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Abstract

The research project has described the Euclidean Domains (ED), the

Principal Ideal Domain (PID) and the Unique Factorization Domain(UFD).

We find that there exists a Principal Ideal Domain (PID) which is not

an Euclidean Domain (ED). Every Principal Ideal Domain (PID) is a

Unique Factorization Domain (UFD). On other hand, it is not true that

every Unique Factorization Domain (UFD) is a PID. We use the con-

cept of the norm. In the end of the report, we discuss tensor product

of certain algebraic structures. We have tried to understand how the

tensor product behaves with the present of dual spaces.

1 Introduction

This research will introduce the notion of further algebraic structures and prove

the relationship between them. The research will describe the Euclidean Do-

main(ED) and the Principal Ideal Domain (PID). Moreover, we will talk about

the Unique Factorization Domain (UFD) then we will provide the relationship

between (ED), (PID) and (UFD). We give some counter example. At the end

of the section, we will study some of the properties of the tensor product see
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the ring R is the identity in tensor product operation on the category of R-

modules. We prove that. We know that dual module M∗ may or may not the

inverse of tensor product operation of modules.

2 Euclidean Domains

In this section, we shall study the Euclidean domain and give some examples.

In this section, the results is extracted from the references [2, 3].

Definition 2.1. A commutative ring with unity 1 6= 0 and no zero divisors is

called an integral domain.

We first define the notion of a norm on an integral domain.

Definition 2.2. A norm on the integral domain is defined as a function N :

R→ Z+ ∪ 0 with N(0) = 0.

where R is an integral domain and Z+ denote positive integer.

Definition 2.3. N is a positive norm if and only if N(a) > 0 for a 6= 0.

It may be possible for the same integral domain R to possess several dif-

ferent norms because of that we can say a norm is fairly weak.

Definition 2.4. An integral domain R is said to be Euclidean domain if there

exist ′d′ norm non zero element of R to non-negative integer, such that

• d(a) ≤ d(a, b) ∀a 6= 0 ∈ R.

• Let a ∈ R, a 6= b ∈ R then there exist R such that

a = qb+ r with r = 0 or d(r) < d(b).

Definition 2.5. Let R be an integral domain and a, b ∈ R with b 6= 0, the

Euclidean algorithm of Euclidean consisting of repeatedly applying division
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algorithm to a and b until we will get a remainder, as follows

a = q1b+ r1

b = q2r1 + r2

r1 = q3r2 + r3
...

rk−1 = qkrk + rk+1

rk = qk+1rk+1.

By division algorithm, we know that N (r1) > N (r2) > · · · , and since N (ri) is

a nonnegative integer for each i, this sequence must eventually terminate with

the last remainder equalling zero (else we would have an infinite decreasing

sequence of non negative integers).

Example 2.1. In an Euclidean Domain there are some trivial examples as

fields where any norm satisfies the defining condition (e.g., N(a) = 0 for all

a). This is because every a, b with b 6= 0 we have a = qb+ 0, where q = ab−1.

Example 2.2. The ring of integers Z is an Euclidean Domain with norm is

given by the absolute value N(a) = |a| . A Division Algorithm in Z is the

familiar ”long division” of elementary arithmetic and the existence of it is

verified as follows: Let a and b be two nonzero integers, then suppose first that

b > 0. The real line is divides by the half open intervals [nb, (n + 1)b), n ∈ Z,

so a is in one of them. We can say that a ∈ [kb, (k + 1)b). For q = k we have

a − qb = r ∈ [0, |b|) as needed. If b < 0, (so, − b > 0), Accordingly, there is

an integer q such that a = q(−b) + r with either r = 0 or |r| < |−b|. Then to

make it more formal we can use the induction on |a|.

