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Abstract

The star-like finite semigroup αω∗n is a new classical transformation

semigroup. This current paper standardize the co-existence relations of

some operator algebras and transformation semigroup. The multiplica-

tive invertibility characterization of cyclicpoid transformation CyPω
∗
n

on this new class of transformation semigroup establishes a major link

between the group theory and semigroup theory together with func-

tional analysis theory.
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1 Introduction

Given any bijective partial star-like transformation α∗i of n having the set

{1, 2, . . . n} both as its domain and codomain, its cardinality is n!. So for any

1Corresponding author
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integer i ∈ {1, 2, . . . n} there exists exactly one integer j ∈ {1, 2, . . . n} for

which α∗i (j) = i. The determinant function of a star-like matrix space is a

unique partial rule, | · | : M∗
n×n(F n) −→ F n that is linear in the rows of the

matrix, we observe that its zero when the matrix space is not invertible, and

such that |I∗n| = 1 then:

det(α∗i ) =
n∑

α∗
i∈CyPω∗

n

(α∗i )a1, α
∗
i (1)a2, α

∗
i (2)a3 . . . , α

∗
i (n)an (1)

Any finite cyclicpoid partial transformation CyPω
∗
n is said to be star-like if

|α∗ki − wi+1| ≤ |α∗ki+1 − wi| (2)

for all wi ∈ D(α∗) and ki ∈ I(α∗) such that

CyPω
∗
n =

(
w1 w2 . . . wi
α∗k1 α∗k2 . . . α∗ki

)
(3)

where i ∈ N ∪ {0} ∈ R where ∅ is assume to be zero for all α∗ in CyPω
∗
n

Factorization of assertion about the relationships that exist between metric

spaces, normed linear spaces, and inner product spaces was made by [5]. In

the study of [7] they shown that ω − OCPn ∈ Mm(N) is differentiable such

that T (t) is an exponentially bounded one parameter semigroup generated by

matrix Mn(N) for some A ∈ ω −OCPn. Matrix factorization was used by [3]

to characterize invertible matrices. The Hannming distance function was used

by [1] to show that a mapping is a linear transformation in semigoup such that

any transformation semigroup is metricizable. Thus, this paper establishes

that any given star-like transformation is invertible and it is a cyclicipoid. For

the fact that in linear algebra the expression of a matrix as the product is a

general method for solving system of equations, we characterize multiplicative

invertibility on CyPω
∗
n. We refer to [4] and [2] for a general introduction to

semigroup theory. Also, for introductory functional analysis with application

to algebra we refer to [6], [8] and [9]

2 Preliminary Notes

We give some basic preliminaries that we shall need in the later section:

Definition 1: Star-like Semigroup. Let Xn = {1, 2, 3, . . .} be finite n

order non-negative integers, then a finite semigroup is said to be star-like if

|α∗ki−wi+1| ≤ |α∗ki+1−wi| such that N∪{0} ∈ R for all ki, wi ∈ αω∗n then αω∗n
must satisfies the following axiomatic properties: (i) 0α∗ = 0 (positivity), (ii)
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α∗e∗ = e∗α∗ (identity), (iii) α(k+w)∗ = αk∗+αw∗ for all w ∈ D(α∗)(linearity),

(iv) g−1∗(β∗) = α∗, for all α∗, β∗ ∈ αω∗n, (v) f(α∗) ≤ I(α∗), for all α∗ ∈ αω∗n
Definition 2: Star-like Partial Monogenic Invertible Semigroup. Given

any star-like finite semigroup αω∗n is a partial monogenic invertible CyPω
∗
n if

there exist a star-like generator β∗ ∈ αω∗n:

βq∗ :
{
α−1∗ = β−1∗ ⇐⇒ α−1∗ = β−1∗α−1∗β−1∗;α∗, β∗ ∈ CyPω∗n

}
where N ∪ {0} ∈ R and ∅ is assume to be zero such that CyPω

∗
n satisfies the

following axiomatic properties: (i) 0β−1∗ = 0 (positivity), (ii) if βq∗ = ∅, αn∗ =

