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Abstract 

 

Logic is an old branch of knowledge; we shall be occupied in this paper with the 

symbolic logic (or also known as mathematical logic). Propositional logic is a 

branch of symbolic logic which based on bivalence of classical logic. which it was 

focused in the beginning on two central problems of logic as formal. Namely, how 

to decide the given conclusion derived from certainly premises is valid or invalid 

argument. Recently, it plays role in applications in computer sciences and 

Engineering. To be able to deciding some known facts about mathematical 

argument, structure programming. We need logic information's. In This present 

paper, we highlight features of propositional logic, validity, deduction, consistence, 

sounds, completing and reducible in propositional logic system (𝑃𝐿𝑆), by strict 

manner mathematical proofs. 

   
Keywords: Propositional logic, validity, deduction, inference rules, sound, 

complete and reducible. 

 

1 Introduction 
 

Classical logic is usually divided into three logics, proposition (or statement) logic, 

monadic, and polyadic. The division is based on the introduction of variables into 

the language concerned. Proposition logic involves no variables, monadic logic 

consists of predicates applied for single variables, and polyadic logic has predicates 

of several variables including the equality for more information see 

[7,15,18,20,21,22]. In the present paper we introduced known concepts about 

propositional logic, but introduced them in a strict mathematical and demonstrative 

manner, with proofs of some theories and characteristics and their clarification. The 

aim of this work to understand the connection between Boolean algebras and logic. 

This discipline developed by work's Bool in [4], who is worth nickname father of 

Algebraic logic. At a later stage, The American mathematicians (of Hungarian  
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origin) Halmos (1916-2006) published the sequence papers to make algebra out of 

logic by the existing theory of Boolean algebras see [9,10,11,12,13,14]. In [1] we 

have investigated and extension existential and universal quantifiers operators on 

Boolean Algebras and their properties and in [2] we studied monadic properties 

such as ideals, filters associated with homomorphism and simple monadic algebra.                

     

2 Propositional Logic System (PLS) 

 
Definition 2.1.A proposition is a statement (statement is declarative     
                     sentence) that is true or false but not both.  
 

Definition 2.2. The language 𝐿 of propositional logic system consists of:  

1. Symbols (vocabulary) 𝐴1, 𝐴2, 𝐴3, …( for simple (or atomic) proposition); 

2. Symbols ¬,∧,∨, ⟶, ⟷ and ⨁  (for connective proposition) and  

3. Punctuation ( , ). 

 

Remark. Special symbols 0 and 1 may be added to the language  𝐿 to indicted 

special proposition. Also in some books, the logical connectives are calling the 

truth- functional propositional connectives. 

 

Definition 2.3. A well- formed formula (wff) is defined as follows: 

1. 𝐴1, 𝐴2, 𝐴3, … are well- formed formulas. 

2. Rules of information, if 𝐴 and 𝐵 are wffs, then ¬𝐴, 𝐴 ∧ 𝐵, 𝐴 ∨ 𝐵, 𝐴 ⟶ 

𝐵, 𝐴 ⟷ 𝐵 and   𝐴⨁𝐵 are wffs.   

 

Remark.  

i. The symbols ¬,∧,∨, ⟶, ⟷ indicted to negation, conjunction (wedge in 

latex), disjunction (vee in latex), conditional, biconditional and exclusive 

nor, respectively. 

ii. Formulas are nothing else but string of symbols. They don't have content 

or meaning so far. In the definition 2.1.1.  they will associate with the 

meaning from the point of view bivalence of classical logic. 

iii. PLS does not consider any proposition that has not been constructed by it.  

As a matter of fact, PLS distinguishes between the propositions which considers in 

propositional logic as usable in argument and sets and those that grammarians reject 

in the same way for sentences that break the normative grammar.   

 

Definition 2.4.  An argument form is a finite sequence of wffs  𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛is 

called premises followed by a wff  𝐵 called conclusion. This is written as follows: 

𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛, ∴ 𝐵.The main problem how to check whether or not the 

conclusion 𝐵 is derived from the given premises argument form 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛 . 

Usually, there are two different ways which called validity and deduction to do this.   
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Remark. 

i. One of the main tasks assigned to logical systems is the task of 

classifying arguments into valid and invalid arguments.  

ii. Argument consists of the following objects: 

 Set of wffs which called premises that lead to conclusion.   

 Set of wff which called conclusion that derived from premises.  

 Set of logical system which applicable to get conclusion from 

premises. 

 

2.1 Validity of Language Propositional System Logic (VLSPL) 

 

The truth value of any wff in the language  𝐿𝑆𝑃𝐿  is considered true (𝑇) or values 

(𝐹) but not both. This is the main principle of bivalence of classical logic. 

 

Definition 2.1.1. The semantic (or meaning) of propositional logic consist of truth 

valuations. A valuation (or truth assignment or interpretation) 𝑣 in the language  𝐿 

is a function from the set of simple statement letters into the set {𝑇, 𝐹}. I. e, 

𝑣(𝐴) = {
𝑇, 𝑖𝑓 𝐴 𝑖𝑠 𝑡𝑟𝑢𝑒

𝐹, 𝑖𝑓 𝐴 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒
 

which satisfies the following conditions: 

 

 

 

 

   

 

 

All interpretation of a wff can be viewed by a truth table. 

 

Remark. Often the language machine of computer and logical digit treatment with 

binary system depend on 0 and 1, usually use 1 instead of "T" and 0 instead of "F". 

Moreover, the number of probabilities (or assignments) in truth table is = 2𝑛, where 

𝑛 is the number of simple proposition in wff. 

 

Definition 2.1.2. Any formula 𝐴 which accurse in anther formula 𝐵 is called a sub 

formula of 𝐵. 

 

Definition 2.1.3. An argument form  𝐴1, 𝐴2, … , 𝐴𝑛, ∴ 𝐵 is called valid if there is no 

interpretation  𝑣 such that 𝑣(𝐴1) = 𝑣(𝐴2) = ⋯ = 𝑣(𝐴𝑛) = 𝑇 𝑎𝑛𝑑 𝑣(𝐵) = 𝐹. The 

valid argument form is denoted by  𝐴1, 𝐴2, … , 𝐴𝑛  ⊨ 𝐵,  otherwise it is called invalid 

and denoted by  𝐴1, 𝐴2, … , 𝐴𝑛  ⊭ 𝐵 . 
 

Theorem 2.1.4. 𝐴1, 𝐴2, … , 𝐴𝑛  ⊨ 𝐵 if and only if  (𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑛) ⟶ 𝐵 is true" 

T" for all interpretation 𝑣.  
 

1. 𝑣( ¬𝐴) ≠ 𝑣(𝐴) 

2. 𝑣(𝐴 ∧ 𝐵) = 𝑇 ↔ 𝑣(𝐴) = 𝑣(𝐵) = 𝑇 

3.  𝑣(𝐴 ∨ 𝐵) = 𝐹 ↔ 𝑣(𝐴) = 𝑣(𝐵) = 𝐹 

4. 𝑣(𝐴 → 𝐵) = 𝐹 ↔ 𝑣(𝐴) = 𝑇 ∧ 𝑣(𝐵) = 𝐹 

5. 𝑣(𝐴 ↔ 𝐵) = 𝑇 ↔ 𝑣(𝐴) = 𝑣(𝐵) 

6. 𝑣( 𝐴 ⊕ 𝐵) = 𝑇 ↔ 𝑣(𝐴) ≠ 𝑣(𝐵) 
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Proof. Let  𝐴1, 𝐴2, … , 𝐴𝑛  ⊨ 𝐵 be   valid argument. Suppose that  

(𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑛) ⟶ 𝐵  is not valid for some  𝑣(𝐴𝑖), 1 ≤ 𝑖 ≤ 𝑛 in 𝐿. This 

contradiction with hypothesis. So that   (𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑛) ⟶ 𝐵   is true" T" for 

all interpretation 𝑣. Conversely, suppose that (𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑛) ⟶ 𝐵 is true" T" 

for all interpretation 𝑣. To show that 𝐴1, 𝐴2, … , 𝐴𝑛  ⊨ 𝐵 is valid argument. Suppose 

that 𝐴1, 𝐴2, … , 𝐴𝑛  ⊨ 𝐵  is not valid argument, therefore there exists interpretation  

𝑣 such that: 𝑣(𝐴1) = 𝑣(𝐴2) = ⋯ 𝑣(𝐴𝑛) = 𝑇 and  𝑎𝑛𝑑 𝑣(𝐵) = 𝐹. Hence 

𝐴1, 𝐴2, … , 𝐴𝑛  ⊨ 𝐵 ,so 𝑣((𝐴1 ∧ 𝐴2 … ∧ 𝐴𝑛) ⟶ 𝐵) = 𝐹 . This contradiction with 

hypothesis, consequently is valid argument .  

 

Definition 2.1.5.  A wff 𝐵 is called:  

1. Valid if  ⊨ 𝐵 ,i.e., 𝑣(𝐵) = 𝑇 for any interpretation 𝑣. 
2. Satisfiability (contingent) if  𝑣(𝐵) = 𝑇 for some interpretation 𝑣. 
3. Un satisfiability (contradiction) if  𝑣(𝐵) = 𝐹 for any interpretation 𝑣. 
 

Theorem 2.1.6.  If ⊨ 𝐴 and ⊨ 𝐴 ⟶ 𝐵, then  ⊨  𝐵 . 

 

Proof. Consider  ⊨ 𝐴 and ⊨ 𝐴 ⟶ 𝐵. Suppose that ⊭ 𝐵. Then there exists some 

interpretation 𝑣  in 𝐿 Such that  𝑣(𝐵) = 𝐹 ,but ⊨ 𝐴 , implies that 𝑣(𝐴) = 𝑇 for all 

interpretation 𝑣  in 𝐿.Hence 𝑣(𝐴 ⟶ 𝐵) = 𝐹, therefore ⊭ 𝐴 ⟶ 𝐵 is invalid. This 

contradiction with premises  ⊨ 𝐴 ⟶ 𝐵, consequently,  ⊨  𝐵. 

 

Theorem 2.1.7. If  ⊨ 𝐴 if and only if , ¬𝐴 is a contradiction or Un satisfiability. 

 

Proof. Let  ⊨ 𝐴 be a valid wff. Suppose that ⊨ ¬𝐴 , therefore 𝑣(¬𝐴) = 𝑇 for all 

interpretation 𝑣  in 𝐿. But ⊨ 𝐴 , therefore 𝑣(𝐴) = 𝑇  for all interpretation 𝑣  in 𝐿. 
Hence  𝑣(𝐴) = 𝑣(¬𝐴) = 𝑇. This contradiction with definition (2.1.1) part 1. So 

that  , ¬𝐴 is a contradiction and 𝑣(¬𝐴) = 𝐹 for all interpretation 𝑣  in 𝐿. 
Conversely, let , ¬𝐴 be a contradiction and Assume that ⊭ 𝐴 , implies that 𝑣(𝐴) =
𝐹 fore some interpretation 𝑣  in 𝐿. Hence 𝑣(¬𝐴) = 𝑇, since  𝑣(𝐴) ≠ 𝑣(¬𝐴). But 

𝑣(¬𝐴) = 𝐹, this contradict. Hence ⊨ 𝐴.  

 

Theorem 2.1.8. 𝐴1, 𝐴2, … , 𝐴𝑛  ⊨ 𝐴 ⟶ 𝐵 if and only if 𝐴1, 𝐴2, … , 𝐴𝑛, 𝐴 ⊨  𝐵. 
 