Example 2.3. If F is a field, then the polynomial ring F [x] is an Euclidean

Domain with a norm given by N(P (X)) = the degree of P (x). The Division

Algorithm for polynomials is simply ”long division” of polynomials which may

be familiar with polynomials with the real coefficients. The proof is very similar

to that for Z. In the order for a polynomial ring to be an Euclidean Domain

the coefficients must come from a field since the division algorithm ultimately

rests on being able to divide arbitrary nonzero coefficients.
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3 Principal Ideal Domains (P.I.D.s)

In this section, we shall study the principal ideal domain and we shall study

the ideal structure of a ring and we prove that every ED is a PID and give

some examples. Additionally, we note that, it is not true that every PID is an

ED.

In this section, the results is extract from the references [2, 5].

Definition 3.1. Let X be a subset of a ring R. Let {Ai | iεI} be the family

of all [left] ideals in R which contain X. Then
⋂
i∈I
Ai is called the [left] ideal

generated by X. This ideal is denoted(X). The elements of X are called

generators of the ideal 〈X〉. If X = {x1, ..., xn}, then the ideal 〈X〉 is denoted

by 〈x1, x2, ..., xn〉 and said to be finitely generated. An ideal 〈x〉 generated

by a single element is called a principal ideal. A principal ideal ring is

a ring in which every ideal is principal. A principal ideal ring which is an

integral domain is called the principal ideal domain.

Proposition 3.1. Every Euclidean domain is PID.

Proof. Let R be ED and I ⊆ R be non zero ideal of R. Let a ∈ I, a 6= 0 be

an element of I such that d(a) is minimum in I. Consider I = 〈a〉, let b be an

arbitray element of I.

∵ b ∈ I ⊂ R and R is ED.

∴ ∃q, r such that b = aq + r where either r = 0 or d(r) < d(a).

∵ b ∈ I and −aq ∈ I.
⇒ r = b− aq ∈ I from minimality of d(a) we have d(a) < d(r).

Hence d(r) ≮ d(a).

⇒ r = 0.

⇒ b = aq.

Therefor I = 〈a〉 ∵ b is arbitray element of I.

Hence every ideal of R generated by singl element.

Proposition 3.2. Every ideal in an Euclidean Domain is principal. More

precisely, if I is any nonzero ideal in the Euclidean Domain R then I = 〈d〉,
where d is any nonzero element of I with minimum norm.

Proof. If I is the zero ideal, there is nothing to prove. Otherwise let d be

any nonzero element of I of minimum norm(such a d exists since the set

{N(a) | a ∈ 1} has minimum element by the Well Ordering of Z). Clearly
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〈d〉 ⊆ I since d is in element of I. To show the reverse inclusion let a be any

element of I and use the Division Algorithm to write a = qd + r with r = 0

or N(r) < N(d). Then r = a − qd and both a and qd are in I. So r also an

element of I. By the minimality of the norm of d, we see that r must be 0

Thus a = qd ∈ 〈d〉 showing I = 〈d〉.

Lemma 3.1. Let R be a ring, a ∈ R. The principal ideal 〈a〉 consists of all

elements of the form

ra+ as+ na+
m∑
i=1

riasi.

where r, s, ri, si ∈ R;m ∈ N∗; and n ∈ Z. The term ”principal ideal ring”

is sometimes used in the literature to denote what we have called a principal

ideal domain.

Proof. So I is a left ideal and, similarly, a ring ideal. With r = s = 0, n =

1,m = 1, r1 = 0 we see that a ∈ I. Now let I ′ be any ideal containing a. Then

ra ∈ I and ria ∈ I ′ since I ′ is a left ideal. So as and riasi ∈ I ′ since I ′ is a

right ideal. Next, na ∈ I ′ since I ′ is a subring of R (and so is closed under

addition). So ra + as + na +
∑m

i=1 riasi ∈ I ′ and I ⊆ I ′. That is a subset of

any ideal containing a, so I = 〈a〉.

Lemma 3.2. Let R be a ring, a ∈ R. If R has an identity(unity), then

〈a〉 =

{
n∑

i=1

riasi | ri, si ∈ R;n ∈ N∗
}

.

Proof. If R has an identity 1R, then we write ra = ra1R = rm+3asm+3 and so

any element of 〈a〉 is of the form

ra+ as+ na+
m∑
i=1

riasi =
m+3∑
i=1

riasi.