α∗ then α−1∗ = β−1∗ (Nildempotency), (iii) g−1∗(β∗) = α∗, then g−1∗(α∗) = β∗,

for all α∗, β∗ ∈ CyPω∗n, (iv) β(k+w)∗ = βk∗ + βw∗ for all w ∈ D(β∗)(linearity),

(v) f(α∗) ≤ I(β∗), for all α∗, β∗ ∈ CyPω∗n
Definition 3: Cyclicpoid. A cyclicpoid is a set G∗cy in CyPω

∗
n with a unary

operation (−1) : G∗cy −→ G∗cy and a star-like partial function (·) : G∗cy×G∗cy −→
G∗cy that satisfy the following axiomatic properties for all α∗, β∗, γ∗ ∈ CyPω∗n:

(i) If α∗ · β∗ and β∗ · γ∗ are defined, then (α∗ · β∗) · γ∗ and α∗ · (β∗ · γ∗) are

defined and are equal, (ii) α−1∗ ·α∗ and α∗ ·α−1∗ are defined for any β∗ in αω∗n,

(iii) if α∗ · β∗ is defined then α∗ · β∗β−1∗ = α∗ and α−1∗ · α∗ · β∗ = β∗. From

these axioms (i - iii), if β∗ is a generator such that β∗ ∈ CyPω∗n, two easy and

convenient properties follows: (iv) If βm∗ = βp∗ =⇒ m = p ; (β−1∗)−1 = β∗,

(v) ∃ m 6= p : βm∗ = βp∗ where α∗ · β∗ is defined then (α∗ · β∗)−1 = β−1∗ · α−1∗

3 Main Results

Theorem 1: For any given star-like transformation α∗ ∈ CyPω∗n the following

axiomatic must hold: (i) 0α∗ = 0 for all α∗, 0 ∈ CyPω∗n, (ii) if eα∗ = α∗e = α∗

then g−1(α∗) = β∗, (iii) α∗β∗ = αγ∗ =⇒ β∗γ∗ for all α∗, β∗, γ∗ ∈ CyPω∗n, (iv) if

α∗β∗ = β∗α∗, then there exist c ∈ R : α∗β∗ = c(α∗+ γ∗) for all α∗, β∗, γ∗ ∈ V ∗

Proof: Let α∗ =

(
w1 w2 . . . wn
k1 k2 . . . kn

)
, β∗ =

(
w1 w2 . . . wn
q1 q2 . . . qn

)
, and

γ∗ =

(
w1 w2 . . . wn
l1 l2 . . . ln

)
for all α∗, β∗, γ∗ ∈ CyPω∗n

(i) it is obvious for any star-like transformation semigroup: α∗β∗ ∈ CyPω
∗
n

then 0α∗ = 0 for all α∗CyPω
∗
n in N ∪ {0} ∈ R

(ii) suppose eα∗ = α∗e = α∗ then g−1(α∗) = β∗, since CyPω
∗
n is a monoid

star-like abelian semigroup with ∅ in N ∪ {0} ∈ R then eα∗ = α∗ or α∗e = α∗

for all α∗, e ∈ CyPω∗n there exist at most one identity e ∈ CyPω∗n such that

α∗β∗ = e⇐⇒ β∗α∗ = e

⇐⇒ β∗ = α−1∗. Thus, g−1(α∗) = β∗
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(iii) if α∗β∗ = α∗γ∗ =⇒ β∗ = γ∗ and

β∗α∗ = γ∗α∗ =⇒ β∗ = γ∗ for all α∗, β∗, γ∗ ∈ CyPω∗n.

Indeed α∗β∗ = α∗γ∗ =⇒ α−1∗(α∗β∗) = α−1∗(α∗γ∗)

implies (α−1∗α∗)β∗ = (α−1∗α∗)γ∗ =⇒ eβ∗ = eγ∗ =⇒ β∗ = γ∗

similarly, β∗α∗ = γ∗α∗ =⇒ β∗ = γ∗ for all α∗, β∗, γ∗ ∈ CyPω∗n then, β∗α∗ =

γ∗α∗ =⇒ β∗α∗(α−1∗) = γ∗α∗(α−1∗) implies β∗(α∗α−1∗) = γ∗(α∗α−1∗) =⇒
β∗e = γ∗e. Therefore, α∗β∗ = α∗γ∗

(iv) suppose α∗β∗ = β∗α∗, there exist real number c ∈ R:c(α∗+γ∗) = cα∗+cγ∗.

