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Abstract

The paper addresses derivation of associative algebras in dimension
two and three. Our approach to the derivation is based on an algorithm
that uses the result on classification of finite dimensional associative
algebras. At the end, derivation algebras with their dimensions for two
and three dimensional complex associative algebras are tabulated.
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1 Introduction

Associative algebras are one of the classical algebras that have extensively
been studied and found to be related to other classical algebras like Lie and
Jordan algebras. The classification of low dimensional associative algebras is
believed to have been first investigated by Peirce [1]. In 1916, Hazlett classify
nilpotent algebras of dimension≤ 4 [2]. Mazzola published his result in 1979 on
algebraic and geometric classification of associative algebras in dimension five
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[3]. Most classification problems of finite dimensional associative algebras have
been studied for certain property(s) of associative algebras while the complete
classification of associative algebras in general is still an open problem. This
study centers on derivation of low dimensional associative algebras. We use the
results obtained in [4] on classification of two and three dimensional associative
algebras to achieve our goal [5], [6].
This study is organized as follows. In the first section, we introduce the subject
alongside with some previously obtained results. In Section 2, we provide some
basic concepts needed for this study. subsequent Sections are dedicated to main
result, acknowledgement and references respectively.

Definition 1.1. Let A be a vector space(finite or infinite) over the complex
C. Suppose a binary operation xy (x, y ∈ A) called multiplication is defined
on A, i.e. for any x, y ∈ A, there exists a unique w ∈ A such that w = xy. If
for any x, y, z ∈ A and λ ∈ C, the conditions:

x(y + z) = xy + xz, (y + z)x = yx+ zx (1)

x(yz) = (xy)z (2)

(λx)y = x(λy) = λ(xy) (3)

Definition 1.2. Let A1 and A2 be two associative algebras over F . A ho-
momorphism between A1 and A2 is an F -linear mapping ϕ : A1 −→ A2 such
that

ϕ(xy) = ϕ(x)ϕ(y)

for all x, y ∈ A1.

The set of all homomorphism of A is denoted by Hom(A).
In what follows, we define

[·, ·] : A× A −→ A

by [x, y] = xy − yx for all x, y ∈ A.

Definition 1.3. A derivation of associative algebra A is a linear transforma-
tion
d : A→ A where

d(x · y) = d(x)y + xd(y) ∀ x, y ∈ A

The set of all derivations of a associative algebra A we denote by Der(A).
The Der(A) is an associative algebra with respect the composition operation
◦ and it is a Lie algebra with respect to the bracket [d1, d2] = d1 ◦ d2− d2 ◦ d1.

Theorem 1.1. If d is a derivation of an associative algebra A, then d is a
derivation of A as a lie algebra.
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2 Main Results

Proposition 2.1. Let A be an associative algebra. Then Der(A) is a Lie
algebra with respect to the bracket [f, g] = f ◦ g − g ◦ f.

In an associative algebra we consider the right ra, and the left la, multipli-
cation operators defined as follows:

ra(b) := b · a
lx(b) := a · b

Lemma 2.1. The sets r(A) = {ra|a ∈ A}, l(A) = {la|a ∈ A} are subalgebras
of the associative algebra Der(A).

Proof. The proof can be easily derived from the following identities

ra·b = rbra, la·b = lbla,

Lemma 2.2. Let (A, ·) be an associative algebra and d ∈ Hom(A), then the
following conditions are equivalent:

i. d ∈ Der(A) ii. [d, la] = ld(a) and iii. [d, ra] = Rd(a)

Definition 2.1. The sets AnnR(A) and AnnL(A) defined by

AnnR(A) = {x ∈ A|A · x = 0}
and

AnnL(A) = {x ∈ A|x · A = 0}
of an associative algebra A are called the right and the left annihilators of A
respectively.