Lemma 3.3. Let R be a ring, a ∈ R. If a is in the center of R, then 〈a〉 =

{ra+ na | r ∈ R, n ∈ Z}.

Proof. If a is in the center of R then any element of 〈a〉 is of the form

ra+ as+ na+
m∑
i=1

riasi = ra+ as+ na+
m∑
i=1

risia
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=

(
r + s+

m∑
i=1

risi

)
+ a+ na = r′a+ na where r′ = r + s+

m∑
i=1

risi.

Lemma 3.4. Let R be a ring, a ∈ R. If R has an identity and a is in the

center of R, then Ra = 〈a〉 = aR.

Proof. By 3.3,

〈a〉 = {ra+ na | r ∈ R, n ∈ Z} = {ra+ (n1R) a | r ∈ R, n ∈ Z} .

〈a〉 = {ra+ na | r ∈ R, n ∈ Z} = {ra+ (n1R) a | r ∈ R, n ∈ Z} .

With a in the center of R, r′a = ar′ and so 〈a〉 = aR as well.

Lemma 3.5. Let R be a ring, a ∈ R and X ⊂ R. If R has identity and X is in

the center of R, then the ideal 〈X〉 consists of all finite sums r1a1+...+rnan(n ∈
N∗; ri ∈ R; ai ∈ X).

Proof. Let R have an identity and let X be in the center of R. let I be an ideal

containing X and let ai ∈ X. Since I is an ideal containing ai, then I must

contain 〈ai〉( the ”smallest” ideal containing ai) and by (v) contains Rai =

{rai | r ∈ R}. Since I is an ideal, then it is a subring of R and so contains all

r1a1 + r2a2 + · · · + rnan. Let I ′ = {r1a1 + r2a2 + · · ·+ rnan | ri ∈ R, ai ∈ X},
so I ′ ⊆ I. For r ∈ R and r1a1 + r2a2 + · · ·+ rnan ∈ I ′ we have r(r1a1 + r2a2 +

· · ·+ rnan) = (rr1)a1 + (rr2)a2 + · · ·+ (rrnan ∈ I ′ so I ′ is a left (and since each

ai is in the center of R, also a right) ideal of R. We have now that I ′ is an ideal

of R which ia a subset of any ideal containing X. Therefore, I ′ = (X).

Proposition 3.3. The ring of integers Z is a PID.

Proof. Let I /Z. If I = 0, then I = 〈0〉, so I is a principal ideal. If I 6= 0 then

let a be the smallest integer such that a > 0 and a ∈ I. We will show that

I = 〈0〉.
Since a ∈ I we have 〈a〉 ⊆ I. Conversely, if b ∈ I then we have b = qa + r

for some q, r ∈ Z, 0 ≤ r ≤ a − 1. This gives r = b − qa so, r ∈ I. Since a ia

the smallest positive element of I, this implies that r = 0. Therefore b = qa,

and so b ∈ 〈a〉.

Proposition 3.4. If F is a field then F ia a PID.
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Proof. Let I ⊂ F be a non-trivial ideal.

Then if a ∈ I is nonzero, we have 1 = a−1a ∈ I where a−1 exist, since F is a

field and a 6= 0.

Since 1 ∈ I, for every element b ∈ F, b = b.1 ∈ I , so we have that I = F = 〈1〉
if I 6= {0} .
In conclusion, the only ideals of a field F are 〈0〉 = {0} and 〈1〉 = F which are

both principal ideals.

Proposition 3.5. If F is a field then the ring of polynomials F[x] is a PID.

Proof. We know that F [x] is an integral domain. Let I be an ideal. Now if

I = {0} , then I = 〈0〉 , suppose I 6= {0} . Let g ∈ I be a nonzero polynomial

of minimal degree.

