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Abstract

We prove the short-time asymptotic formula for the interfaces and local solutions
near the interfaces for the nonlinear double degenerate reaction-diffusion equation
of turbulent filtration with fast diffusion and strong absorption

ut = (|(um)x|
p−1(um)x)x−buβ, 0 < mp < 1, β > 0.

A complete classification in terms of the nonlinearity parameters m, p,β and asymp-
totics of the initial function near its support is given. In the case of an infinite speed
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of propagation of the interface (no interface), the asymptotic behavior of the local
solution is classified at infinity.

Mathematics Subject Classification: 35A01; 35C07; 35K55

Keywords: Nonlinear degenerate parabolic PDE; Reaction-diffusion equation;
Fast diffusion; Nonlinear scaling laws

1 Introduction
This work is a sequel to the work presented in [7]. We consider the Cauchy

problem (CP) for the nonlinear double degenerate parabolic equation

Lu ≡ ut − (|(um)x|
p−1(um)x)x + buβ = 0, x ∈ R, 0 < t < T, (1)

u(x,0) = u0(x), x ∈ R. (2)
where u = u(x, t),m, p,β > 0,b ∈ R, with 0 <mp < 1, and T ≤ +∞ and u0 is a contin-
uous and nonnegative function. We assume that either b≥ 0 or b< 0 and β≥ 1 Equa-
tion (1) models turbulent polytropic filtration of a gas in a porous medium [10, 11].
The condition 0 <mp < 1 corresponds to fast diffusion – when the equation (1) with
b = 0 possesses an infinite speed of propagation property [10]. The main constituent
of the equation (1) is to model competition between the double degenerate fast dif-
fusion with infinite speed of propagation property and the absorption or reaction
term. We define the interface function as

η(t) := sup{x : u(x, t) > 0},

with η(0) = 0. Additionally, we assume that

u0(x) ∼C(−x)α+, as x→ 0−, for some C > 0, α > 0, (3)

unless stated otherwise, where (·)+ = max(·;0). Solution of the CP is understood in
the weak sense.

A full classification of the short-time behavior of η(t) and of the local solution
near η(t) depending on the parameters m , p, b,β,C, and α in the case of slow dif-
fusion (mp > 1) is presented in [7]. The aim of the paper is to classify short-time
behavior of the interfaces and local solutions near the interfaces and at infinity in
the CP with a compactly supported initial function. In all cases when η(t) < +∞ we
classify the short-time asymptotic behavior of the interface η(·), and local solution
near η(·), while in all cases with η(t) = +∞ we classify the short-time asymptotic
behavior of the solution as x→ +∞.

Most of the results of the paper are local. Therefore, we assume that u0 is either
bounded or unbounded with growth condition as x→−∞, which is suitable for the
existence of the solution. In some cases we will consider

u0(x) = C(−x)α+, x ∈ R, (4)

specifically cases when the solution to (1), (4) is of self-similar form. In these cases
the estimations will be global in time.
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A full classification of the short-time behavior of interfaces for the reaction-
diffusion equation (1) with p = 1 is presented in [9] for the slow diffusion case
(m > 1) and in [3] for the fast diffusion case (0 < m < 1). The analogous classi-
fications for the nonlinear degenerate multidimensional reactiondiffusion equation
(multidimensional version of (1) with p = 1) was presented in [5] for the slow dif-
fusion case and in [6] for the fast diffusion case.

The methods of the proof developed in [9, 3] are based on nonlinear scaling laws,
and a barrier technique using special comparison theorems in irregular domains
with characteristic boundary curves [1, 2, 4]. Full classification of interfaces and
local solutions near the interfaces and at infinity for the p-Laplacian type reaction-
diffusion equation ((1) with m = 1) are presented in [8]. The semilinear case (m =

p = 1 in (1)) was analyzed in [12, 13].
We refer to [7] for the definition of the weak solution to CP (1), (2) (see Definition

1 from [7]) and main results on the general theory of the PDE (1).
We also make use of the standard comparison result from [7] as well as the notion

of the minimal solution to prove our main results (see Lemma 1, Definition 2, and
Lemma 2 from [7]).

