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Abstract 

 

Conventional expositions of the Pythagorean theorem generally lack any need for 

common toys, although it is common in vast areas of mathematics, engineering, and 

sciences. Since this theorem is usually mastered by many children, this article 

connects it to a childhood toy, the yo-yo. As the yo-yo revolves, the points on its 

string may appear to sweep rings, involutes, or circles, depending on viewpoints. 

The equivalency among these viewpoints, exposes equivalency between sums of 

circles and rings, proving the fundamental equation of the Pythagorean theorem. 

Like other alternative methods, this unusual interpretation of the old theorem could 

help instructors maintain critical thinking among the young, utilizing their usual 

toys, and prepare them for more unusual applications.   
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1. Introduction 
 

The namesake theorem attributed to Pythagoras of Samos is documented 

extensively since distant past [9, 10, 16-20, 35, 42, 45, 46]. This theorem is essential  
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for advanced users as well as young learners in not only geometry but also many 

other fields [11, 13, 14, 21-23, 28, 29, 36-39, 44, 53]. In spite of innumerable 

commonly known proofs and applications of this theorem [3, 4, 25, 32-34, 49-52], 

direct references to common toys used by children are not commonly reported. 

Frequent association with common objects is important for learners [7, 12, 24]. 

Therefore, here is another attempt based upon a simple, inexpensive, mechanical 

toy, the yo-yo [48], depicted in Figure 1. This exposition could be of interest for 

critical thinking, as this ordinary toy has certain extraordinary kinematic and 

dynamic features [15, 43]. 

 
Fig 1. Wireframe model of a childhood toy, the yo-yo.  

 

2. Setup 

 
Many yo-yos have two side caps permanently bonded to an axle [48]. Figure 2 

shows simplified features of a yo-yo. The smaller circle is the axle for partially 

winding a thin and flexible string GDB. The larger circle is the outer border of a 

side cap. These two coplanar and concentric circles share center C, and enclose an 

annular area. The string is coiled properly to have frictional grip around the axle. It 

is under some tension. Therefore, the portion GD is straight, free from any 

unconstrained bend or slack, and thereby tangential to the inner circle at the point 

of contact D. It intersects the outer circle at F. The angle CDF is a right angle and 

the side CF is the hypotenuse.  
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By the Pythagorean theorem, 

CF2  =  CD2  +  DF2 (1) 

Since the area of any circle is the square of its radius times the constant  [30, 41], 

equation (1) gives: 

 DF2 =  CF2  -   CD2 (2) 

Therefore, the Pythagorean theorem is proved when: 

Area of the circle of radius DF = Area of the annulus (3) 

 

 
Fig 2. String GDB crosses the outer circle at F and touches the inner circle at D. 

 

3. Traditional 

 
In Figure 2, following traditional methods [1, 2, 8, 26, 27, 40], the edges AC, EC, 

and FC are equal to each other, being the radius of the outer circle. Therefore, the 

angle CAF is equal to the angle CFA. Similarly, the angle CEF is equal to 

the angle CFE. The angles ADF and EDF are right angles. Therefore, the 

angle AFE is a right angle, and the triangles ∆EFD, ∆FAD are similar. The 

respective sides are proportional as follows: 
𝑫𝑭

𝑫𝑨
 =  

𝑫𝑬

𝑫𝑭
 (4) 

Now the circular areas get involved, when the equation (2) follows from (4): 

 DF2 =  DA * DE =  (AC+CD) * (AC-CD) =   CF2  -   CD2 (5) 
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Fig 3. Observing from a revolving yo-yo as the string slips around the axle. 

 

4. When the string may slip around the axle 

 
Two yo-yos of identical dimensions will be analyzed. The first yo-yo is shown in 

Figure 3. Here, the frictional grip between the string and the axle of the yo-yo is 

limited and the far end point G of the string is held at a fixed distance from the 

center C. When the string is taut, further turning of the yo-yo causes the string to 

slide over the axle. The point D of the string, remains and slides along the inner 

circle of the yo-yo. If this yo-yo is uniformly and monotonously turned by exactly 

one full rotation, then the straight part DF of the string must sweep all and only 

points of the annular area, between the inner and outer circles of the yo-yo, exactly 

once. From this viewpoint, at any instant, the rate of sweeping this annular area per 

revolution of the yo-yo is: 

 CF2  -   CD2 

 
Fig 4. If the string does not slip, any point on the string traces an involute.  
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Fig 5.  At the point F, the radius of curvature of the involute is DF. 

 

5. When the string may not slip around the axle 

 
The second yo-yo is shown in Figures 4 and 5. Here, the frictional grip between the 

string and the axle of the yo-yo is high enough to avoid any slips. The end point G 

of the string is supported by a small and limited tension. The string remains taut 

and gets progressively wrapped (or unwrapped) around the inner circle when the 

yo-yo is turned. Depending upon wrapping or unwrapping, the part DF of the string 

is not stationary, and the point D of the string moves away from the point of contact. 

Nevertheless, there is always a part of the string, say DF', delimited by the inner 

and outer circles, that is straight, equal to the length of DF, and occupying the 

original position of DF. If this yo-yo is uniformly and monotonously turned by 

exactly one full rotation, then the part DF' of the string must sweep all and only 

points of the annular area, between the inner and outer circles of the yo-yo, exactly 

once. From this viewpoint, at any instant, like the first yo-yo, the rate of sweeping 

the annular area per revolution of the second yo-yo is also: 

 CF2  -   CD2 

As shown in Figure 4, in the absence of any slips between the string and the axle, 

any point fixed on the unwrapped portion of the string traces an involute, relative 

to the inner circle. To be consistent with the definition of involutes [47], the radius 

of curvature at any point of this involute is equal to its tangential distance from the 

inner circle. As shown in Figure 5, the instantaneous motion of the point F on the 

string, relative to the annulus, must be along a circle with center D and radius DF 

[15, 43]. Consequently, whenever during wrapping or unwrapping, a point of the 

string crosses the outer circle, its instantaneous motion must be along a circle of 

radius DF. Relative to the axle, the instantaneous motion of the point D on the string 

is zero. Instantaneous motion of any point of the string within DF must preserve 

the length and straightness of DF and follow a circular path with center D. From 

these considerations, the rate of sweeping the annular area by the string per 

revolution of this yo-yo is: 

 DF2 
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Comparing synchronous motions of the two yo-yos, the rate of sweeping areas of 

the annulus and the circle must be the same, proving the equation (2). 

 

6. Conclusions 
 

This article showed that a mechanistic demonstration of the Pythagorean theorem 

can follow from a revolving yo-yo, naturally sweeping circular areas instead of 

squares. There are other similar examples where circles appear naturally linked to 

the Pythagorean theorem [3, 4, 31]. One obvious application is seen when analyzing 

circular symmetry of the Gaussian probability distribution in two dimensions [5, 6]. 
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