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Abstract

An n×n real matrix A is hypernormal if AP A t = A tP A , for all

permutation matrices P . We shall explain how to construct hypernor-

mal matrices.
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metric, skew-symmetric, mmhermitian,and ske-hermitian matrices. The Eu-

clidean norm of a vector and a matrix. Birkhoff’s theorem. Eigenvalues and

eigenvectors. The trace of a matrix.

Introduction

The set of all n × n real matrices is denoted by Mn(R ) . In all that fol-

lows, we assume that the matrix A ∈ Mn(R ) . The zero column vector and
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zero matrix are denoted by θ and Z , respectively. A permutation matrix P

is obtained from the identity matrix I , by interchanging some of its rows or

columns. We denote the set of all n × n permutation matrices by Pn . The

fact that there are n ! permutation matrices in Mn(R ) , we conclude that

Pn is a subspace of Mn(R ) of dimension n ! of Mn(R ) .

A matrix A is said to be normal, if AA t = A tA. It is also characterized by

the fact that both A and A t share the same eigenvectors, i.e., if Av = λ v ,

then A t v = λ̄ v . The spectral theorem states that a matrix is normal if and

only if it is unitarily similar to a diagonal matrix. This implies that a non-

symmetric normal matrix has complex eigenvalues.

The matrix A is called hypernormal, if AP A t = A tP A for all permuta-

tion matrices P . Since the identity matrix In is a permutation matrix, we

conclude that hypernormal matrices are normal. Clearly any symmetric or

skew-symmetric matrix is hypernormal.

For any matrix A ∈Mn(R) we define the following subspace of Mn(R ) :

Hn(A ) = {X ∈Mn(R) : AX A t = A tX A }.

If A is hypernormal, then Pn is a subspace of Hn(A ) and if A is symmetric

or skew-symmetric, then Hn(A ) = Mn(R ) .

A complex matrix H is said to be hermitian if it is equal to its conjugate

transpose, i.e., H ∗ = H . The diagonal entries of hermitian matrices are all

real .

The trace of A is the sum of its diagonal entries and is denoted by tr (A ) . It

is well known that the trace of A equals the sum of all its eigenvalues. The

sum of all the entries of the matrix A = (aij) is denoted by σ (A ) .

The Euclidean norm of a vector v = (v1, v2, . . . , vn) t is || v || =

[∑
i

| vi | 2
]1/2

.

The Euclidean norm A = (aij) is ||A || =

[∑
i,j

| aij | 2
]1/2

=
√

tr (AA t) .

Let en = (1, 1, . . . , 1) t and define the matrix Jn =
1

n
en e

t
n . The matrix A

with non-negative entries is said to be doubly stochastic, if Aen = A t en = en .

The set of all n× n doubly stochastic matrices is denoted by Ωn .

In [1] Birkhoff proved that every doubly stochastic matrix is a convex combi-

nation of permutation matrices. This means that they are linear combinations

of permutation matrices, where the scalar coefficients are non-negative and

their sums equal one.
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A matrix A ∈Mn(R ) is said to be a generalized doubly stochastic matrix, if

Aen = A ten or AJn = JnA .

The set of all n×n generalized doubly stochastic matrices is denoted by Ω̂n .

This set can be partitioned into

Ω̂n(s) = {S ∈Mn : S Jn = Jn S = s Jn } .

Let B = ( b i,j) ∈ Ω̂n (s) , with b0 = min { b i,j} . If b0 ≥ 0 , then the ma-

trix C =
1

s
B is doubly stochastic; otherwise, the matrix B =

n | a0 | Jn +B

n | a0 |+ s
is doubly stochastic.

Hence by Birkhoff’s theorem C is a convex combination of permutation matri-

ces. Since J b is doubly dtochastic, we conclude that B is a linear combination

of permutation matrixes. Thus if A is hypernermal, then Ω̂n ⊂ Hn(A ) .

Results

Note that the matrix S = A− σ (A ) Jn is skew-symmetric if and only if

A+ A t = 2σ (A ) Jn .

Theorem 1. If A is a non-symmetric hypernormal matrix , then S = A −
σ (A ) Jn is skew-symmetric.

Proof. If A is skew-symmetric, then σ (A ) = 0 . Hence S = A is skew-

symmetric.

Suppose now that A is not skew-symmetric. Let λ = a+ b i be a complex

eigenvalue of A .