Proof. Let 𝐴1, 𝐴2, … , 𝐴𝑛  ⊨ 𝐴 ⟶ 𝐵. Suppose that 𝐴1, 𝐴2, … , 𝐴𝑛, 𝐴 ⊭  𝐵,implies 

that 𝑣( (𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑛 ∧ 𝐴 ) → 𝐵) = 𝐹, for some interpretation 𝑣  in 𝐿 (by 

theorem 2.1.4). Therefore, (¬ (𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑛 ∧ 𝐴 ) ∨ 𝐵) = 𝐹    
       ⟹ 𝑣(¬(𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑛)   ∨ ( ¬𝐴 ∨ 𝐵)) = 𝐹 

       ⟹ 𝑣(¬(𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑛)   ∨ (  𝐴 → 𝐵)) 

       ⟹ 𝑣( (𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑛)   → (  𝐴 → 𝐵)) = 𝐹 

       ⟹ 𝑣 (𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑛)) = 𝑇 and  𝑣(  𝐴 → 𝐵) = 𝐹   

       ⟹ 𝑣 (𝐴1) = 𝑣(𝐴2) = ⋯ 𝑣(𝐴𝑛) = 𝑇 and  𝑣(  𝐴 → 𝐵) = 𝐹  

       ⟹ 𝐴1, 𝐴2, … , 𝐴𝑛  ⊭ 𝐴 ⟶ 𝐵 is invalid argument, this contradict with 

hypothesis. We deduce  𝐴1, 𝐴2, … , 𝐴𝑛, 𝐴 ⊨  𝐵. Conversely, consider  
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𝐴1, 𝐴2, … , 𝐴𝑛, 𝐴 ⊨  𝐵. Suppose that 𝐴1, 𝐴2, … , 𝐴𝑛  ⊭ 𝐴 ⟶ 𝐵, hence 

𝑣((𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑛) → (𝐴 ⟶ 𝐵)) = 𝐹 for some interpretation 𝑣  in 𝐿. 

Therefore 𝑣(¬(𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑛) ∨ (𝐴 ⟶ 𝐵)) = 𝐹, hence   

 𝑣(¬(𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑛 ∧ 𝐴) ∨ 𝐵) = 𝐹,we get 

  𝑣((𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑛 ∧ 𝐴) → 𝐵) = 𝐹, so  𝑣 (𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑛 ∧ 𝐴) = 𝑇 and 

𝑣(𝐵) = 𝐹, we have  𝑣 (𝐴1) = 𝑣(𝐴2) = ⋯ = 𝑣(𝐴𝑛) = 𝑣(𝐴) = 𝑇  and 𝑣(𝐵) = 𝐹, 
consequently,  𝐴1, 𝐴2, … , 𝐴𝑛, 𝐴 ⊭  𝐵. This contradiction the negation is true 

𝐴1, 𝐴2, … , 𝐴𝑛  ⊨ 𝐴 ⟶ 𝐵. 

 

Theorem 2.1.8. 𝐴1, 𝐴2, … , 𝐴𝑛  ⊨  𝐵  if and only if 𝐴1, 𝐴2, … , 𝐴𝑛, ¬𝐵 ⊨  0. 
 

Proof. Let 𝐴1, 𝐴2, … , 𝐴𝑛  ⊨  𝐵. Suppose that 𝐴1, 𝐴2, … , 𝐴𝑛, ¬𝐵 ⊭  0, implies that 

𝑣((𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑛 ∧ ¬𝐵) → 0) = 𝐹 for some interpretation 𝑣  in 𝐿. Hence 