We consider some elements α∗ =

(
1 2

1 2

)
, β∗ =

(
1 2

2 2

)
then by definition

(1) we have α∗β∗ = β∗α∗ =

(
1 2

2 2

)
hence, for any c ∈ R : α∗β∗ ∈ CyPω∗n

in N ∪ {0} ∈ R there exist γ∗ =

(
1 2

1 ∅

)
such that

c

((
1 2

1 2

)
+

(
1 2

1 ∅

))
= c

((
1 2

1 2

))
+ c

((
1 2

1 ∅

))
=

(
1 2

2 2

)
now, we see that c(α∗ + γ∗) = β∗α∗ (if c = 1 = D(α∗orγ∗)) which gives linear

combination in CyPω
∗
n

Theorem 2: Let m be the index and p the period of an element β∗ ∈ CyPω∗n,

then Kβ∗ = {βm∗, β(m+1)∗ , β(m+2)∗ . . . β(m+p−1)∗} if and only if β∗ ∈ CyPω∗n is

cyclicpoid (CyPω
∗
n contain a subsemigroup that is a group) and CyPω

∗
n is a

star-like semigroup.

Proof

=⇒ we need to show that:

(i) Kβ∗ is closed under operation in CyPω
∗
n

(ii) Kβ∗ has unique identity

(iii) For any element of Kβ∗ , there exist its inverse for which their product is

also in Kβ∗ . By definition (3), we see that there exists a star-like monogenic

semigroup of every |Kβ∗ | = p (period) and βm∗ = βx∗ (index) of Kβ∗ . Indeed

lets consider the element:

β∗m,p =

(
1 2 3 . . . m m+ 1 . . . m+ p− 1 . . . m+ p

2 3 4 . . . m+ 1 m+ 2 . . . m+ p . . . m+ 1

)
(4)

with a rule Tm+p : m + p −→ m + p which take from a m + p element into

itself, for some positive integers m, p. The second row in equation (4) tells

us what is ascribed to the element above it. The element β∗ generates the

star-like CyPω
∗
n monogenic semigroup of index m and period p such that β∗ is

cyclicpoid. So let see what it looks like for m = 7 and p = 14:

|CyPω∗3| = β∗7,14 =

(
1 2 3

3 3 ∅

)
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The diagraph of β∗ looks like this:

Figure 1: star-like monogenic order of small n(CyPω
∗
3)

The cycle in the diagraph of Figure (1) is the representation of the cyclicpoid

generated by a certain elements one of {β14∗, β15∗, β16∗, β17∗, β18∗, β19∗, β20∗, β21∗}.
Now, suppose there exist an identity element e ∈ Pω∗n : CyPω

∗
n ⊆ Pω∗n which

idempotent (that is e2 = e) for all e ∈ Pω∗n. We consider:

(β7+k)2 = β7+k (5)

for k ∈ {0, 1, 2, . . . 7}. We see from Figure (1) that equation (5) is equivalent to:

2(7+k) ≡ 7+k mod 8 =⇒ k ≡ −7 mod 8 so k = 7 and we get that β7+7 = β14

represent the idempotent sets in CyPω
∗
n which is the only idempotent contained

in the cycle. It is now a matter of a simple check to see that it is indeed

an identity element in {β14∗, β15∗, β16∗, β17∗, β18∗, β19∗, β20∗, β21∗}. We need to

show that for every k ∈ {0, 1, 2, . . . 7}, there is l ∈ {0, 1, 2, . . . 7} such that

β7+k · β7+l = β14 (6)

Again, we see that equation (6) is equivalent to: 7 + k+ 7 + l ≡ 14mod 8 =⇒
l ≡ −k mod 8. We have shown that Kβ∗ is a subsemigroup of CyPω

