Let (L*,7) bean L-ts, z e L* ande e M(L). Then
Y < 7' iscalled an:
(i) «-remoted neighborhood family of 4, briefly « -RF of i, if for each

L -point x, € u thereis 2 € ¥suchthat 1eR, .

(ii) o -remoted neighborhood family of «, briefly a -RF of i, if there
exists y € 8" («) such that ¥ isa y -RF of u, where g*(a) = B(a) "M(L),
and () denotes the union of all the minimal sets relative to o .

Definition 2.4 [5]: Let (L*,7) bean L-ts, zeL* and & e M(L). Then
¥ < RC(L*,7) is called an « -regular closed remoted neighborhood family of
u, briefly a-RCRF of u, if for each L -point x, € u there is 4 € W such that
AeR, .

Definition 2.5 [18]: Let (L*,7) bean L-ts, zeL*and o e M(L). Anax
-RF W ={n,:jeJ} of u iscalled:
(i) Directed if 77,,m7, € ¥ thereis n, € ¥ suchthat n, <7, A7, .
(if) Regular if :
(a) For each jeJ there is A; e RO(L*,7)\{l,} such that
n; <4;.
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(b) The family {cl(4;): jeJ} is «-RF of .

Definition 2.6 [3]: Let (D,<) be a directed set. Then the mapping
S:D — L* and denoted by S ={u, : ne D} is called a net of L -subsets in X .
Specially, the mapping S:D — M(L*) is said to be a molecular net in L* . If
el and foreach ne D,S e u thenS iscalled anetin u.

Remark 2.7 [10]: We denote by Q a class of directed sets. Let
S={u, :ne D} be anetof L-subsetsin L*.If DeQ, then this net is called
Q —net.

Definition 2.8 [21]: Let (L*,7) bean L-ts and S={S(n):neD}be a
molecular net in L*. Sis called an molecular o« -net (aeM(L)), if for each

y € B () there exists ne D such that v (S(m))>y whenever m>n, where
v (S(m))is the height of the molecular S(m). If v (S(m))=« for each meD,
then {S(m) : me D} is called constant molecular « -net.

Definition 2.9 [21]: LetS ={S(n) : neD} and T ={T(m) : meE} be a
be molecular nets in (L*,z). Then T is said to be is a molecular subnet of S if
there is a mapping f : E — D satisfies the following conditions:

() T=Sof

(if) For each neD thereis meE such that f(lI)>n for each | €E,
I>m.

Definition 2.10 [3]: Let (L*,z) be an L -tsandA={u, : n e D} be a net
of L -subsetsin (L*,7z) and x, e M(L*).

Then:

(i) x, iscalled a & limit point of A, in symbols A—2—x_, if for each
neR, there is an me D such that g, ¢cl(int(z7)) for all neD, n=m. The
union of all 5 —limit points of A are denoted by 5.lim(A).

(i) x_ is called a &—cluster (6 —adherent) point of A, in symbols

6
Aoxcx, if foreach € R, and for each ne D there isan me D such that m=n

and u, ¢cl(int(z7)). The union of all &—cluster points of A are denoted by
slim(a) .

If S1lim(A)=8.1im(A) =z, then we say that u is &—limit of A, or we
say that A §—converges to u, in symbol S.lim(A) = .
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The o&—limit and & —cluster points of a molecular net are defined
similarly in [21].

Definition 2.11 [10]: Let (L*,z) bean L-ts, gz eL”. Then x is called
nearly Q-compact (or N.Q-compact) set in (L*,7) if every Q-net
{n, :neD} of closed L -subsets in L* such that J.ﬁ(nn)(x) < a for each
x € X there exists n, € D for which n, =0, , forevery ne D, n>n_.

Definition 2.12 [6]: An L -ts (L*,7) is said to be :

(i) LR, —space (regular space) iff for all o e M(L), xe X and for each
AeR, thereisneR, , per’ suchthat nv p=1,and AAp=0,.

(ii) LSR, —space (semi regular space) iff for all x, € M(L*) and for each
AeR, thereis neR, suchthat A <cl(int(z)).

Theorem 2.13 [17]: If (L*,7) is LR, —space, then it is LSR, — space

Definition 2.14 [23]: The nonempty family F < L* is called an L -filter
if the following conditions satisfies, for each 1, 1, € L*

()0, ¢F
(i) If g, <p,and p, € F, then u, €F.
(i) If g, 1, €F, then gy A, €F.