The paper is organized in the following way. In Section 2 the main results are
outlined, with further details in Section 3. Essential lemmas are formulated and
proven using nonlinear scaling in Section 4. Finally, in Section 5, the results of
Sections 2 are proved. To improve readability, the explicit values of all constants
that appear in Sections 2, 3, and 5 are relegated to the Appendix.

2 The Main Result
Throughout this section we assume that u is a unique weak solution of the CP (1),

(3). The main results are classified according to regions I-V, respectively, in Figure
1, the (α,β) parameter space diagram, below.

0

mp

1

1 + p
mp−1

β

α

α = (1 + p)/(mp−β)

V

I

II
III

IV

Figure 1. (α,β) parameter space diagram for interface development
for the CP (1), (3).
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• Region I: b > 0,0 < β < mp and 0 < α < (1 + p)/(mp−β).
The interface initially expands and there exists a number δ > 0 such that

z1t
mp−β

(1−β)(1+p) ≤ η(t) ≤ z2t
mp−β

(1−β)(1+p) , 0 ≤ t ≤ δ, (5)

(see the Appendix for the explicit values of z1 and z2).
Further, for any σ ∈ R, there is a number f (σ) > 0 (depending on C, m, and
p) such that

u(χσ(t), t) ∼ f (σ)t
α

1+p−α(mp−1) , as t→ 0+, (6)

where χσ(t) = σt
1

1+p−α(mp−1) .

• Region II: b > 0,0 < β < mp,α = (1 + p)/(mp−β), and

C∗ =

[ b(mp−β)1+p

(m(1 + p))p p(m +β)

] 1
mp−β

.

Then the interface shrinks or expands accordingly as C < C∗ or C > C∗ and
we have that

η(t) ∼ z∗t
mp−β

(1+p)(1−β) , as t→ 0+, (7)
where z∗ ≶ 0 if C ≶ C∗, and for arbitrary σ < z∗ there exists f1(σ) > 0 such
that

u(zσ(t), t) ∼ t1/(1−β) f1(σ), as t→ 0+, (8)

where zσ(t) = σt
mp−β

(1−β)(1+p) .

• Region III: b > 0,0 < β < mp and α > (1 + p)/(mp−β).
Then the interface initially shrinks and we have that

η(t) ∼ −τ∗t
1

α(1−β) , as t→ 0+, (9)

where τ∗ = C−1/α(b(1−β))
1

α(1−β) and, for any τ > τ∗, we have

u(ητ(t), t) ∼
[
C1−βτα(1−β)−b(1−β)

] 1
1−β t

1
1−β , as t→ 0+, (10)

where ητ(t) = −τt
1

α(1−β) .

• Region IV: b > 0, β = mp and α > 0.
In this case there is an infinite speed of propagation. For arbitary ε > 0, there
exists a number δ = δ(ε) > 0 such that

t
1

1−mpϕ(x) ≤ u(x, t) ≤ (t + ε)
1

1−mpϕ(x), x > 0, 0 ≤ t ≤ δ, (11)

where ϕ = ϕ(x) > 0 is a solution of the stationary problem(|(ϕm)′|p−1(ϕm)′)′ = 1
1−mpϕ+ bϕmp, x > 0,

ϕ(0) = 1, ϕ(+∞) = 0.
(12)
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Moreover, we have

lnu(x, t) ∼ −
1
m

(b
p

)1/(1+p)
x, as x→ +∞, 0 ≤ t ≤ δ. (13)

• Region V: This region is divided into cases V(a), V(b) and V(b).

– V(a): Either b > 0, β > mp or b < 0, β ≥ 1 or b = 0, and

D =

[ (m(1 + p))p(m + 1)
(1−mp)p

] 1
1−mp

.

Then there is an infinite speed of propagation of the interface and (6)
holds. If b > 0, β ≥ p(1−m)+2

1+p or b < 0, β ≥ 1 or b = 0, then there exists a
number δ > 0 such that

u(x, t) ∼Dt
1

1−mp x
1+p

1−mp , as x→ +∞, t ∈ (0, δ], (14)

– V(b): b > 0 and 1 ≤ β < p(1−m)+2
1+p .