Define the hermitian matrix

Bλ =
1

b i
(λA t − λ̄ A) =

(a+ b i)

b i
A t − (a− b i)

b i
A =

a

b i
(A t − A ) + (A t + A )

with

σ (Bλ) =
a

b i
σ (A t − A ) + σ (A t + A ) = 0 + σ (A t + A ) = 2 σ (A ) .

Let v = (v1 , v2 , . . . , vn) t be an eigenvector of A , corresponding to the

complex eigenvalue λ = a + b i . From the equality A tP A = AP A t, we
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conclude that

b iBλ P v = (λA t − λ̄ A)P v = (A tP ) (λ v)− (AP ) (λ̄ v) =

A t P (Av)− AP (A tv) = (A tP A− AP A t) v = Z v = θ.

This implies that for any permutation matrix P , the vectors P v and w =

v − P v are eigenvectors of the matrix Bλ corresponding to the eigenvalue

zero.

For i 6= j , define the permutation matrix Pi,j, obtain from interchanging the

i and j rows of the identity matrix In .

Clearly all the components of the complex eigenvectors v cannot be the same,

thus for some i 6= j , the eigenvector w = v − Pi,j v of Bλ associated to

its zero eigenvalue has exactly two nonzero components wi = −wj. For any

permutation matrix P , the vector P w is also an eigenvector of Bλ associated

with its zero eigenvalue. Hence all the columns of the hermitian matrix Bλ

are equal. Since the diagonal entries of hermitian matrices are real; it follows

that A must be real. Thus Bλ = A t + A = 2σ (A ) Jn and a = 0 , which

makes S = A− σ (A ) Jn skew-symmetric and the complex eigenvalue λ pure

imaginary.

Next we obtain some equivalent conditions, whenever the matrix

S = A− σ (A ) Jn is skew-symmetric.

Theorem 2. Suppose σ (A ) 6= 0 but the matrix S = A− σ (A ) Jn is skew-

symmetric. Then the following conditions are equivalent:

(i) A is normal;

(ii) A ∈ Ω̂n ;

(iii) Ω̂n ⊂ Hn (A ) ;

(iv) A is hypernormal .

Proof. If A is normal, then since S is skew-symmetric

( i.e., A+ A t = 2σ (A ) Jn ) , we have

2 σ (A )AJn = A ( 2 σ (A ) Jn) = A (A+A t) = (A+A t)A = ( 2 σ (A ) Jn)A =

2 σ (A ) JnA .

The fact that σ (A ) 6= 0 implies that A ∈ Ω̂n .

If A ∈ Ω̂n , then since both A and σ (A ) Jn are members of Ω̂n , we
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conclude that S ∈ Ω̂n . Now, for all X ∈ Ωn , we have

AX A t = (S + σ (A ) Jn)X (S + σ (A )Jn) t

= −S X S − σ (A ) JnX S + σ (A )S X Jn + σ (A )2JnX Jn

= −S X S + σ (A ) 2Jn ;

A tX A = (S + σ (A ) Jn) tX (S + σ (A )Jn)

= −S X S − σ (A )S X Jn + σ (A ) JnX S + σ (A )2JnX Jn

= −S X S + σ (A ) 2 Jn .

Thus AX A t = A tX A .

If (iii) holds, then (iv) follows from the fact that any permutation matrix is

doubly stochastic.

If (iv) holds, then (i) follows from the fact that any hypernormal matrix is

normal.

Note that, if A ∈ Ω̂n , then S ∈ Ω̂n ;

Combining the results of Theorem 1 and Theorem 2, we obtain the following

result :

Corollary 1. If A is a non-symmetric hypernormal matrix with σ (A ) 6= 0 ,

then A ∈ Ω̂n .

Corollary 2. A hypernormal matrix A is either symmetric or has at most

one nonzero real eigenvalues.

Proof. Suppose A is not symmetric, then by Theorem 1, the matrix

S = A− σ (A )Jn is skew-symmetric, therefore all its nonzero eigenvalues are

pure imaginary. If A is not skew-symmetric, then by Theorem 2, A ∈ Ω̂n .

This implies that A and A − λ0Jn can be simultaneously diagonalized by

the same unitary matrix. Therefore any eigenvalue λ1 6= σ (A ) of A is also

an eigenvalue of the skew-symmetric matrix S with nonzero pure imaginary

eigenvalues.