Definition 2.15 [23]: A filter F in L™ is called an « filter (& e M (L)),
if forevery A e F, v A(X) > .

Definition 2.16 [23]: Let (L*,z) be an L-ts and F be an L - filter in
L* . Thenx, e M(L*) is called & —cluster point of F, in symbol Foc® x, if for
each A e¥ and each xeR, , A £cl(int(«)). The union of all & —cluster points
of F are denoted by 6.adh(F)

Definition 2.17 [22]: The nonempty family 1 < L* is called an ideal if
the following conditions satisfies, for each s, 1, € L

()1, ¢l
(i) If gy <p,and p, €l then p el.
(iii) If g, 1, €l then u, v p, €l
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Definition 2.18 [22]: Let | be an ideal in an L -ts (L*,7) and a € M(L).
Then | issaid to be an « -ideal, if v n(x)<a foreach nel.

Definition 2.19 [22] : Let | be an ideal in anL-ts(L*,7) and
aeM(L). Thenx, e M(L*) is called & —cluster point of I , in symbol I o’ x_
if for each 1€l and each xeR, , Avcl(int(x))=1,. The union of all 5-
cluster points of | are denoted by S.adh(l).

Theorem 2.20 [4]: Let F be an L -filter inan L-ts(L*,z) and S (F) be
the L -molecular net induced by F. Then d.adh(F)= 5.adh(S (F)) .

Theorem 2.21 [4]: Suppose thatS isan L -netinan L-ts (L*,7) and F(
S) is the L filter induced by S . Then s.adh(S)=d5.adh(F(S)).

Theorem 2.22 [4]: Suppose that | is an ideal in an L-ts(L*,z) and
S(I) is the L -molecular net induced by 1 . Then s.adh(l) = &.adh(S(1))).

3. Nearly @ -Boundedness in L -topological spaces

In this section, we introduce the concept of nearly Q -bounded sets in L -
topological spaces. Then we obtain several characterizations of nearly Q-
bounded sets.

Definition 3.1. Let (L*,7) be an L-ts, zeL* and aeM(L), then
1 € L* is called Nearly Q-bounded (or, N..Q—bounded) set in (L*,7) if every
Q-net {p, :neD} of closedL -subsets in L* such that §.M(pn)(x) <a for
each x e X there exists n, € D for which p, Au=0,,forevery ne D, n2n,.

Remark 3.2. We note that every Q -net of L -subsets of X isanetof L-
subsets of X . But if Q is the class of all directed sets, then Q -net and a net of
L -subsets of X are equivalent.

The following example show that the converse is not true in general.

Example 3.3. Let L=X =[0,1] and letz ={0, 1,,x}, where ueL”

1 _0
such that  u(x) = §'X_
0:x=0
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Clearly, the pair (L, 7) is L-ts. Let S ={u, : ne N} suchthat u, =X, for

every ne N . Then Sisanetof L-subsetsof X .But S isnot Q-net, since
D = N s not class of all directed sets.

Theorem 3.4. Let (L*,7) be an L-ts. If ;e L is Q-bounded [1], then
4 is N..Q—bounded set.

Proof. Let 2 e L* be an Q -bounded set and let {p, : n € D} be an Q -net
of closed L -subsets in L* such that §.ﬁ(pn)(x) < a for each x e X, then for
each x e X thereis e R, andthereis me D suchthat p, <cl(int(r)) for all
n>m, since cl(int()) <7n,then p, 6 <n.Since x is Q-bounded set, then there

exists n, e D for which p, Au=0,, for every neD, nxn_. Hence u is
N..QQ —bounded set.

Example 3.5. Let L=[0,1], X =N and let z={0,,x.;1,}. Then
(L*,7) is L-ts. Let S={x.:xe X} be an Q-net, then 1, is not Q-
bounded set. Now, let S ={x_:xe X,a L} bean Q-net then1l, is N.Q-
bounded set.

Definition 3.6. Let (L*,7) be an L-ts and x, e M(L*). If zeL” is
closed and N..Q—bounded set, then x is called NQB —remoted neighborhood of
X, (NQBR —nbd, for short) of x_if x, ¢ . The set of all NOQBR —nbds

of x, is denoted by NOBR, .
We note that OBR, < NOBR, <R, .

Example 3.7. By Example 3.5., let S ={X, : x € X} be an Q—net, then
u =X, isnot Q—bounded set. Now, let S={x, :xe X,a <.4} bean Q—net,
then u is N..Q-—bounded set.