Theorem 2.1. Let f : A1 → A2 be an isomorphism of complex algebras A1

and A2. Then the mapping ρ : EndA1)→ End(A2) defines by ρ(d) = f ◦d◦f 1,
is an isomorphism of vector spaces Der(A1) and Der(A2), i.e

ρ(Der(A1)) = Der(A2).

Proof. Suppose we have A1 = (V1, ·) and A2 = (V2, ∗). The isomorphism
relation f(x · y) = f(x) · f(y) holds for all x, y ∈ A1, implies that for all
x, y ∈ A2

x ∗ y = f
(
f−1(x) · f−1(y)

)
By rewriting the definition (1.3) we have d ∈ Der(A1)

d
(
f−1(x) · f−1(y)

)
= d(f−1(x)) · f−1(y) + f−1(x) · d(f−1(y)).

Applying the mapping f on this equation we have

f ◦ d ◦ f−1(x ∗ y) =
(
f ◦ d ◦ f−1(x)

)
∗ y + x ∗

(
f ◦ d ◦ f−1(y)

)
,

i. e. f ◦ d ◦ f−1 ∈ Der(A2).
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3 An algorithm for finding derivations

Provided that {e1, e2, · · · , en} are the basis of A as n-dimensional complex
associative algebra, then the eiej components with i, j = 1, 2, · · · , n can be
referred to as the A structure constants on the basis {e1, e2, · · · , en} . if

eiej =
n∑

k=1

γkijek

then
{γkij, i, j, k,≤ n}

is denoted the set of structure constants of A. Further all the algebras consid-
ered are supposed to be over the field of complex numbers C. It is important to
discuss the associative algebras derivations. So, in matrix, d = (dij)i,j=1,2,··· ,n
with the basis as {e1, e2, · · · , en}. If the structure constants {γkij} are given
then we form a system of equations with respect to dij and solving this system
we get the descriptions of the derivations. We get the system in the form
presented below:

n∑
k=1

γkijdtk =
n∑

k=1

(dkiγ
t
kj + dkjγ

t
ik) (4)

for 1 ≤ i, j, t ≤ n.

The next sections are devoted to the applications of the algorithm to low-
dimensional associative algebras cases.

3.1 Two-dimensional associative algebras

The classification of all two-dimensional associative algebras has been given
by [4]. The list of isomorphism classes is given by the following theorem.

Theorem 3.1. Let A be 2-dimensional complex associative algebra. Then
it is isomorphic to one of the following pairwise non-isomorphic associative
algebras:
As12 : e1e1 = e2;
As22 : e1e1 = e1, e1e2 = e2;
As32 : e1e1 = e1, e2e1 = e2;
As42 : e1e1 = e1, e2e2 = e2;
As52 : e1e1 = e1, e1e2 = e2, e2e1 = e2.

Let us describe the derivations of 2-dimensional complex associative alge-
bras. In the description, we use the classification result stated in Theorem 3.1
above.
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Table 1: Derivations of two-dimensional associative algebras

IC Derivation Dim IC Derivation Dim

As12

(
d11 0
d21 2d11

)
2 As22

(
0 0
d21 d22

)
2

As32

(
0 0
d21 d22

)
2 As42

(
0 0
0 0

)
0

As52

(
0 0
0 d22

)
1

3.2 Three-dimensional associative algebras

The classification of all three-dimensional complex associative algebras has
been given in [4]. The following theorem gives the list of isomorphism classes.

Theorem 3.2. Any 3-dimensional non decomposable complex associative alge-
bra A is isomorphic to one of the following pairwise non-isomorphic algebras.