𝑣(¬(𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑛 ∧ ¬𝐵) ∨ 0) = 𝐹 

     ⟹ 𝑣(¬(𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑛) ∨ (𝐵 ∨ 0)) = 𝐹 

     ⟹ 𝑣(¬(𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑛) ∨ 𝐵) = 𝐹 

     ⟹ 𝑣( (𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑛) → 𝐵) = 𝐹 

     ⟹ 𝑣(𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑛) = 𝑇  and 𝑣(𝐵) = 𝐹 

     ⟹ 𝑣(𝐴1) = 𝑣(𝐴2) = ⋯ = 𝑣(𝐴𝑛) = 𝑇  and 𝑣(𝐵) = 𝐹 

     ⟹ 𝐴1, 𝐴2, … , 𝐴𝑛  ⊭  𝐵. This contradiction so that,    

𝐴1, 𝐴2, … , 𝐴𝑛, ¬𝐵 ⊨  0. Conversely, consider  𝐴1, 𝐴2, … , 𝐴𝑛, ¬𝐵 ⊨  0 and assume 

that 𝐴1, 𝐴2, , … , 𝐴𝑛  ⊭  𝐵 ⟹ 𝑣((𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑛) → 𝐵  ) = 𝐹, for some 

interpretation 𝑣  in 𝐿. Therefore   𝑣(¬(𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑛) ∨ 𝐵  ) = 𝐹 

                  ⟹ 𝑣(¬(𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑛) ∨ (𝐵 ∨ 0)) = 𝐹 

                  ⟹ 𝑣(¬(𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑛 ∧ ¬𝐵) ∨ (0)) = 𝐹 

                  ⟹ 𝑣( (𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑛 ∧ ¬𝐵) → 0) = 𝐹 

                  ⟹ 𝑣(𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑛 ∧ ¬𝐵) = 𝑇 and 𝑣(0) = 𝐹 

                  ⟹ 𝑣(𝐴1) = 𝑣(𝐴2) = ⋯ = 𝑣(𝐴𝑛) = 𝑣(¬𝐵) = 𝑇 and 𝑣(0) = 𝐹 

                  ⟹ 𝐴1, 𝐴2, … , 𝐴𝑛, ¬𝐵 ⊭  0. We get contradiction with hypothesis. 

Hence,𝐴1, 𝐴2, … , 𝐴𝑛  ⊨  𝐵.   

 

Definition 2.1.9.  Let  𝐴  and  𝐵  be two wffs, then: 

i. 𝐴  is said to be logically implies to 𝐵 in the language  𝐿 of propositional 

logic, if  𝐴 ⊨  𝐵 and denoted by  𝐴 ⟹ 𝐵.   
ii. 𝐴  is said to be logically equivalent to  𝐵 in the language  𝐿 of 

propositional logic, if  𝐴 ⟹ 𝐵   and   𝐵 ⟹  𝐴 ,this is denoted by  𝐴 ⟺ 𝐵.   
 

Definition 2.1.10. Consider a set  𝑆 = {𝐴: 𝐴 is a wff} of all wffs. Define the 

logically equivalent relation ⟺ on 𝑆 as follows: A ⟺ 𝐵 Iff ⊨ 𝐴 ↔  𝐵.  

 

Theorem 2.1.11. The logically equivalent relation ⟺ is an equivalence relation. It  

 

Proof. 1. The logically equivalent relation ⟺ is reflexive relation. I.e.  𝐴 ⟺
𝐴, ∀ 𝐴 ∈ 𝑆. Since, 𝐴 ⟺ 𝐴 iff  ⊨ 𝐴 ↔  𝐴  iff  ⊨ (𝐴 →  𝐴) ∧ ⊨ (𝐴 →  𝐴) is true for  
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all interpretation 𝑣  in 𝐿 with respect to  𝐴.   
2. The logically equivalent relation ⟺ is symmetric relation. I.e. If  𝐴 ⟺ 𝐵, 
then 𝐵 ⟺ 𝐴, ∀ 𝐴, 𝐵 ∈ 𝑆. Since 𝐴 ⟺ 𝐵 Iff ⊨ 𝐴 ↔  𝐵 Iff  ⊨ (𝐴 ↔  𝐵) → (𝐵 ↔  𝐴) 

is true for all interpretation 𝑣  in 𝐿.Hence  ⊨ (𝐵 ↔  𝐴).  