Definition 3.8. Let (L*,7) bean L-tsand e L*. Then x, e M(L*) is
called NQ-bounded adherent point of x and write x, € NQ.cl(z) iff x £ Afor
each 1€ NOQBR, . If x=NQcl(u), then u is called NQ-closed L —subset. The
family of all NQ-closed L —subsets is denoted by NQC(L*,7r) and its
complement is called the family of all NQ-open L —subsets and denoted by
NQO(L*,7).
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Theorem 3.9. Let (L*,7) be an L-ts and let z e L*. Then the following
statements are true::
(i) p<cl(u) <NQcl(x) and NQ.cl () <Qcl(w).

(i) If e X and u <n then NQ.cl () < NQ.cl (7).
(iii) NQ.cl(NQ.cl () = NQcl ().
(iv) NQcl(u) = M e L 117 e NQC.(L*,7), u < 17}

Proof. (i) Let x, e M(L*)such that x, ¢ NQ.cl(z) , then there exists
A€ NOBR, such that x<A. Since NOBR, R, and so 2eR, and hence
X, &cl(x). Thus cl(u) < NQ.cl ().
(i) Let x, e M(L*) such that x, ¢ NQcl(r) , then there exists 1 e NOBR,
such that n<A. Since u<n, then u<A and so x, ¢ NQcl(x). Thus
NQ.cl (1) < NQ.cl (7).
(iii) Suppose x, e M(L*) such that x, e NQ.cl(NQcl(x)). According to
Definition 3.8. we have NQ.cl(x) £ A for each 1 e NQBR, . Hence, there exists
y, e M(L") such that y eNQcl(x) with y ¢iand so p£4, that is,

X, € NQ.cl (). This shows that NQ.cl (NQ.cl () < NQ.cl (). On other hand,

1< NQcl(u) follows from (i) and so  NQ.cl () < NQ.cl(NQ.cl(«)). Therefore,
NQ.cl (NQ.cl (1)) = NQ.cl ().
(iv) On account of (i) and (iii). NQ.cl(z) is an NQ -closed set containing x , and
so  NQo(u)>AMnel”:neNQC.(L*,7),u<n}. Conversely, in case
x, e M(L*) sand x, € NQcl(u), then g« A for each A e NQBR, . Hence, if
n is an NQ-closed set containing x, then n £ 4, and then x, € NQ.cl(7)=7.
This implies that NQ.cl () < A{n e L* :n7e NQC.(L*,7), u < 17}. Hence

NQ.cl (1) = M e L : 17 e NQC.(L* ,7), £ < 17}
From Theorem 3.9., one can see that every NQ-closed L —subset is closed L —

subset, but the inverse is not true since every closed L —subset is not NQ-
bounded set in general as the following example shows.

Example 3.10. By Example 3.5., let x =X, then x is closed L —subset
because u €7’ where 7' ={0,,x;,1,}. Now, x isnot N..Q—bounded. In fact,
we suppose that Q —net S ={Xx. : x e X}, then x isnot N..Q—bounded set.

Definition 3.11. Let (L*,7) bean L-tsandS be a molecular net in L* .
Then x, e M(L*) is called NQ-bounded limit point of S, (or S NQ-

NQ
converges to X, ) in symbolS —x, if for every x e NQBR, thereisan neD
such that
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me D and m2>nwe have S(m) ¢ x. The union of all NQ -bounded limit points
of S isdenoted by NQ.Iim(S).

Definition 3.12. Let (L*,7) bean L-tsand S be a molecular netin L* .
Then x, e M(L*) is called NQ-bounded cluster point of S, in symbol
S o™ x,, if for every ;e NQBR, and everyne D there is anme D such that

m=n and S(m)g¢ «. The union of all NQ-bounded cluster points of S is
denoted by NQ.adh(S) .

Theorem 3.13. (The goodness of NQ -boundedness) Let (L™, w_(T)) be
the induced L-ts by the ordinary space (X,T), @€ M(L) and xeL*. Then u
is N..Q—bounded in (L, (T)) iff s, ={xeX:u(X)>a} is
N..Q—bounded in (X,T).