Now, we claim that I = 〈g〉 .
Suppose f ∈ I. Then by the division algorithm, there are nonzero polynomials

q and r such that f = qg + r and either r = 0 or deg(r) < deg(g). Since

f, g ∈ I, r = f − qg ∈ I. Since g is of minimal degree in I, we must have r = 0.

Thus f = qg ∈ 〈g〉 .
If I 6= {0} and f ∈ I is of minimal degree, then f is a minimal polynomial of

I and I = 〈f〉 .
So, F [x] is a PID.

Example 3.1. Example 1 following proposition 1 showed that the quadratic

integer ring Z[
√
−5]is not a P.I.D., in fact the ideal

〈
3, 1 +

√
−5
〉

is a non

principal ideal. It is possible for the product IJ of the two principals, for

example the ideals
〈
3, 1 +

√
−5
〉

and
〈
3, 1−

√
−5
〉

are both non principal and

their product is the principal ideal generated by 3,i.e.,〈
3, 1 +

√
−5
〉 〈

3, 1−
√
−5
〉

= 〈3〉.

Example 3.2. Integers Z are P.I.D.

Example 3.3. Polynomial ring Z[x] are not a P.I.D becouse the ideal〈x, 2〉
we will show 〈x, 2〉is not principal.

Note that 〈x, 2〉 6= Z[x] becouse 1 /∈ 〈x, 2〉 becouse if it were then

1 = xf(x) + 2g(x) ∀f(x), g(x) ∈ Z[x].

But xf(x) + 2g(x) has even constant term.
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Now, suppose 〈x, 2〉 = 〈p(x)〉 for some p(x) ∈ Z[x] then, we must have x =

p(x)f(x) and 2 = p(x)g(x) for some f(x), g(x) ∈ Z[x].

But the second implies that p(x) must be a constant polynomial as p(x) =

−2,−1, 1or2 we can not have p(x) = ±1 as then 〈p(x)〉 = Z[x] so p(x) = ±2,

then x = ±2f(x), a contradiction ±2f(x) has even coefficients.

Example 3.4. The ring Z[x] is not an Euclidean domain with N(p(x)) =

degp(x)

There are not q(x), r(x) ∈ Z[x] such that either r(x) = 0 or degr(x) < 1 and

x = 2q(x) + r(x).

Example 3.5. Let R be the quadratic integer ring Z[
√
−5], let N be the

associated field norm N(a + b
√
−5) = a2 + 5b2 and consider the ideal I =〈

3, 2 +
√
−5
〉

generated by 3 and 2 +
√
−5. Suppose I = (a+ b

√
−5), a, b ∈ Z,

were principal, i.e., 3 = α(a + b
√
−5) and 2 +

√
−5 = β(a + b

√
−5) for some

α, β ∈ R. Taking norms in the first equation gives 9 = N(α)(a2 + 5b2) and

since a2 + 5b2 is a positive integer it must be 1, 3, or 9. If the value is 9 then

N(α) = 1 and α = ±1, so (a+b
√
−5) = ±3, which is impossible by the second

equation since the coefficients of 2 +
√
−5 are not divisible by 3. The value

cannot be 3 since there are no integer solutions to a2 + 5b2 = 3. If the value

is 1 then (a + b
√
−5) = ±1 and the ideal I would be the entire ring R. But

then 1 would be an element of I, so 3γ + (2 +
√
−5δ) = 1 for some γ, δ ∈ R.

Multiplying both sides by 2−
√
−5 would then imply that 2−

√
−5 is multiple

of 3 in R, a contradiction. It follows that I is not a principal ideal and so R is

not an Euclidean Domain (with respect to any norm).

Remark 3.1. It is not true that every PID is an Euclidean domain.

4 Unique Factorization Domains (U.F.D.s)

In this section, we shall study the unique factorization domain and we prove

that every PID is a UFD and give some examples. Also, we note that it is not

true that every UFD is a PID.

In this section, the results is extract from the references [2, 7].