∗
n which is

a group. But we need to show also, that Kβ∗ is monogenic (cyclic) by which

we find a generator g ∈ {0, 1, 2, . . . 7} such that for any k ∈ {0, 1, 2, . . . 7} there

exists l ∈ {0, 1, 2, . . . 7} : (β7+g)l = β7+k then l(7 + g) ≡ 7 + k mod 8 =⇒
7 + g ≡ 1 mod 8

Which is obviously exists in the set {β14∗, β15∗, β16∗, β17∗, β18∗, β19∗, β20∗, β21∗}
Thus, Kβ∗ is cyclicpoid

Conversely, ⇐=

since CyPω
∗
n is a subsemigroup of Pω∗n then by theorem (1) we have that

CyPω
∗
n is a star-like semigroup. Therefore, CyPω

∗
n is a cyclicpoid star-like

partial transformation semigroup.

Proposition 3: If α∗ is an invertible star-like matrix space, then the linear

system α∗
→
z =

→
b has a unique solution given by

→
z = α−1∗

→
b
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Proof

To establish the existence of the solution, we consider;

α∗(α−1∗
→
b ) = (α∗α−1∗)

→
b = I∗n

→
b =

→
b

So α−1∗
→
b is a solution. We see that for any solution

→
w:

→
w = I∗n

→
w = (α∗α−1∗)

→
w = α−1∗(α∗

→
w)

= (α∗α−1∗)
→
b

Lemma 4: Let CyPω
∗
n be star-like cyclicpoid invertible semigroup, such that

m of V ∗ ∈ CyPω∗n(n, F ), then det(m) 6= 0 if and only if m is star-like invertible

matrix space.

Proof

Suppose m is a star-like invertible matrix space, Let α∗1, α
∗
2, α

∗
3, . . . in m are

sub star-like vectors then,
mα∗1
mα∗2
mα∗3

...

mα∗n


T

= M∗
n×n∗(F n)

where m =


α∗11 α∗12 α∗13 . . . α∗1n
α∗21 α∗22 α∗23 . . . α∗2n
α∗31 α∗32 α∗33 . . . α∗3n

...
...

...
. . .

...

α∗n1 α∗n2 α∗n3 . . . α∗nn

 , I∗n =


e 0 0 . . . 0

0 e 0 . . . 0

0 0 e . . . 0
...

...
...

. . .
...

0 0 0 . . . e


such that [m : I∗n] =⇒ [I∗n : m−1]., we transform m to a star-like triangular

matrix space to find det(m):

m =


α∗11 α∗12 α∗13 . . . α∗1n
0 α∗22 α∗23 . . . α∗2n
0 0 α∗33 . . . α∗3n
...

...
...

. . .
...

0 0 0 . . . α∗nn

, thus det(m) = α∗i 6= 0

conversely, suppose [m : I∗n] =⇒ [I∗n : m−1] then


mα∗1
mα∗2
mα∗3

...

mα∗n


T

6= 0 , we have
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m−1 = Adj(m)T

|m| ,

such that [m : I∗n] =



α∗11 α∗12 α∗13 . . . α∗1n
... e 0 0 . . . 0

α∗21 α∗22 α∗23 . . . α∗2n
... 0 e 0 . . . 0

α∗31 α∗32 α∗33 . . . α∗3n
... 0 0 e . . . 0

...
...

...
. . .

...
...

...
...

...
. . .

...

α∗n1 α∗n2 α∗n3 . . . α∗nn
... 0 0 0 . . . e



implies [I∗n : m−1] =



e 0 0 . . . 0
... α∗11 −α∗21 −α∗31 . . . −α∗n1

0 e 0 . . . 0
... −α∗12 α∗22 −α∗32 . . . −α∗n2

0 0 e . . . 0
... −α∗13 −α∗23 α∗33 . . . −α∗n3

...
...

...
. . .

...
...

...
...

...
. . .

...

0 0 0 . . . e
... −α∗1n −α∗2n −α∗3n . . . α∗nn


.

Thus, m is star-like invertible.