Proof. Let xz e L bean N.Q-bounded and {k, : n € D} be an Q -net of
closed subsets in X such that 5.ﬁ(kn)(x) = ¢ for each x e X . Then the family
{{, :neD} is Q-net of closed L-subsets in L* such that
5.%(1kn)(x) =0, <afor each xe X, since u is N.Q-bounded, there is
neD for which 1, Au=0, for every neD,nxnand so
Qe A1) e = ) e N MYy =K, N, =¢ forevery ne D, n2n.. Thus g,
is N.Q—bounded in (X,T).

Conversely, suppose that g, is N..Q—bounded for any @ € M(L) and
{p, :neD} isan Q-net of closed L -subsetsin L* such that 5.ﬁ(pn)(x) <a
for each x e X . Then the family {(p,),, : n € D} is Q-net of closed subsets in
X such that 6.Ii_m(pn)wz¢ for each xe X . Since u,, is NQ-bounded for
any a€M(L) there is n, e D for which (p,),, Nu,, =¢ for every neD,
n=n, therefore p, Au=0, for every neD, nzn,. Thus x is N.Q-
bounded in (L*", o, (T)).

Theorem 3.14. Let (L*,7) bean L-ts and let e L. Then:
(i) If ¢ is N.QQ—compact, then u is N..Q—bounded .
(it) If x is closed and N..QQ —bounded, then g is N..QQ —compact.
(iii) If 77 is N.Q—bounded and x <7, then g is N..Q—bounded.
(iv) If  is N.Q—compactand x <7, then x is N..Q—bounded.

(V) If 14, 14,..., 11, are N..Q—bounded sets, then \/ x; is N..Q—bounded .

i=1
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Proof. (i) Let x be an N..Q-compact and let{p, : n € D}be an Q -net of
closed L -subsets such that 5.Wn(pn)(x) <a for each xe X . Then for every
X, €M(L*) there exists A, R, and an element n_eD such that
p, <cl(int(4,)) for each neD, nxn,. Clearly, the family
¥ ={cl(int(1, )):x, e M (L")} isan a-RF of 2. Since x is N..Q-—compact,
then there exists n, e D for which p, =0, for every ne D, nxn_ . Thus
cl(int(4, )) A =0, and hence p, Au=0, forevery ne D, n=n,. Hence u

IS N..Q—bounded.
(ii) Let x be an N..Q—bounded and let{p, : n e D} be an Q -net of closed L -

subsets such that 5.Ii_m(pn)(x) <a foreach xe X . Since u is N..Q—bounded,
then there is n, € D such that p, A =0, for every ne D, n=n_. Since u is
closed, then p, Au=u=0,andso p, =0, .Hence ¢ is N.Q-compact.

(iii) Let 7 be an N..Q—bounded and let{p, : n € D} be an Q-net of closed L -
subsets such that 5.ﬁ(pn)(x) <a foreach xe X . Since 7 is N..Q—bounded,
then there is n, € D such that p, A7 =0, forevery neD, n>n_. Since u<n
then p, Au=0, forevery ne D, n=n_ .Hence ¢ is N.Q-—bounded.

(iv) Let  be an N..Q—compact and let{p, :n € D} be an Q -net of closed L -
subsets such that 5.ﬁ(pn)(x) <a for each xe X . Since 7 is N..QQ—compact,
then there is n, €D such that p,=0,for every neD, n=n  and so
P, A1 =0y.Since u<nthen p, Au=0, forevery ne D, n=n, . Hence u

IS N..Q-—bounded.
(v) Let g, 1ty,..., 1, be an N..Q—bounded sets and let {p, : n e D} be an Q -net

of closed L -subsets such that 5.ﬁ(pn)(x) <a for each xe X . Since g is
N..Q—bounded for each i=12,..,m, then there exists N, €D such that
P Aty =0y, poAp, =0y ,...,0, Ap, =0y for every neD, nzn_. Thus

m

there is n, € D such that p, A (\/ #;) =0, forevery ne D, n=n, . Hence \/ 4

i=1 i=1

is N..Q—bounded.

Example 3.15. Let X ={x}, L=[01] and let z={0, 1,,X,,Xz}. Then

4 9

1
(L*,7) is L-ts, we suppose that S ={x, :Xxe X, a < E} is Q-net, then by
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remark 3.2, we have u=Xx, e M(L*) is N..Q—bounded set but is not N..Q-
2
compact set.

Theorem 3.16. Let (L*,z) bean L-ts, g =Y =X and e ™. If u is
N..Q—bounded set in (L*,7), then x is N.Q—bounded setin (L',z,).