As13 : e1e3 = e2, e3e1 = e2;
As23(α) : e1e3 = e2, e3e1 = αe2, α ∈ C\{1};
As33 : e1e1 = e2, e1e2 = e3, e2e1 = e3;
As43 : e1e3 = e2, e2e3 = e2, e3e3 = e3;
As53 : e2e3 = e2, e3e1 = e1, e3e3 = e3;
As53 : e2e3 = e2, e3e1 = e1, e3e3 = e3;
As63 : e3e1 = e2, e3e2 = e2, e3e3 = e3;
As73 : e1e2 = e1, e2e2 = e2, e3e1 = e1, e3e3 = e3;
As83 : e1e3 = e1, e2e3 = e2, e3e1 = e1, e3e3 = e3;
As93 : e2e3 = e2, e3e1 = e1, e3e2 = e2, e3e3 = e3;
As103 : e1e3 = e1, e2e3 = e2, e3e1 = e1, e3e2 = e2, e3e3 = e3;
As113 : e1e3 = e2, e2e3 = e2, e3e1 = e2, e3e2 = e2, e3e3 = e3;
As123 : e1e1 = e2, e1e3 = e1, e2e3 = e2, e3e1 = e1, e3e2 = e2,

e3e3 = e3;
As133 : e1e1 = e1, e2e2 = e2, e3e3 = e3;
As143 : e1e2 = e1, e2e1 = e1, e2e2 = e2, e3e3 = e3;

As143 : e1e2 = e1, e2e1 = e1, e2e2 = e2, e3e3 = e3;
As153 : e1e2 = e1, e2e2 = e2, e3e3 = e3;
As163 : e2e1 = e1, e2e2 = e2, e3e3 = e3;
As173 : e1e1 = e2, e3e3 = e3.

In the Table 2, we give the description of derivation of three-dimensional
complex associative algebras.
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Theorem 3.3. The derivations of Three dimensional complex associative al-
gebras are given as follows

Table 2: Derivations of three-dimensional associative algebras

IC Derivation Dim IC Derivation Dim

As13

 d11 0 0
d21 m d23
0 0 d33

 4 As23(α)

 d11 0 0
d21 d22 d23
0 0 m1

 4

As33

 d11 0 0
d21 2d11 0
d31 2d21 3d11

 3 As43

 d11 0 0
d21 m2 d23
0 0 0

 3

As53

 d11 0 d13
0 d22 d23
0 0 0

 4 As63

 d11 0 0
d21 m2 d23
0 0 0

 3

As73

 d11 d12 −d12
0 0 0
0 0 0

 2 As83

 d11 0 0
0 d22 d23
0 0 0

 3

As93

 d11 0 d13
0 d22 0
0 0 0

 3 As103

 d11 d12 0
d21 d22 0
0 0 0

 4

IC Derivation Dim IC Derivation Dim

As113

 d11 0 0
d21 m2 0
0 0 0

 2 As123

 d11 0 0
d21 2d11 0
0 0 0

 2

As133

 0 0 0
0 0 0
0 0 0

 0 As143

 d11 0 0
0 0 0
0 0 0

 1

As153

 d11 d12 0
0 0 0
0 0 0

 2 As163

 d11 d12 0
0 0 0
0 0 0

 2

As173

 d11 0 0
d21 2d11 0
0 0 0

 2

where m = d11 + d33, m1 = d22 − d11, m2 = d11 + d21.

Proof. Let us consider As13 and by using the system of equation as mentioned
(4) we get d12 = d13 = d31 = d32 = 0 and d22 = d11 + d33 = m.

Therefore the derivations of As13 are given as follows d :=

 d11 0 0
d21 m d23
0 0 d33

.
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Clearly,

d1(e1) = e1 and d1(e2) = e1;

d2(e2) = e2 and d2(e3) = e3;

d3(e1) = e2 and d4(e3) = e2.

So, d1 :=

 1 0 0
0 1 0
0 0 0

, d2 :=

 0 0 0
0 1 0
0 0 1

, d3 :=

 0 0 0
1 0 0
0 0 0

, d4 := 0 0 0
0 0 1
0 0 0


is a basis of Der(A) and dimDer(A) = 4.

The derivations of the rest in Theorem 3.2 can be given similarly as shown
above.

Corollary 3.1. i There are one characteristically nilpotent classes in the
list of isomorphism classes of three- dimensional associative algebras.

ii The dimensions of the derivation algebras in this case very between zero
and four.
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