Definition 4.1. Let R be a ring with an identity 1R. An element a ∈ R is

called a unit if ∃ b ∈ R s.t ab = 1R = ba.
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Definition 4.2. Let R be an integral domain, suppose r ∈ R is nonzero and

not a unit. Then r is called irreducible in R if whenever r = ab with a, b ∈ R,

at least one of a or b must be a unit in R. Otherwise r is said to be reducible.

Definition 4.3. An ideal I in a commutative ring R is called a prime ideal

if it is a proper ideal, that is, I 6= R, and ab ∈ I implies a ∈ I or b ∈ I.

Definition 4.4. Let R be an integral domain, the nonzero element p ∈ R is

called prime in R if the ideal 〈p〉 generated by p is a prime ideal. In other

words, a nonzero element p is prime if it is not a unit and whenever p | ab for

any a, b ∈ R, then either p | a or p | b.

Definition 4.5. Let R be an integral domain, two element a and b of R

differing by a unit are said to be associated with R (i.e., a = ub for some unit

u in R).

Definition 4.6. A Unique Factorization Domains (U.F.D.) is an integral do-

main R in which every nonzero element r ∈ R which is not a unit has the

following two properties:

r can be written as a finite product of irreducibles pi of R (not necessarily

distinct): r = p1p2...pn. The decomposition in (4.6) is unique up to associates.

Remark: if r = q1q2...qm is another factorization of r into irreducibles, then

m = n and there are some renumbering of the factors so that pi is associated

with qi for i = 1, 2, · · · , n.

Example 4.1. As we proved in the previous section, every principal ideal

domain is a unique factorization domain: thus Z, F [x]are unique factorization

domains.

Example 4.2. The polynomial ring Z[x] is a unique factorization domain,

even though it is not a principal ideal domain.

Example 4.3. The ring Z
[√
−5
]

is not a unique factorization domain because

we can write 6 = (1 +
√
−5)(1−

√
−5 = 2.3. Note that each of 1±

√
−5, 2 and

3 is irreducible in Z
[√
−5
]

since their norms are 6, 4, and 9 respectively and

there are no elements in Z
[√
−5
]

of norm 2 or 3, and none of these elements

are associated with one another. Thus, 6 has two inequivalent factorizations

into irreducible in Z [2i].

Example 4.4. The ring Z [2i] is not a unique factorization domain because we

can write 4 = 2 · 2 = (2i) · (2i). Note that both 2 and 2 and 2i are irreducible
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since their norms are both 4 and there are no elements in Z [2i] of norm 2,

and 2and 2i are not associated since i /∈ Z [2i]. Thus, 4 has two inequivalent

factorizations into irreducible in Z [2i].

Example 4.5. The ring Z + xQ [x] of polynomials with rational coefficients

and integral constant term is not a unique factorization domain because not

every element has a factorization. Explicitly, the element x are not irreducible

since x = 2 · 1

2
x and neither 2 nor

1

2
x is a unit, but x cannot be written as a

finite product of irreducible element: any such factorization would necessarily

consist of a product of constants times and a rational multiple of x, but no

rational multiple of x is irreducible in Z+ xQ [x].

Theorem 4.1. Every PID is a UFD.

Proof. Every non-zero non unit can be factored into a product of Irreducibles.

It remains to show that such a factorization is unique.

Let, p1...pm = q1....qn be two factorizations of a given element into irreducibles.

Without loss of generality say n ≥ m.

Since p1 is irreducible, it is prime. Since p1divides the product on the right,

and easy introduction shows it divides one of the factors. Again without loss

of generality, suppose it divides q1.

Now q1 = p1a1 implies a1 is a unit, since q1 is irreducible. Thus, p1 and q1 are

associates. Replace q1 with p1a1 and cancel p1 off both sides, then

p2....pm = a1q2....qn.

Continuing in this fashion exhausts the p is, at which point the equation

1 = a1...amqm+1.....qn.

It follows, that qm+1, ...qn are units, if they are really there . Since they are

irreducible, they can not be units, so they are not there. This proves m = n,

and the rearranging done during the proof proves the claim about associates.