Proof. Let x# be an N.Q—bounded set in (L*,7) and ¢=Y < X . Let
{p, :ne D} be an Q-net of closed L -subsets in Y such that 5.ﬁ(pn)(y) <a,
foreach yeY.Then {p, =1, AY :neD, 5, isclosed L —subsetsin X}. Hence
{n,:neD}isan Q-net of closedL -subsets in X such that slim(z,)(x) <,
for eachx e X . Since x is N.Q-bounded set in (L*,7), then there exists
neD for which n, Au=0,, for every neD, n=n, and so
(m, AY)Au=0,.Hence p, Au=0, andso u is N.Q-bounded set in
(L,z,).

Theorem 3.17. Let {u, :ne D} be a net of closed L -subsets in L* such
that s, <, then &lim(u,) < A{u, :neD}iff n, <n,.

Proof. Let x, e 5.%(;1”) and let x_ & A{u, :n e D}. Hence there exists
n,eD suchthat x,¢u, .Let p=y, , then peR, . Since x, e 5lim(u,)
and peR, ,thereis ne D, n2>n, suchthat u, <u, =p,ie, u, <cl(int(o))
. This contradicts the hypothesis that x,, € 8.lim(z,) . Thus X, € A{x, :ne D}.

Theorem 3.18. Let (L*,7) be an L-ts and zeL*. Then x4 is N.Q-

bounded set iff for eacha -RF ¥ of 1, , there exists ¥, € 2*) such that ¥, is
an «a-RCRFof u.

Proof. Let p e L* be an N.Q-—bounded setand let W<z’ bean «-
RF ofl, . Let D=2 be the set of all finite subsets of ¥ directed by inclusion
and let {n,:¥ <D} be a net of closed L-subsets in L* such that
ny = Mcl(int(p)) : p € ¥}Obviously, n, <n,, iff ¥, ='¥,. Hence by Theorem
3.17. it follows that S.lim(r,) < A{n7, : ¥ € D}.
So (Mg ¥ e D}(X) =A(A{cl(int(p)): p e Y}(X) < for each xe X .Thus
§.H_rn(nT) <a foreach xe X . Since u is N.Q-—bounded set, then there exists
an element ¥, € D for which , A =0, forevery ¥ e D, ¥ > ¥, . By the
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above we have 7, A u=0,and so for each x, e u there is cl(int(p)) € ¥,
such that cl(int(0)) R, . Thus ¥, € 2™ isan a-RCRF of .

Conversely, suppose that z € L* satisfies the condition. We prove that
is N.Q-—bounded set. Let {7, :ne D} be a net of closed L -subsets in L* such
that &.1im(;7,)(x) < a, for each x e X . Then for every molecular x, e M (L")
there exists p, eR, and n, € D such that n, <cl(int(p,)) for every neD,
nxn,. Since p,eR, for every xeX, then the family
Y={p, : xeXand aeM(L)} is an «a-RF ofl, . By assumption there exist
Y, ={cl(int(p,)):i=12,..,k}e2™ such that ¥, is an «-RCRF of 4. Put

k
P=NPys then cl(int(p)) € R, . Since D is a directed set, there is N, € D such

that n,>n, for every i=12..,k. Then for every ne D, n>n,we have
n, <cl(int(o)), whenever n>n_. Since cl(int(p)) A =0, , then 7, A u=0,
forevery ne D, n2n_ . Thus x is N.Q-bounded set.

Corollary 3.19. An L-ts (L*,7) is N.Q—compact iff for eacha -RF
¥ ofl, , there exists ¥, € 2™ such that ¥, isan «-RCRF of 1, .

Proof. Let (L*,7) be an N..QQ—compact. Then 1, is N..Q—compact. let
¥ <7’ bean a-RF ofl, . Let D=2 be the set of all finite subsets of ¥
directed by inclusion and let {«, : ¥ € D} be a net of closed L -subsets in L*
such that s, = A{cl(int(p)): p €'¥}. Obviously, s, < u, iff ¥, c'¥;. Hence
by Theorem 3.17. it follows that &lim(u,)<A{u, ¥ eD}. Hence
(Mg ¥ e DH(X) = A(A{cl(int(p)): pePH(X)<ax for all xeX. Thus
5.%(%) <a forall xe X . Since 1, isan N..Q-compact, then there exists an
element ¥, € D for which u, =0, forevery ¥ e D, ¥ >V . By the above we
have s, =0, andso x, ¢ u, ={cl(int(p)): p ¥} foreach x, e M(L")
and hence P, € 2" isan a-RCRF of 1, .

