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Abstract

We show that linearly independent solutions of MX = θ , where
M is an m× n matrix, may be found by the largest non-singular sub-
matrix of M . With this method, we may also obtain eigenvectors and
generalized eigenvectors corresponding to an eigenvalue λ . Finally, we
shall explain how to construct a generalized modal matrix, to obtain
a Jordan canonical form of a square matrix without solving a system
except for finding the ranks.
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1 Introduction

In all that follows the n× n identity matrix is denoted by In. A permutation
matrix P is obtain from the identity matrix, by permuting some of its rows or
columns. The zero column vector is denoted by θ and the m×n zero matrix
is denoted by Zm×n .

Let λ be an eigenvalue of the n × n real or complex matrix A . An eigen-
vector of A corresponding to the eigenvalue λ is a non-trivial solution of
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(A − λ In )u = θ . The set of all such vectors is called the eigenspace corre-
sponding to the eigenvalue λ . The algebraic multiplicity of an eigenvalue is its
multiplicity in the characteristic polynomial and its geometric multiplicity is
the dimension of its eigenspace.

An eigenvalue is said to be defective, if its geometric multiplicity is less than
its algebraic multiplicity. Matrices with some defective eigenvalues are called
defective. These matrices are not diagonalizable.

If λ is defective, then for an integer k > 1 , any nonzero vector u (λ , k)
satisfying :

A k
λ u (λ , k) = θ with A k−1

λ u (λ , k) 6= θ

is called a generalized eigenvector of order k corresponding to the eigenvalue
λ . Clearly the generalized eigenvector of order one is just an eigenvector.

In this paper, we show that linearly independent solutions of the homogeneous
linear system MX = θ , where M is an m × n matrix, may be obtain by
using the largest non-singular sub-matrix of M . The same method may be
used to find all the eigenvectors and generalized eigenvectors of a square matrix
corresponding to an eigenvalue.

If the rank of the m × n matrix M is n , then the dimension of the nullity
of M is zero ; this clearly implies that θ is the only solution of MX = θ .

Given the m × n matrix M of rank h < n ; we partition the matrix M or
N = PMQ (permutation-equivalent to M ), into

M =

[
M 11 M 12

M21 M 22

]
or N = PMQ =

[
N 11 N 12

N21 N 22

]
,

where at least one of the M ij or N ij blocks is a non-singular h× h matrix.

2 Results

Let U be an n× (n−h) matrix, where its columns represent (n−h) linearly
independent solutions of MX = θ . Clearly U is not unique.

Our main result explains how to find U, using the inverse of an h × h block
of M .

Theorem 1. Suppose the rank of the m× n matrix M is h < n .

1. If the block M 11 is a non-singular h×h matrix; then U =

[
−M−1

11M12

In−h

]
.

2. If the block M 12 is a non-singular h×h matrix; then U =

[
In−h

−M−1
12M 11

]
.
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3. If the block M 21 is a non-singular h×h matrix; then U =

[
−M−1

21M 22

In−h

]
.

4. If the block M 22 is a non-singular h×h matrix; then U =

[
In−h

−A−1
22 M 21

]
.

Proof. Clearly, the rank of any n× (n− h ) matrix containing In−h is n− h .

(1) We have

[
M 11 M 12

] [ −M−1
11 M 12

In−h

]
= −M 11M−1

11 M 12 +M 12 = Zm×n−h .

Since each row of
[
M 21 M 22

]
is a linear combination of the rows of

[
M 11 M 12

]
,

we have :

M
[
−M−1

11M 12

In−h

]
=

[
M 11 M 12

M 21 M 22

] [
−M−1

11M 12

In−h

]
= Zm×n−h.

Thus

U =

[
−M−1

11M 12

In−h

]
.

The proofs of (2) through (4) are similar to the proof of the first part.

The matrix M =


1 1 0 0
0 0 1 1
0 0 1 1
1 1 0 0

 of rank 2 cannot be partitioned into

M =

[
M 11 M 12

M 21 M 22

]
,

where one of the M ij blocks is a 2 × 2 non-singular sub-matrix. But by
interchanging the second and the third column, we may obtain a matrix with
at least one

In our next corollary, we address this case.