Remark 4.1. It is not true that every UFD is a PID.
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5 Tensor Product

In this section, we shall study the importance of tensor product and we study

ED, PID and UFD on tensor product. Also, this article is over the integers Z.

In this section, the results is extract from the references [1, 4–6].

Theorem 5.1. Let I and J be two ideals in a PID of R. Determine

R/I ⊗R R/J.

Proof. Given that R is a ring. Now we know that if I is an ideal of R then the

tensor product of R/I ⊗R M ∼= M/IM, where M is a left R-module, then

R

I
⊗ R

J
∼=

R/J

I(R/J)

∼=
R/J
I+J
J

∼=
R

I + J
By isomorphic law.

Remark 5.1. I
(
R
J

)
= (I+J)

J
.

Now what we know by I
(
R
J

)
, it is nothing but an ideal of

(
R
J

)
which is

spanned by I. it can write as {Σiaici + J} where ai ∈ I and ci ∈ R. (1)

Becouse it is an quotient ring, now as I is ideal of R
J

so it is ideal for R also

equation 1 is nothing but ideal I itself and J also in R.

Remark 5.2. I+J is an ideal and R is PID then I+J generated by a single

element.

Lemma 5.1. Let R be a commutative ring. Let I be an ideal of R. Suppose

R/I is Noetherian and every ideal contained in I is finitely generated. Then

R is Noetherian.

Lemma 5.2. Let R1 and R2 be two Noetherian rings, then R1 ⊗Z R2 is also

Noetherian.
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Proof. Let ψ : R1 ⊗Z R2 −→ R2 be the projection. Let I be the kernel of ψ.

It is easy to see that ψ and I satisfy the lemma.

Therefore, R1 ⊗Z R2 is Noetherian.

Remark 5.3. Every Noetherian is P.I.D.

Proposition 5.1. Let R1 and R2 be two P.I.D, then R1 ⊗Z R2 is P.I.D.

Proof. Let I be an ideal of R1 ⊗Z R2. By 5.2 of the lemma, I is finitely gen-

erated, let (a1, b1), ....., (an, bn) be generators of I, since R1 is a principal ideal

ring, ∃c ∈ R such that cR1 is the ideal generated by a1, ..., an similarly ∃d ∈ R2

such that dR1 is the ideal generated by b1, ..., bn. Since every element of I is of

the form
∑

i(xi, yi)(ai, bi) = (
∑

i xiai,
∑

i yibi) = (c, d).

Hence R1 ⊗
z
R2 is PID.

Proposition 5.2. Let M be an R-module and R is an identity in tensor

product. Then

R⊗R M ∼= M.

Proof. ψ : R×M −→M.

ψ : (r,m) = rm ∈M, ∀r ∈ R, ∀m ∈M.

We want to prove ψ is a middle linear map

•

ψ(r1 + r2,m) = (r1 + r2)m

= r1m+ r2m

= ψ(r1,m) + ψ(r2,m).

•

ψ(r,m1 +m2) = r(m1 +m2)

= rm1 + rm2

= ψ(r,m1) + ψ(r,m2).
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•

ψ(rr1,m) = (rr1)m

= r(r1m)

= ψ(r, r1m).

∴ ψ is a middle linear map. Thus there exists a unique group homomorphism.

φ : R⊗M −→M.

φ(r ⊗m) = rm ,∀r ∈ R, ∀m ∈M.

We want to prove φ is isomorphism.

Kerφ = {r ⊗m ∈ R⊗M : φ(r ⊗m) = 0m} .
= {r ⊗m ∈ R⊗M : rm = 0m} .
But

r ⊗m = r ⊗m.1
= rm⊗ 1

= 0⊗ 1

= 0

∴ Kerφ = 0.

Let y ∈M ⇒ y = am = φ(a⊗m).

∴ φ is injective and surjective.

φ is isomorphism.

R⊗R M ∼= M .

Remark 5.4. The above result says that the ring R is the identity of the

operation of tensor product in the category of R-modules.