Conversely, suppose thatl, satisfies the condition. We prove that 1, is
N..Q—compact. Let {u, :ne D} be a net of closed L -subsets in L* such that
§.ﬁ(nn)(x) < a, for each x e X . Then for every molecular x, e M (L") there
exists p, eR, and n, € D such that g, <cl(int(o,)) forevery ne D, n>n,.
Since p, € R, forevery x e X, then the family
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Y={p, : xeX and ¢ e M(L)} is an «-RF ofl, . By assumption there exist
W, ={cl(int(p,)):i=12,.,k}e 2™ such that ¥, is an «-RCRF of 1, . Then

k
(Vxe X) @cl(int(p,;)) e ., ,i <k) (cl(int(p,))eR, ). Put p= APy then
cl(int(p)) e R, . Since D is a directed set, there is n, € D suchthat n, >n, for
. k
every 1=12,.,K. Hence for every ne D, n>n we have u, < cI(int(_{\lei )

and so p, <cl(int(p)), whenever n>n_. Since cl(int(p)) =0, , then x =0,
forevery ne D, n=n_.Hence 1, is N..QQ—compact.

Theorem 3.20. Let (L*,7) be an L-ts and zeL* is N.Q-bounded
set. Then u is Q- bounded set if (L*,7) is LR, —space.

Proof. Let mel® be an N.Q-bounded and let and let
¥ ={p;:jed}c7’ bean a-RF ofl,. Then for each x, e M(L") there is

pe¥ suchthat peR, . Since (L*,z) is LR, —space, then by Theorem 2.13

we have 7' = RC(L*,7) . Since u is N..Q—bounded set, then there is P, € 2%

such that ¥, is an a -RCRF of u, since 7’ =RC(L*,7), then ¥, is an « -RF of
4 . This shows that z is Q — bounded set

4. o -Nets characterizations of N.Q-Boundedness

In this section we give several characterizations of N.Q —Boundedness in
terms of both &—upper limit of Q-nets of L -subsets and & —cluster points of
constant molecular « -nets.

Theorem 4.1. Let (L*,7) bean L-ts, a e M(L) and e L*. Then u
is N.Q—bounded iff for each constant molecular « -net S contained in x has

6 —cluster point in X with height .
Proof. Suppose that 4 is N.Q-bounded, «aeM(L) and

S ={S(n): n € D}is a constant molecular ¢ -netin x.If S does not have any
& —cluster point in X with height «. Then for all x, e M(L*), x_, is not & -
cluster point of Sand so there exists 4, eR, and n,eD such that
S(m) ecl(int(4,)) for every meD andm=>n,. Put
Y ={cl(int(1,)): xe Xand « e M(L)}, then ¥ is an «-RF ofl, . Since i is
N.Q —bounded, then by Theorem 3.18. there exist
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¥, ={cl(int(4,)) i =12,..,k}e 2™ such that ¥, is an a-RCRF of .. Hence,
for each i <k we have n, € D when m>n ,, S(m) ecl(int(4,)). Since D is a
directed set, then there is n,eD such that n >n, (i=12,..,k). Hence
S(m) ecl(int(1,)) Acl(int(4.)) A... acl(int(4 . )) whenever m2n,_ . This means

that S(m) not havea -RCRF in ¥, and so ¥ is not «-RCRF of . This
contradicts the hypothesis that 4 is N.Q—bounded. Thus S has a & —cluster

pointin X with height « .
Conversely, suppose that x is not N.Q—bounded. Then by Theorem

3.18. there exist &« e M (L) and a family ¥ which is an « -RF ofl, , but for any
family ¥, € 2™, we have ¥, is note -RCRF of x. Then there exists molecule
X, € pwith height a such that for each cl(int(1)) € ., cl(int(1)) € R, we have
X, <AY, and x, is denoted by (x(¥.)),. Since 2™ is a directed set with
relation <, then S ={(x(¥.)), : ¥, € 2"} is a constant molecular « -netin x .
Take an arbitrary point y_ in X with height «, since ¥ is an « -RF ofl, , then
there is AeY¥ such that 1eR, . Hence for each W 2™ such that
cl(int(4)) e P, there is (x(W.)), < AW, <cl(int(1)), i.e., S <cl(int(1)). This
shows that y_ is not a & —cluster point of S, which contradicts to the hypothesis.
Thus u is N.Q—bounded.