Corollary 1. Let P and Q be two permutation matrices which make the
block N 11 of the matrix

N = PMQ =

[
N 11 N 12

N 21 N 22

]
,

an h× h invertible block. Then U = QV, where

V =

[
−N −1

11 N 12

In−h

]
.
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Proof. By using the proof of Theorem 1 part (1) on the matrix N, we obtain

N V = Zm×n−h.

The remainder of the proof then follows from :

MU =M [ QV ] = P tN Q t [ QV ] = P t [ N V ] = P tZm×n−h = Zm×n−h.

Remark 1. If the matrix N in Corollary 1 is obtained from M by using
only some row operations (i.e., Q = In ); then U = V.

Eigenvectors. Let λ be an eigenvalue of the n×n matrix A with geometric
multiplicity m, and let Uλ (A ) be an n×m matrix, where its columns repre-
sent m linearly independent eigenvectors of A corresponding to the eigenvalue
λ.

Since eigenvectors of A corresponding to the eigenvalue λ are solutions of
the homogeneous linear system (A−λ In )u = θ; by replacing the matrix M
with Aλ = A − λ In and h with n − m in Theorem 1 or Corollary 1, one
may obtain Uλ (A ).

Remark 2. With the conventional method, the matrix in order to obtain m
linearly independent eigenvectors of a matrix corresponding to an eigenvalue;
one must first solve a homogenous system of linear equations which has in-
finitely many solutions. Then one must verify if they are linearly independent.

Contrary to the conventional method, the matrix Uλ (A ) gives all the linearly
independent eigenvectors associate with the eigenvector λ. Also, the higher the
geometric multiplicity of λ is, the task of finding linearly independent eigen-
vectors associated to λ becomes easier.

Generalized Eigenvectors. The fact that generalized eigenvectors are solu-
tions of some homogeneous linear systems, Theorem 1 or Corollary 1 may be
used to find them. Here is how:

Step 1. Obtain the matrix A k
λ = (A− λ In ) k.

Step 2. Find r k , the rank of the matrix A k
λ .

Step 3. If rk = 0 (i.e., the matrix A k
λ is the zero matrix), then any vector

v satisfying A k−1
λ v 6= θ is a generalized eigenvector of A of order k . If not,

replace the matrix M with A k
λ and h with n−rk in Theorem 1 or Corollary

1; any column v of Uλ(A k
λ ) satisfying

A k
λ v 6= θ

represents a generalized eigenvector of order k of A corresponding to the
eigenvalue λ .
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Jordan Canonical Form. Any n × n defective matrix A can be put in
Jordan canonical form by a similarity transformation, i.e.,

M−1AM = J =


J 1

J 2

. . .

Jm

, where J i =


λ i 1

λ i
. . .
. . . 1

λ i


is of size n i × n i with

m∑
i=1

n i = n . The blocks J 1 , J 2 , . . . , Jm are called

Jordan blocks. The matrix M is called a generalized modal matrix for A and
is obtained from eigenvectors and generalized eigenvectors of the matrix A .
The order of the largest Jordan block of A corresponding to an eigenvalue λ
is called the index of λ . It is the smallest value of k ∈ N such that

rank (A− λ In ) k = rank (A− λ In ) k+1.

Let k be the smallest positive integer such that A k
λ u = θ . Then the sequence

A k−1
λ u , A k−2

λ u , . . . . . . , A 2
λ u , Aλ u , u

is called a Jordan chain of linearly independent generalized eigenvectors of
length k .

To find a Jordan chain of length k corresponding to a defective eigenvalue
λ , one must solve the equation Aλ v = uλ. If there are more eigenvectors
associated with the defective eigenvalue λ , then it is not always clear which
eigenvector must be chosen to solve a non-homogeneous linear system in order
to produce the generalized eigenvector.

Instead of starting with an eigenvector which may or may not produce a Jor-
dan chain of length k , we start with the matrix A k

λ , which has a smaller
non-singular block than A k−1

λ . The matrix Uλ (A , k) has a column j such
that for i = 1, 2, . . . k−1 , the jth columns of A i

λ Uλ (A , k) produce a Jordan
chain of length k .

We shall explain this procedure in more detail with two examples.