Proposition 5:

Let α∗, β∗ ∈M∗
n×n∗(F n), then α∗ · β∗ is invertible, if β∗ is invertible

Proof

Suppose that β∗ is not invertible, then the linear transformation Lβ∗ : F n −→
F n, Lβ∗(z) = β∗z is then not invertible as the matrix space representation

of Lβ∗ is not invertible. However, since it is a linear transformation and the

domain and co-domain of α∗ and β∗ are each of the same finite dimensions,

its follows that Lβ∗ is not injective and not surjective. As Lβ∗ is not injective

there exists some z ∈ F n where Lβ∗(z) = β∗z = 0 ; z 6= 0, then if β∗z = 0 we

have

[(α∗ · β∗)−1]α∗ · β∗ = [(α∗ · β∗)−1α∗] · 0

implies z = 0 which is a contradiction. But by theorem (2) we deduced that

det(α∗ · β∗) 6= 0 such that z ∈ det(α∗ · β∗) where det(α∗) and det(β∗) are non-

zero. If α∗[β∗(α∗ · β∗)−1] = I∗n (I∗n is a star-like unit vector)

then (α∗ · β∗)−1α∗ · β∗ = I∗n =⇒ (α∗ · β∗)−1∗α∗β∗ · β−1∗ = β−1∗ = (α∗ · β∗)−1∗α∗
if we multiply both sides by β∗, we get [β∗(α∗ · β∗)−1]α∗ = I∗n.

Thus β∗ is invertible.

Lemma 6:

Let Pω∗n be a star-like partial semigroup, and let λ∗ ∈ Pω∗n be a partial star-

like bijective function, then λ∗ has at least one inverse.

Proof

suppose λ∗ is a partial function, λ∗ : R −→ R which we define as λ∗(z) = 2z.

If λ∗(z) = 2z is onto, then there exist some real value c ∈ N∪ {0} ∈ R so that
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there is no other real value of z for equation (7):

λ∗(z) = 2z = c (7)

taking log2 on both sides, we get

z = log2 c (8)

since c > 0, there is a real, defined value of z which contradict the condition

in equation (7). Thus λ∗ is onto.

Now, we need to prove that λ∗ is one-one.

Then, by contradiction principle we assume λ∗ many-one so that we consider

λ∗ ∈ Pω∗n =

(
1 2 3

2 2 2

)
such that we can take two real value z1, z2 ∈ N ∪ {0} ∈ R where z1 6= z2 with

λ∗(z1) = λ∗(z2) : 2z1 = 2z2 =⇒ 2z1−z1 = 1

=⇒ z1 − z2 = 0

=⇒ z1 = z2
since z1 = z2 we see that our assumption is incorrect, thus λ∗ is one-one. Con-

sequently, λ∗ is a bijective partial star-like function since it is both one-one

and onto, then we can find the inverse, such that we take c = λ∗(z) and then

interchange z and c to get z = 2c implies log2(z) = c. Therefore the inverse

function of λ∗(z) is λ∗(z) = log2 z.

Theorem 7:

Given any α∗i , β
∗
j and γ∗k in M∗

n×n∗(F n) matrix space, the following are equiv-

alent:

(sa1) the matrix space α∗i is star-like

(sa2) the matrix space β∗j is cyclicpoid

(sa3) the matrix space γ∗k is star-like invertible

(sa4) there is an (n× n)-matrix space β∗j : β∗j · α∗i = I∗n
(sa5) there is an (n× n)-matrix space γ∗k : α∗i · γ∗k = I∗n
(sa6) the matrix space αT∗i is star-like invertible

(sa7) for all
→
b∈ F n, the linear system α∗i

→
z=
→
b has a unique solution

(sa8) for all
→
b∈ F n, the linear system α∗i

→
z=
→
b is consistent

(sa9) the homogenous linear system α∗i
→
z=
→
0 has only one solution

(sa10) the reduced row echelon form of any α∗i , β
∗
j and γ∗k in M∗

n×n∗(F n) is the

star-like identity matrix space I∗n
(sa11) the matrix space β∗j is a product of cyclicpoid class

(sa12) the rank of the any matrix space α∗i , β
∗
j and γ∗k in M∗

n×n∗(F n) is n

(sa13) the rows of any matrix space α∗i , β
∗
j and γ∗k in M∗

n×n∗(F n) are linearly
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independent