3.The logically equivalent relation ⟺ is transitive relation. I.e. If 𝐴 ⟺ 𝐵  and 

𝐵 ⟺ 𝐶, then  𝐴 ⟺ 𝐶, ∀ 𝐴, 𝐵, 𝐶 ∈ 𝑆. It easy verify ⊨ (𝐴 ↔  𝐵) ∧ (𝐵 ↔  𝐶) →
(𝐴 ↔  𝐶) and deduce that ⊨ (𝐴 ↔  𝐶). So 𝐴 ⟺ 𝐶. From the above argument the 

logically equivalent relation is an equivalence relation on 𝑆 . 

 

Definition 2.1.12.   Consider a set  𝑆 = {𝑝: 𝑝 is a wff} of all wffs. Define the 

logically implies relation ⟺ on 𝑆 as follows: A ⟹ 𝐵 Iff  ⊨ 𝐴 ⟶  𝐵. 

 

Theorem 2.1.13. The logically implies relation ⟹ is an ordering relation on 𝑆. 
 

2.1.1 Ordering of Propositional Logic System (OPLS) 

 

Definition 2.1.1.1 Consider a set  𝑆 = {𝑝: 𝑝 is a wff} of all wffs. Define the 

logically implies relation ⟺ on 𝑆 as follows: A ⟹ 𝐵 Iff ⊨ 𝐴 ⟶  𝐵. 

 

Theorem 2.1.1.2. The logically implies relation ⟹ is an ordering relation on 𝑆. 
 

Proof. Similar argument in theorem 2.1.11..   

 

Definition 2.1.1.3. Let 𝑆 = {𝐴: 𝐴 is a 𝐰𝐟𝐟 } be set of all wffs and ⟺ is an 

equivalence relation on 𝑆. Consider the quotient set  Γ = 𝑆
⟺⁄ = {[𝐴]: 𝐴 ∈ 𝑆}, 

where [𝐴] = {𝐵 ∈ 𝑆: 𝐵 ⟺ 𝐴} is the set of equivalence class. Define a binary 

relation 𝐵 on  Γ as following: 𝐴 ⟹ 𝐵 iff [𝐴] ≤ [𝐵]. 
 

Theorem 2.1.1.4. The order pair (Γ, ≤) is total order set. 

 

Proof. Firstly, show that the relation is will-defined. Suppose that [𝐴] = [𝐴′] and 
[ 𝐵] = [𝐵′]where [𝐴] ≤ [𝐵]. Since [𝐴] = [𝐴′],implies that 𝐴 ⟺ 𝐴′  and [ 𝐵] =
[𝐵′], implies that 𝐵 ⟺ 𝐵′. Also we have [𝐴] ≤ [𝐵], therefore 𝐴 ⟹ 𝐵, hence 

𝐴′ ⟹ 𝐵′ ,consequently, [𝐴′] ≤ [𝐵′]. Hence the relation  ≤ is well-defined. 

Secondly, to show that ≤ is total order relation on Γ. 
1.The relation ≤ is reflexive, because [𝐴] ≤ [𝐴] iff  𝐴 ⟹ 𝐴 iff ⊨ 𝐴 ⟶  𝐴. 
2.The relation ≤ is antisymmetric. Assume that [𝐴] ≤ [𝐵] and [ 𝐵] ≤ [𝐴]for all 
[𝐴], [𝐵] ∈ Γ. Now, [𝐴] ≤ [𝐵] ∧ [ 𝐵] ≤ [𝐴] → [𝐴] ⟺ [𝐵] iff  (𝐴 ⟹ 𝐵 ∧ 𝐵 ⟹
𝐴) → [𝐴] ⟺ [𝐵] iff   ⊨ (𝐴 → 𝐵 ∧ 𝐵 → 𝐴) → 𝐴 ↔ 𝐵. 