Theorem 4.2. Let {(L*,7;):i=12,..,m}be an L-ts's and g be an
N.Q-boundedset in (L*',z,) for each i=12..,m, then the product set
M= H,Lli isan N.Q—bounded in the product space.

i=1

Proof. Let 4 e L* be an N.Q—bounded set for each i =12,..,m and let
{p, :neD} bean Q-netof closed L -subsets in L™ such that 5.ﬁ(pn)(x) <a
for each x e X . Therefore there is n, € D such that p, Ay =0, , for every
neD, nxn,_,thereis n, D suchthat p, A, =0, foreveryneD, nxn_
, ., thereis n, e D suchthat p, A g, =0, forevery neD, nx=n, . Thus for
each Q-net {p, :neD} of closed L -subsets in L* there is n, €D such that
po A([Tr) =0, forevery neD, nxn,, i={L2,..,m}. Put u=]]x and

i=1 i=1
therefore for each Q -net {p, : ne D} of closed L -subsets in L* there is
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n,eD such that p, Au=0, for every neD, nxn,. Hence p=[]x is

i=1

N.Q —bounded in L* .

Theorem 4.3. If f_:(L*,z) = (L",A) is almost continuous mapping and
wel™ is N.Q-bounded, then f, (1) is N.Q—bounded.

Proof. Suppose that e L*is N.Q—bounded and S ={p, : ne D} is an
Q-net of closed L -subsets in L' such that §.ﬁ(pn)(y) <a foreach yeY.
Then (VyeY, aeM(L)3ne R, ) (ImeD) (p, <cl(int())) (Vn=>m).
Since f, is almost continuous mapping, then f*(S) ={f,*(p,):n e D} isan Q
-net of closedL -subsets in L* such that (V xe X, xe f(y), a e M(L))
@ 7 (m eR,,) (@MeD) (7 (p,) < 7 (cl(int(n))) = cl (int(f,* (17))))
(Vn>m) and so Slim(f*(p,))(x) < foreach x e X . Now, since xis NQ—
bounded, then there is n, € D such that f *(p,)A =0, for each neD,
nxn. Thus f (f (o )A)<f f (o)A Ff ()= (0,)=0, and so
o, A f (1) =0,.Hence f (u) is N.Q—bounded.

Theorem 4.4. If(L*,7) is Lts , wel® and x,6 e M(L*),
X, € NQ..cl(), then there exists a molecular net S in x such that S is NQ-
converges to X,, .

Proof. Let x, e M(L*) such that x, € NQ.cl(x), then g« A for each
A€ NQBR, . Since u£A, then there exists a(u,1)eM(L) such that
Xo(uny € HWIth X, o 4. The pair (NQBR, ,>) is a directed set and so we can
define a molecular net S:NQBR, — M(L*) as follows S(1)=x,, , for each
A€ NQBR, Hence S is a molecular net in x. Now let 7 e NOBR, such that
A<mn, so we have there exists S(7)=Xx,.,,, €7 and so S() =X, €4-

Hence S is NQ-converges to X, .

Theorem 45. Let S={S(n):neD} and T={T(n):neD} be a
molecular nets in an L-ts (L*,7) such that T(n)>S(n) for each ne D and
X, € M(L*). Then the following results are true :

(i) S is NQ-convergesto x,,then T is NQ-convergesto X, .
(if) x, is NQ-cluster point of S, then x, is NQ -cluster pointof T .
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Proof. (i) Let x, e M(L*) such that S be NQ-converges to x_, then
for each 1 e NQBR, there exists ne D such that for each me D and m=n
then S(m) ¢ 4. Since T(n) > S(n) > 4, and so for each 1 € NQBR, there exists
n e D such that for each me D and m > n then T(m) ¢ A. This shows that T is
NQ -converges to X, .

(i) Let x, e M(L*) such that x, is NQ-cluster point of S, then for
each 2eNQBR, and each ne D there exists me D such that m=>n then
S(m)g A. Since T(n)>S(n) for each ne D, then T(n)>S(n)>A. Thus for
each 2 e NQBR, and for each ne D there exists me D such that m > n then
T(m) ¢ A. This shows that x_, is NQ -cluster point of T .