Proposition 5.3. If M is finite dimensional module over R i.e. M has a basis

then

M∗ ⊗R N ∼= HomR(M,N).
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Proof. Define bilinear map φ : M∗ ⊗R N −→ Hom(M,N) by φ(ε, n) : m 7−→
ε(m)n, this bilinear map defines a linear map f : M∗ ⊗R N ∼= HomR(M,N)

by f(ε⊗R n) = φ(ε, n). (i)

Let dimM = n,{e1, e2, ..., en} is a basis ofM then we define g : HomR(M,N) −→
M∗ ⊗R N by g(u) =

∑n
i=1 e

∗
i ⊗ u(ei). (ii)

Clearly, g is R-module homomorphism. Now, we shall show f and g all inverse

to each other.

Let u : M −→ N such that u ∈ HomR(M,N)

f(g(u))(m) = f(
n∑

i=1

(e∗i ⊗ u(ei)))(m)

=
n∑

i=1

f(e∗i ⊗ u(ei))(m)

=
n∑

i=1

φ(e∗i , u(ei))(m)

=
n∑

i=1

e∗i (m)u(ei)

= u(
n∑

i=1

e∗i (m)ei)

= u(m).

.

Becouse m ∈M ⇒ m = d1e1 + ....dnen =
∑n

i=1 diei ⇒ e∗i (m) = di.

Hence m =
∑n

i=1 e
∗
i (m)ei; cosequently fg(u) = u.

Let ε⊗ n ∈M∗ ⊗R N, g(f(ε⊗ n))

= g(φ(ε, n)) by(i)

=
∑n

i=1 e
∗
i ⊗ φ(ε, n)(ei) by(ii)

=
∑n

i=1 e
∗
i ⊗ ε(ei)(n)

=
∑n

i=1 ε(ei)e
∗
i ⊗ n

= ε⊗ n.
And so f and g are inverse of each others, hence f is an isomorphism, hence

M∗ ⊗R N ∼= HomR(M,N).

Remark 5.5. In general the above proposition is not true i.e. M∗ ⊗R N �
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HomR(M,N).

Proposition 5.4. Let V and W be vector spaces over a field K. In case V is

finite dimensional, the map

Φ : W ∗ ⊗K V −→ Homk(W,V ).

α⊗ v {7−→ W −→ V,w 7−→ α(w)v} .

Is a monomorphism and its image is

Homfin
k (W,V ) = {ϕ ∈ Homk(W,V )|dimKϕ(W ) <∞} .

The K-vector space of finite dimensional K-homomorphisms W −→ V.

Proof. The map w 7−→ ϕ(w)v defines an element of Homfin
k (W,V ), whence Φ

is well-defined and its image is contained in Homfin
k (W,V ). Moreover, Φ is a

homomorphism.

Let x =
∑n

i=1 αi⊗vi ∈ W ∗⊗V with Φ(x) = 0, i.e. with
∑n

i=1 αi(w)vi = 0 ∀w ∈
W . Without loss of generality, we can assume that our representation of x sat-

isfies that the vi is are linearly independent. In that case
∑n

i=1 αi(w)vi = 0

implies αi(w) = 0 ∀i. But since this is true for all w ∈ W , it follows that

αi = 0 ∀i. But then, x = 0. Therefor, KerΦ = 0, whence Φ is injective.

Now let ϕ ∈ Homfin
k (W,V ), and let (v1, ....., vn) be a basis of ϕ(W ).

Let πi : ϕ(W ) −→ K be the projection with πi(vi) = 1 an πi(vj) = 0

for i 6= j. Set αi = πi ◦ ϕ. Then ϕ(w) =
∑n

i=1 αi(w)vi ∀w ∈ W since

v =
∑n

i=1 πi(v)vi ∀v ∈ ϕ(W ); Therefore, ϕ = Φ (
∑n

i=1 αi ⊗ vi). Hence

Homfin
k (W,V ) ⊆ Φ(W ∗ ⊗K V ) whence we have equality.

Remark 5.6. It is not true in general that: the dual space is the invers of the

space under the operation of tensor product.
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