3.The relation ≤ is transitive. Assume that [𝐴] ≤ [𝐵] and [ 𝐵] ≤ [𝐶]for all 

[𝐴], [𝐵], [𝐶] ∈ Γ.  [𝐴] ≤ [𝐵] ∧ [ 𝐵] ≤ [𝐶] → [ 𝐴] ≤ [𝐶] iff   𝐴 ⟹ 𝐵 ∧ 𝐵 ⟹ 𝐶 →
𝐴 ⟹ 𝐶  iff   ⊨ (𝐴 → 𝐵 ∧ 𝐵 → 𝐶) → (𝐴 → 𝐶).  
4.we see that [𝐴] ≤ [𝐵] ∨ [ 𝐵] ≤ [𝐴] iff 𝐴 ⟹ 𝐵 ∨ 𝑩 ⟹ 𝐴 iff ⊨ 𝐴 → 𝐵 ∨ 𝑩 → 𝐴. 

From pervious condition the relation  ≤ is total order relation on Γ. Hence (Γ, ≤)  
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is a total order set . 

 

 

2.2 Deduction of Propositional Logic System (DPLS) 

 

Definition 2.2.1. Let 𝐵 = {𝛼𝑖: 𝛼(wff), 𝑖 = 1,2, … , 𝑛} be set of all finite sequences 

of wffs (premises) and Consider 𝐵1 = {𝛽: 𝛽(wff)}  the set of conclusion derived 

from premises. A rule of inference is a mapping that maps asset (possibly empty) 

of wff  𝛼1, 𝛼2, … , 𝛼𝑛 into a wff 𝛽. It is written as follows: 

 

𝛼1 

𝛼2 

     ⋮ 
       𝛼𝑛 

                                                       𝛽 

 

Remark. We will use the following abbreviation for some words, namely. Premises 

[pre], Assumption[Ass], Elimination [E] and Introduction [I}. For more information 

about The rules of inference of propositional logic see [7,18,20,21,22,24]. Any 

assumption used in a proof must be discharged. The following methods are used to 

discharged assumption in natural deduction of propositional logic. 

i. The assumption 𝐴 is made an antecedent of a conditional  𝐴 → 𝐵. 
ii. The assumption 𝐴 leads to a contradiction 0, then ¬𝐴 is considered. 

iii. Assumption used as in the rule  ∨ − Elimination (∨ −𝐸). 

 

 

Definition 2.2.2.  Let 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛, ∴ 𝐵 be an argument form, we say that the 

conclusion  𝐵is deducible from the premises 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛 if there is a finite 

sequence of wffs such that: 

i. Each wff either belong to {𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛} or is derived from pervious 

wffs in by an inference rules. 

ii. The last wff of the sequence is 𝐵. The finite sequence of wffs is called 

natural deduction(proof) in 𝐿. This is denoted by: 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛 ⊢
𝐵(this is called sequent). 𝐵 is called a theorem in 𝐿, if ⊢ 𝐵. 

 

 

Definition 2.2.3.  𝐴 and 𝐵 are called provably equivalent if  𝐴 ⊢ 𝐵 and 𝐵 ⊢ 𝐴, this 

denoted by 𝐴 ⊣⊢ 𝐵. 
To illustrate the above definitions and how to applied the deduction in  𝐿 and 

inference rule we will prove the following theorem. 

 

 

Theorem 2.2.4. Prove that Demorgan's theorem are   provably equivalent. I.e. 

 ¬(𝐴 ∧ 𝐵) ⊣⊢ ¬𝐴 ∨ ¬𝐵. 
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Proof. ¬𝐴 ∨ ¬𝐵 ⊢ ¬(𝐴 ∧ 𝐵). 

Line # wff Reason  

1. ¬𝐴 ∨ ¬𝐵 Pre  

2. 𝐴 ∧ 𝐵 Ass  

3. ¬𝐴 Ass  

4. 𝐴 2,∧ −𝐸  

5. 0 3,4, ¬ − 𝐸  

6. ¬𝐵 Ass   

7. 𝐵 2,∧ −𝐸  

8. 0 6,7, ¬ − 𝐸  

9. 0 1,3,5,6,8,∨ −𝐸 Discharge 3,6. 