Then,

lim
t→0+

lim
x→+∞

u(x, t)

t
1

1−mp x
1+p

mp−1

=D. (15)

– V(c): b > 0 and 0 < mp < β < 1.
Then there exists a number δ > 0 such that

u(x, t) ∼ C∗x
1+p

mp−β , as x→ +∞, t ∈ (0, δ]. (16)

3 Additional details of the Results
In this section we outline some additional, essential, details of Results I-V. We re-

fer to the Appendix for the explicit values of relevant constants that appear through-
out this section.

• Region I. The solution u satisfies the estimation

C1t
1

1−β (z1− z)
1+p

mp−β
+ ≤ u(x, t) ≤ C∗t

1
1−β (z2− z)

1+p
mp−β
+ , 0 < t ≤ δ, (17)

where z = xt
β−mp

(1−β)(1+p) . The left-hand side of (17) is valid for 0 ≤ x < +∞,
while the right-hand side is valid for x ≥ τ0t(mp−β)/(1−β)(1+p). C1, z1, z2, and
τ0, are positive constants depending on m, p, β, and b. Moreover,

f (σ) = C
1+p

1+p−α(mp−1) f0(C
mp−1

1+p−α(mp−1)σ), f0(σ) = w(σ,1), σ ∈ R, (18)
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where w is a minimal solution of the CP (1), (4) with C = 1, b = 0. If u0 is
given by (4), then the right-hand sides of (17) and (5) are valid for all t > 0.

• Region II. Assume u solves the CP (1), (4). If C = C∗, then u0 is the sta-
tionary solution to the CP. If C , C∗, then the minimal solution of the CP is
given by

u(x, t) = t
1

1−β f1(z), z = xt
β−mp

(1−β)(1+p) , (19)

and

η(t) = z∗t
mp−β

(1−β)(1+p) , t ≥ 0, (20)

If C > C∗, the interface initially expands and we have

C′
(
z′t

mp−β
(1−β)(1+p) − x

) 1+p
mp−β

+
≤ u ≤C′′

(
z′′t

mp−β
(1−β)(1+p) − x

) 1+p
mp−β

+
, (21)

z′ ≤ z∗ ≤ z′′, 0 ≤ x < +∞, t > 0, (22)

where C′ = C2,C′′ = C∗, z′ = z3, and z′′ = z4. If 0 < C < C∗, then the in-
terface shrinks and there exists τ1 > 0 such that for all τ ≤ τ1 there exists a
number % > 0 such that

u
(
τt

mp−β
(1+p)(1−β) , t

)
= %t

1
1−β , t ≥ 0, (23)

and u and z∗ satisfy the estimates (21), (22) with C′ = C∗,C′′ = C3, z′ =

−z5, and z′′ = −z6.

• Region IV. The explicit solution of the problem (12) is given by

ϕ(x) = F −1(x), 0 ≤ x < +∞, (24)

where F −1(·) is the inverse of the function

F (z) =

∫ 1

z
ms−1

[
b
p

+
m(1 + p)

p(1−mp)(1 + m)
s1−mp

]− 1
1+p

ds, 0 < z ≤ 1. (25)

The function ϕ(x) satisfies

lnϕ(x) ∼ −
1
m

(b
p

)1/(1+p)
x, as x→ +∞, (26)

and the global estimation

0 < ϕ(x) ≤ exp

− 1
m

(
b
p

) 1
1+p

x

 , x > 0, (27)

and therefore

ϕ(x)
e−γx → +∞, as x→ +∞, if γ >

1
m

(
b
p

) 1
1+p

. (28)
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From (11) and (28), it follows that

lim
t→0+

lim
x→+∞

u(x, t)exp

− 1
m

(
b
p

) 1
1+p

x

 = 0, (29)

and respectively

u(x, t)
e−γx → +∞, as x→ +∞, 0 ≤ t ≤ δ(ε), if γ >

1
m

(
b
p

) 1
1+p

. (30)