Example 1. Consider the matrix A =


−7 −4 6 9
−11 0 6 9
−11 −4 10 9
−11 −4 6 13

 with the char-

acteristic polynomials KA (λ ) = (λ− 4 ) 4. Thus λ1 = λ2 = λ3 = λ4 = 4 .
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Let A 4 = A− 4 I4 , then

A 4 =


−11 −4 6 9
−11 −4 6 9
−11 −4 6 9
−11 −4 6 9

 and A 2
4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

.
Since the rank of A 4 is one, then the geometric multiplicity of λ = 4 in A is
three; so according to Theorem 1, we need a 1× 1 non-singular block of A 4 .
Hence

UA ( 4 , 1) =
1

11


−4 6 9
11 0 0
0 11 0
0 0 11

 =⇒ u1 =


−4
11
0
0

, u2 =


6
0
11
0

, and u3 =


9
0
0
11

.
Now, to obtain a generalized modal matrix of A , we need a generalized eigen-
vector associated with one of the above eigenvectors. With the conventional
method, we have to solve one of the following matrix equations :

(A− 4 I4 ) v = u i for i = 1, , 2 , 3 ,

Notice that all the rows of the matrix A 4 = (A− 4 I4 ) are the same but the
entries of ui’s are different. This means that we must find another eigenvector
in order to produce a generalized modal matrix.

Since A 2
4 is a zero matrix, any non-zero vector which is not an eigenvector ofA

becomes a generalized eigenvector of order one. So we may choose for example
the vector
e1 = [ 1 0 0 0 ] t as our generalized eigenvector. Then from e1 , we get a
new eigenvector

v = A 4 e1 =
[
−11 −11 −11 −11

] t
.

By using v , e1 , u2 , and u3 , we construct the generalized modal matrix
M = [ v e1 u2 u3 ] . Then we have

M =


−11 1 6 9
−11 0 0 0
−11 0 11 0
−11 0 0 11

 with M−1AM = J (A ) =


4 1
0 4

∣∣∣∣ 0 0
0 0

0 0
0 0

∣∣∣∣4 ∣∣ 00
∣∣ 4
 .

We conclude our paper with an example of a defective matrix with different
eigenvalues.
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Example 2. Consider the matrix A =


1 0 0 0 0
3 1 0 0 0
4 3 2 0 0
5 4 3 2 0
6 5 4 3 2

 with characteristic

polynomial KA (λ ) = (λ− 1 ) 2 (λ− 2 ) 3.

DefineA 1 = A− I5 =


0 0 0 0 0
3 0 0 0 0
4 3 1 0 0
5 4 3 1 0
6 5 4 3 1

 and,A 2 = A− 2 I5 =


−1 0 0 0 0
3 −1 0 0 0
4 3 0 0 0
5 4 3 0 0
6 5 4 3 0

.
The geometric multiplicities of both λ1 = 1 and λ2 = 2 are one. So we need

A 2
1 =


0 0 0 0 0
0 0 0 0 0
13 3 1 0 0
29 13 6 1 0
52 29 17 6 1

, and A 3
2 =


−1 0 0 0 0

9 −1 0 0 0
−14 3 0 0 0
−4 −5 0 0 0
53 8 0 0 0

.
By using Theorem 1 for A 2

1 and A 3
2 , we obtain

V = UA ( 1 , 2 ) =


1 0
0 1
−13 −3

49 5
−125 −8

 and W = UA ( 2 , 3 ) =


0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

.
We have

A 1 V =


0 0
3 0
−9 0
15 0
−24 0

, A 2W =


0 0 0
0 0 0
0 0 0
3 0 0
4 3 0

, and A 2
2W =


0 0 0
0 0 0
0 0 0
0 0 0
9 0 0

.
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To construct a generalized modal matrix of A from V and W , we must use
the first columns of A 1V, V, A 2

2W, A 2W, and W, in that order.

M =


0 1 0 0 0
3 0 0 0 0
−9 −13 0 0 1
15 49 0 3 0
−24 −125 9 4 0

 with M−1AM = J (A ) =


1 1
0 1

∣∣∣∣ 0 0 0
0 0 0

0 0
0 0
0 0

∣∣∣∣∣∣
2 1 0
0 2 1
0 0 2

.
Notice that no linear system was solved and there was no need to find any
eigenvector of the matrix A directly.
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