10. ¬(𝐴 ∧ 𝐵) 2,9, ¬ − 𝐼 Discharge 2. 

 Conversely, ¬(𝐴 ∧ 𝐵) ⊢ ¬𝐴 ∨ ¬𝐵. 

Line # wff Reason  

1. ¬(𝐴 ∧ 𝐵) Pre  

2. ¬(¬𝐴 ∨ ¬𝐵) Ass  

3. ¬𝐴 Ass  

4. ¬𝐴 ∨ ¬𝐵 3,∨ −𝐼  

5. 0 2,4, ¬ − 𝐸  

6. ¬¬𝐴 3,5, ¬ − 𝐼  Discharge 3. 

7. 𝐴 6, 𝐷𝑁  

8. ¬𝐵 Ass  

9. ¬𝐴 ∨ ¬𝐵 8,∨ −𝐼   

10. 0 2,9, ¬ − 𝐸  

11. ¬¬𝐵 8,10, ¬ − 𝐼 Discharge 8. 

12. 𝐵 11, 𝐷𝑁  

13. 𝐴 ∧ 𝐵 7,12,∧ −𝐼  

14. 0 1,13, ¬ − 𝐸  

15. ¬¬(¬𝐴 ∨ ¬𝐵) 2,14, ¬ − 𝐼 Discharge 2. 

16. ¬𝐴 ∨ ¬𝐵 6, 𝐷𝑁.  

 

We deduced that Demorgan's theorem are   provably equivalent . 

 

Theorem 2.2.5.  

i. 𝐴 ⊢ 𝐵 iff  ¬𝐵 ⊢ ¬𝐴. 

ii. 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛 ⊢ 𝐴 → 𝐵 iff 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛, 𝐴 ⊢ 𝐵. 
iii. 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛 ⊢ 𝐵 iff  𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛, ¬𝐵 ⊢ 0. 
iv. 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛 ⊢ 𝐵 iff (𝐴1 ∧ 𝐴2 ∧ 𝐴3 ∧ … ∧ 𝐴𝑛) → 𝐵. 

 

Definition 2.2.6. A system 𝑺 of inference rules is called sound, if 

𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛 ⊢ 𝐵, implies that 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛 ⊨ 𝐵. 
 

Definition 2.2.7.  A system 𝑺 of inference rules is called complete, if 

𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛 ⊨ 𝐵. implies that 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛 ⊢ 𝐵. 
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Theorem 2.2.8. [7] The system of natural inference rules of propositional logic is 

both sound and complete. i.e.; 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛 ⊢ 𝐵 iff 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛 ⊨ 𝐵. 
 

Corollary 2.2.9. ⊢ 𝐵 iff ⊨ 𝐵. Notice that we get in particular; i. 𝐴 ⊢ 𝐵 iff  𝐴 ⟹ 𝐵 

and ii. 𝐴 ⊣⊢ 𝐵 iff  𝐴 ⟺ 𝐵. 
 

Corollary 2.2.10. ⊢ 𝐵 iff ⊨ 𝐵. Notice that we get in particular; i. 𝐴 ⊢ 𝐵 iff  𝐴 ⟹
𝐵 and ii. 𝐴 ⊣⊢ 𝐵 iff  𝐴 ⟺ 𝐵. 
 

Definition 2.2.11. A System of logic 𝑺 is called consistent, if there is now wff 𝐴 

such that both ⊢ 𝐴 and ⊢ ¬𝐴. 

 

Definition 2.2.12. A System of logic 𝑺 is called complete, if for any wff   𝐴,  we 

have either ⊢ 𝐴 or ⊢ ¬𝐴. 

 

Definition 2.2.13. A System of logic 𝑺 is called decidable, if   there is an effective 

method (algorithm) for deciding given any wff  𝐴   of  𝑺, whether or not   ⊢ 𝐴  . 

 

Theorem 2.2.15. [15] Propositional calculus is consistent, incomplete and 

decidable.  
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