Remark 1. Since the rank of a normal matrix is the number of its nonzero

eigenvalues, then according to Corollary 2, a hypernormal matrix of even rank

is either symmetric or skew-symmetric. Also, according to the previous results,

if A = (aij) is a n× n non-symmetric hypernormal matrix, then for all

k = 1, · · · , n, we have Akk = 1
n
σ (A ) , and tr (A) = n.

Corollary 3. If a normal matrix A is hypernormal, then A2 is symmetric.

Proof. If A ∈ Hn is not symmetric, then by Theorem 2, A + A t = 2λ0Jn.

Hence

A2 = (2σ (A )Jn − A t)2 = 4σ (A )2Jn − 4σ (A )2Jn + (A t)2 = (A2) t.
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Remark 3. Consider the non-symmetric normal matrix A =

0 −1 0

1 0 0

0 0 1


and the permutation matrix P =

0 1 0

0 0 1

1 0 0

. Although A with a unique

nonzero real eigenvalue is the direct sum of two hypernormal matrices, and

A2 is symmetric, but A11 = a22 6= a33, 1 = trA 6= σ (A ) = 1
3
, and

APA t =

 0 0 −1

−1 0 0

0 1 0

 6=
 0 0 1

−1 0 0

0 −1 0

 = A tPA.

According to Corollary 1, The only hypernormal matrices of order n ≤ 2 are

either symmetric or skew-symmetric. In the next theorem and its corollaries we

study the set Hn(A ), where A is a non-symmetric and non-skew-symmetric

hypernormal matrix of order grater than or equal to three.

Theorem 3. Let A be n × n hypernormal matrix where n ≥ 3, σ (A ) 6= 0

and the matrix S = A− σ (A )Jn is skew-symmetric. Then

Hn(A ) = {X : X,X t ∈ Zn(S) }.

Proof. For any X ∈Mn(IR), we have

AXA t = (S + σ (A )Jn)(S + σ (A )Jn) t

= −SXS − σ (A )JnXS + σ (A )SXJn + σ (A )2JnXJn

and A tXA = (S + σ (A )Jn) tX(S + σ (A )Jn)

= −SXS − σ (A )SXJn + σ (A )JnXS + σ (A )2JnXJn.

Thus AXA t = A tXA if and only if JnXS = SXJn.

By Theorem 1 (v), S ∈ Ω̂n(0), so if JnXS = SXJn, then

JnXS = JnJnXS = JnSXJn = Z = SXJn. Hence

AXA t = A tXA, if and only if XS and SX are both in Ω̂n(0).

Notice that X and X t are in Zn(S), if and only if,

SXJn = Z and (JnXS) t = −S(X tJn) = Z.

This clearly completes the proof.
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Corollary 4. Let A be the matrix defined in Theorem 3. Then

rank S = n− 1 if and only if Hn(A ) = Ω̂n.

Proof. Since Jn ∈ Zn(S), the proof then follows from Theorem 3 and the

fact that the rank of a skew-symmetric matrix is the number of its nonzer

eigenvalues.

Remark 3. According to this corollary, H3(A ) = Ω̂3. Also if n is even, then

Ω̂n is strictly contained in Hn(A ).

Corollary 5. For any integer n ≥ 3,

Ω̂n =
⋂

A∈Hn

Hn(A ).

Proof. Let S = Pn−P t
n, where Pn = (pij) is the full cycle permutation matrix

(i.e., 1 = pn1 = pi,i+1, for i = 1, n − 1). Then S ∈ Σ′ ∩ Ω̂n(0) and according

to Theorem 1, for any real λ , the matrix A = S + λJn is hypernormal. Let

X ∈Mn(IR), such that X,X t ∈ Zn(S)

(i.e., SXJn = (P − P t)XJn = Z and SX tJn = (P − P t)X tJn = Z).

This implies that X ∈ Ω̂n. We conclude the proof by using Theorem 3.

In the remaining part of this paper we use norms to characterize hypernormal

matrices.

Lemma 1. Let A ∈Mn(R ) , then A is symmetric (skew-symmetric) if and

only if ||A||2 = tr A2 ( ||A||2 = −tr A2).

Proof. Let λk = ak + ibk, k = 1, · · · , n, be the eigenvalues of the matrix A .

The Schur triangularization theorem states that there exists a unitary matrix

U such that U tAU = T is upper triangular and has the form

T =


λ1 t1,2 . . . t1,n

0 λ2
. . .

...
...

. . . . . .
...