• Region V. If β ≥ 1, then for arbitrary ε > 0, there exists δ = δ(ε) > 0 such that

C5t
α

1+p−α(mp−1) (χ1 +χ)
1+p

mp−1 ≤ u(x, t) ≤C6t
α

1+p−α(mp−1) (χ2 +χ)
1+p

mp−1 , (31)

where χ = xt
−1

1+p−α(mp−1) , for all x ∈ [0,∞) and 0 ≤ t ≤ δ(ε). C5,C6, χ1, and χ2,
are positive constants depending on m, p, β, b, and ε. If b > 0 and β ≥ 1, we
have the upper estimation

u(x, t) ≤Dt
1

1−mp x
1+p

mp−1 , 0 < x < +∞, 0 < t < +∞. (32)

While if b < 0 and β ≥ 1, then for small ε > 0, there exists δ = δ(ε) > 0 such
that

u(x, t) ≤D(1− ε)
1

mp−1 t
1

1−mp x
1+p

mp−1 , for κt
1

1+p+α(1−mp) < x < +∞, 0 < t ≤ δ, (33)

where

κ =

 A0 + ε

D(1− ε)
1

mp−1


mp−1
1+p

. (34)

If b > 0 and mp < β < 1, then there exists δ > 0 such that

t
1

1−βC∗(1− ε)(z8 + z)
1+p

mp−β ≤ u(x, t) ≤ C∗x
1+p

mp−β , 0 < x < +∞, 0 < t ≤ δ, (35)

where z = xt
β−mp

(1−β)(1+p) , ε > 0 is an arbitrary sufficiently small number, and z8
is a positive constant depending on m, p, β, b, and ε.

If b = 0 and α > 0, then the minimal solution to the CP (1), (4) has the
self-similar form

u(x, t) = t
α

1+p+α(1−mp) f (χ), χ = xt
−1

1+p+α(1−mp) . (36)

where f satisfies (18). Moreover the following global estimation is valid:

Dt
α

1+p+α(1−mp) (χ3 +χ)
1+p

mp−1 ≤ u(x, t) ≤C7t
α

1+p+α(1−mp) (χ4 +χ)
1+p

mp−1 , (37)
0 ≤ x < +∞, 0 < t < +∞,

where C7, χ3, and χ4, are positive constants depending on m and p.
Explicit solution (33) provides sharper upper bound than (37) as x→+∞.

From (37) and (33), asymptotic result (14) easily follows. In a similar way
asymptotic result (14) follows in the local case (3).
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4 Preliminary Results
In this section we establish a series of lemmas that describe preliminary estima-

tions for the CP. The proof of these results is based on nonlinear scaling.

Lemma 1. If b = 0 and α > 0, then the minimal solution u of the CP (1), (4) has
the self-similar form (36), where the self-similarity function f satisfies (18). If u0
satisfies (3), and u is the unique weak solution to CP (1), (2), then u satisfies (6).

The proof coincides with that given for Lemma 3 from [7].

Lemma 2. Let u be a weak solution to the CP (1), (2), with u0 satisfying the condi-
tion (3). Let one of the following cases be valid

b > 0, 0 < β < mp, 0 < α < (1 + p)/(mp−β) Case 1,
b > 0, β ≥ mp, α > 0 Case 2,
b < 0, β ≥ 1, α > 0 Case 3.

Then, for any σ ∈ R, u satisfies (6) with the same function f as in Lemma 1.

The proof of Cases 1 and 2 coincides with the proof of Lemma 4 from [7]. The
proof of Case 3 coincides with the proof of Case (c) of Lemma 3.2 of [3], the only
difference being when β > 1, we choose the function g as the following

g(x, t) = (C + 1)(1 + |x|µ)
α
µ (1− νt)γ, x ∈ R,0 ≤ t ≤ t0 = ν−1/2,

where

γ < 0, µ >
p + 1

p
, ν = −h∗+ 1, h∗ = min

R
h(x) > −∞,

h(x) = p(αm)p(C + 1)p−1γ−1(1− νt)γ(mp−1)+1(1 + |x|µ)
α(mp−1)−µ(p+1)

µ |x|(µ−1)p−1×

×[(µ−1)(1 + |x|µ) + (αm−µ)µ|x|µ].