(sa14) the columns of any matrix space α∗i , β
∗
j and γ∗k in M∗

n×n∗(F n) are linearly

independent

(sa15) the rows of any matrix space α∗i , β
∗
j and γ∗k in M∗

n×n∗(F n) span Rn

(sa16) the columns of any matrix space α∗i , β
∗
j and γ∗k in M∗

n×n∗(F n) span Rn

Proof

sa1 =⇒ sa2: if α∗i ∈M∗
n×n∗(F n) is star-like, then there exist β∗j ∈M∗

n×n∗(F n) :

(β−1∗j )−1 = β∗j ; β
m∗
j = βp∗j , if m = p and (α∗j · β∗j )−1 = β−1∗j · α−1∗j ; βm∗j = βp∗j if

m 6= p

sa1 ⇐⇒ sa2 ⇐⇒ sa3: if α∗i ∈M∗
n×n∗(F n) is invertible then the transformation

β∗j := α−1∗i

sa3 ⇐⇒ sa4 ⇐⇒ sa5: if α∗i ∈M∗
n×n∗(F n) is invertible then the transformation

γ∗k := α−1∗i

sa1 ⇐⇒ sa6: the of star-like invertible matrix space include

(α−1∗i )T = (α∗Ti )−1; so the matrix space α∗i is invertible if and only if matrix

space α∗Ti is also invertible

sa4 =⇒ sa7: suppose that α∗i · β∗j = I∗n;

if
→
w∈M∗

n×n∗(F n) is a solution to α∗i
→
z=
→
b , then it follows that

→
w = I∗n

→
w = (β∗j · α∗i )

→
w = β∗j (α

∗
i

→
w) = β∗j (α

∗
i

→
b )

sa5 =⇒ sa8: if α∗i γ
∗
k = I∗n; then we see that α∗i (γ

∗
k

→
b ) = (α∗i γ

∗
k)
→
b =

→
b

so, the vector space γ∗k
→
b∈M∗

n×n(F n) is a solution to the linear system α∗i
→
z=
→
b

sa8 ⇐⇒ sa10 ⇐⇒ sa12 ⇐⇒ sa15: since α∗i ∈ M∗
n×n∗(F n) is a square matrix

space, the characterizations of universal consistency of the augmented matrices

establishes these equivalences.

sa7 =⇒ sa9: since α∗i ∈ M∗
n×n∗(F n) is a cyclicpoid, then there exist a unique

solution in the spacial case
→
b =

→
0

sa9 ⇐⇒ sa10 ⇐⇒ sa12 ⇐⇒ sa13: since α∗i ∈ M∗
n×n∗(F n), then the characteri-

zations of a unique solution prove the equivalences.

sa10 =⇒ sa11: this equivalence follows from the generalization of star-like

cyclicpoid classes as its both right and left multiplicative

sa11 ⇐⇒ sa3 ⇐⇒ sa1: since every cyclicpoid G∗cy(α
∗
i ) classes are star-like, and

invertible, the properties of invertible matrices space show that α∗i is invertible.

sa6 ⇐⇒ sa14: since we have already established that ′sa′6 is equivalent to ′sa′13,

the transpose version also holds.

sa6 ⇐⇒ sa16 ⇐⇒ sa1: since we have already also established that ′sa′3 equiv-

alent to ′sa′15, the transpose version also holds. Alternatively, Figure (2) gives

the structural illustration of the proof (theorem 7) of the multiplicative in-

vertibility characterization of star-like cyclicpoid CyPω
∗
n transformation semi-

groups:
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Figure 2: Multiplicative Invertibility Characterization of CyPω
∗
n

4 Concluding Remarks.

Remark 1:

If the hypothesis of periodicity is neglected then we can no longer guarantee

the existence of idempotent in any given star-like cyclicpoid semigroup.

Remark 2:

The characterization of invertible matrix space shows that any star-like trans-

formation α∗i , β
∗
j and γ∗k in M∗

n×n∗(F n) is invertible if and only if its reduced row

echelon form equals the star-like identity matrix space I∗n. Therefore if CyPω
∗
n

is a product of cyclicpoid class G∗cy such that G∗cy(α
∗
i ) = I∗n then G∗cy(β

∗
j ) = β−1∗j
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