Theorem 4.6. Assume that S ={S(n):n e D} is a molecular net in an
L-ts (L*,7z) and x, € M(L*). Then the following results are true :
(i) x,is NQ-cluster point of S iff there exists a subnet T of Ssuch that T is
NQ -converges to X, .

(i) If x, is NQ-cluster point of S, then T is NQ-converges to x_, for each
subnet T of S.

Proof. (i) Provided that S ={S(n):n e D}and X, is NQ-cluster point of
S, then for each 4 € NOQBR, andeach ne D thereis k € D such that S(k) ¢ 4
and k>n. Taking k =g(n,1), we get a mapping g:DxNQBR, — D with
S(g(n,A)) ¢ 4. Put E=DxNQBR, and we define the relation < on E as
follows : (n;,4,) <(n,,4,) iff n,<n, and 4, <4,, then (E,<) is a directed set.
For  each (n,A)eE, we choose  T(n,A)=S(g(n, 1)), then
T={T(n,4):(n,A) € E} isasubnet of S. Because:

(*) There exists mapping f :E — D define as follows f(n,4)=n and
T=Sof.

(**) Let n, € D, then there exists (n,,4,) € E and (n,4,)<(n,,4,)€E
iff n,<n, and 4, <A4,, f(n,,4,)=n,>n,. Now we prove that T is NQ-
converges to x,, let 2e NQBR, and ne D, so (n,4) € E. Therefore for each
(n,A)eE and (n,A)<(m,7) thenT(m,7)=S(g(m,7)e¢n and A<n, SO
T(m,n) e A.Thus T is NQ-converges to X, .

Conversely, it follows directly from Definition 2.9.
(i1) It follows directly from Definition 2.9.
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Theorem 4.7. Let (L*,7) bean L-ts, ¢ e M(L) and x e L*. Then u
is N..Q-—bounded iff every « -filter F containing xas an element has a &—
cluster point in X with height « .

Proof. Suppose that x is N..Q—bounded and F is an « -filter containing

i as an element (a¢eM(L)), then AAueF for each AeF, hence
vx(k/\,u)(x)z(x for each AeF and for eachx, e M(L*) there exists a

molecule X, ,, € A A pwith heighte . PutS (F)={x, ., : (4, &) e FxM(L)}. In
FxM(L) we define the relation that (4,,¢,) > (4,,«,) iff 4, <4, and , 2, .
Then FxM(L) is a directed set with this relation andS (¥) is a constant
molecular « -net in x. Since g is N..Q—bounded, then by Theorem 4.1., S (F)
has a & —cluster point in X with height «, say X, . So by Theorem 2.20, ¥ §—
cluster to x, as well.

Conversely, suppose that the condition is satisfied and S ={S(n):neD}
is a constant molecular « -netin u. Let &, =v(S(n)) for each me D, n>m.

Since D is a directed set, then the family {A , : m e D}can generate a filter F(S).
Since S is a constant molecular « -net, then for each o eM(L) (3n e D)

(Y me D,m=>n) (vV(S(m))=a), hence v(r,(X))=v(v(S(n)))=a, n>m and
so v (A, (X))=c. Since F(S) is produced by {A, :me D}, then for each 1 e F(
S) contains some A and therefore v (A(X))=a . Hence F(S) is an « -filter. By
assumption, F(S) has a ¢ —cluster point in X with height «, say x,. Thus for
each ueR, and for each AeF (S). In particular, A, we have
A, £cl(int()), and by Theorem 2.21 We have S has a & —cluster point x_and
by Theorem 4.1. we have u is N..Q—bounded.

Theorem 4.8. Ifaset x inan L-ts(L*,7) is N..Q—bounded, then every
a-ideal I inL*and x¢1 hasa &—cluster pointin X with height « .

Proof. Let| be an ¢ -ideal in L* and e L* be an N..Q—bounded with
uel. Then for each 1 we have X\G/X(n)(x) <a, and then for each o e M(L)
there exists a molecule S, a)=X,,. &n. Put D(I)
={(n @)X, €u, nel and x, , €n}. InD(1) we define the relation that
(n,0,)2(n,,a,) iff n,>n,. Then (D(1),>) is a directed set with this relation
andS(1) ={S(7,@) =X, ., : (7,&) € D(1)} is a constant molecular «-netin .
Since x is N..Q—bounded, then by Theorem 4.1.,S(1) has a & —cluster point in

X with height «, say X,, by Theorem 2.22., we have x, is also a ¢ — cluster
point of 1| .
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