0 . . . . . . . . λn

 .

Note that

||A||2 = ||T ||2 =
n∑
k=1

|λk|2 +
∑
i,j j>i

||ti,j||2 =
n∑
k=1

(
a2k + b2k

)
+
∑
i,j j>i

||ti,j||2 .

Since all non-real eigenvalues of a real matrix come in conjugate pairs, it follows
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that

tr A2 =
n∑
k=1

λ2k =
n∑
k=1

(
a2k − b2k + 2akbki

)
=

n∑
k=1

(
a2k − b2k

)
.

Now if ||A||2 = |tr A2|, then every Tk is zero; this way T becomes a diagonal

matrix and
n∑
k=1

(
a2k + b2k

)
= |

m∑
k=1

(
a2k − b2k

)
| .

If ||A||2 = tr A2 ( ||A||2 = −tr A2 ), then all the bk’s ( ak’s) must be zero;

thus A is symmetric (skew-symmetric). The converse is obvious.

Theorem 4. For any positive integer n ,

Hn = { A ∈Mn(IR) : ||A− σ (A )Jn||2 = |tr A2 − σ (A )2|}.

Proof. Since tr (B + C) = tr B + tr C , tr(Jn) = 1, and

tr (AJn) = tr (JnA) =
1

n

(
n∑
j=1

(
n∑
i=1

aij

))
=

1

n
(nσ (A )) = σ (A ) ,

we have

tr (A−σ (A )Jn)2 = tr (A2−σ (A )AJn−σ (A )JnA+σ (A )2Jn) = trA2−σ (A )2.

Thus according to Lemma 1,

||A− σ (A )Jn||2 = |tr A2 − λ20| if and only if S = A− σ (A )Jn ∈ Σn ∪ Σ′n.

The result then follows from Theorem 2 and the fact that the matrix S =

A− σ (A )Jn is symmetric if and only if A is symmetric.

Our last result concerns nonskew-symmetric hypernormal matrices.

Corollary 6. Let A ∈ Mn(R ) with Aen = en. Then A is hypernormal if

and only if ||A− Jn||2 = |tr A2 − 1|.
Proof. If A is hypernormal, then A is normal. Hence Aen = A ten = en
i.e., A ∈ Ω̂n(1). Theorem 4 then implies that ||A− Jn||2 = |trA2 − 1| .
Conversely, if ||A − Jn||2 = |tr A2 − 1|, then by Lemma 1, A − Jn is either

symmetric or skew-symmetric; in both cases A becomes normal. Thus A ∈
Ω̂n(1) and by Theorem 4,A is hypernormal.

We conclude this paper by constructing a hypernormal matrix A 6∈ Σn ∪ Σ′n.
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Let S =


0 4 −1 −3

−4 0 3 1

1 −3 0 2

3 −1 −2 0

 ∈ Σ′n ∩ Ω̂n(0). Then the matrix

A = S + 4J4 =


1 5 0 −2

−3 1 4 2

2 −2 1 3

4 0 −1 1


is hypernormal with σ (A ) = tr A = 4, akk = 1 = 1

4
σ (A ), k = 1, 2, 3, 4,

A+ A t = 2σ (A )J4,

trA2 − σ (A )2 = tr


−22 10 22 6

10 −22 6 22

22 6 −10 −2

6 22 −2 −10

− 16 = −64− 16 = −80,

and σ (A ) J4||2 = ||S||2 = 80. It is not difficult to show that the matrix

X =


1 1 1 0

1 0 1 −1

1 1 1 1

−1 0 −1 2

 ∈ Hn(A ).

According to Remark 2, A is singular. Observe that A2 is symmetric.

It is important that we choose the skew-symmetric S in Ω̂n(0) . Consider for

example, the matrix S =

 0 −3 1

3 0 −2

−1 2 0

 ∈ Σ′n which is not a member of

Ω̂n(0).

Notice that A = S + 3J3 =

1 −2 2

4 1 −1

0 3 1

 is not in Ω̂n , and therefore is

not hypernormal. However, we have tr (A ) = σ (A ) = 3, a11 = a22 = a33 =

1 = 1
3
σ (A ) , A+ A t = 2σ (A )J3,

tr A2 − σ (A )2 = tr

−7 2 6

8 −10 6

12 6 −2

− 9 = −19− 9 = −28,
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and ||A− σ (A )J3||2 = 28. Observe that A2 is not symmetric.
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