Lemma 3. If b > 0, 0 < β < mp < 1, and α = (1 + p)/(mp− β), then the minimal
solution u to the CP (1), (3) has the self-similar form (19), where the self-similarity
function f1 satisfiesL0 f1 ≡

(
|( f m

1 )′|p−1( f m
1 )′

)′
+

mp−β
(1+p)(1−β)z f ′1 −

1
1−β f1−b f β1 = 0, z ∈ R,

f1(z) ∼C(−z)(1+p)/(mp−β), as z ↓ −∞, and f1(z)→ 0, as z ↑ +∞.
(38)

There exists τ1, % > 0 such that for any τ ∈ (−∞,−τ1) we have

u
(
τt

mp−β
(1+p)(1−β) , t

)
= %t

1
1−β , t ≥ 0. (39)

If 0 <C < C∗, then we have

0 < % < C∗(−τ)
1+p

mp−β , (40)

while if C > C∗, then f1(0) = A1(m, p,β,C,b) = A1 > 0.
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Proof of Lemma 3. We define

uk(x, t) = ku(k
β−mp
1+p x,kβ−1t), k > 0, (41)

(see Lemma 6 of [7]). The function (41) satisfies the CP (1), (4). We consider u to
be a unique minimal solution of CP (1), (4) such that

u(x, t) ≤ ku(k
β−mp
1+p x,kβ−1t), k > 0. (42)

By changing the variables in (42) as

y = k
β−mp
1+p x, ` = kβ−1t, (43)

we derive (42) with opposite inequality and with k replaced with k−1. Since k >
0 is arbitrary, (42) follows with ”=”. Taking k = t1/(1−β), (41) implies (19) with
f1(z) = u(z,1), where f1 is a solution to problem (38). This proves the first part of
the lemma. The second part of the lemma is proved in the same way as the second
part of Lemma 3.3 of [3]. �

Lemma 4. Let b > 0, 0 < β < mp < 1, and α = (1 + p)/(mp− β), and let u be the
minimal solution to the CP (1), (3). Then u satisfies

u
(
τt

mp−β
(1+p)(1−β) , t

)
∼ %t

1
1−β , as t→ 0+, (44)

where τ1,% > 0 are the same as in Lemma 3. Furthermore, if 0 <C < C∗, then

0 < % < C∗(−τ)
1+p

mp−β . (45)

If C > C∗, then
u(0, t) ∼ A1t

1
1−β , as t→ 0+; f1(0) = A1 > 0. (46)

The proof of Lemma 4 follows as a localization of the proof of Lemma 3, exactly
as local results were proven for Lemma 4 of [7].

Lemma 5. If b > 0, 0 < β <mp < 1, and α > (1+ p)/(mp−β), then the unique weak
solution u to the CP (1), (3) satisfies (10).

The proof of Lemma 5 coincides with the proof of Lemma 7 of [7].

5 Proof of the Main Result
In this section we prove the results classified by region in the (α,β) parameter

space diagram (Figure 1) described in Section 2.

Region I. From Lemma 2, the asymptotic formulas (6) and (18) follow. For any
ε > 0, from (6), there exists a number δ1 = δ1(ε) > 0 such that

(A0− ε)tα/(1+p−α(mp−1)) ≤ u(0, t) ≤ (A0 + ε)tα/(1+p−α(mp−1)), 0 ≤ t ≤ δ1(ε), (47)

where A0 = f (0) > 0. The proof of results for Region I follows exactly as the proof
of result (1) from [3] for b , 0, by choosing

g(x, t) = t
1

1−β f1(z), z = xt
β−mp

(1−β)(1+p) , (48)
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f1 = C0(z0− z)
1+p

mp−β
+ , 0 < z < +∞ (49)

with C0,z0 > 0 to be determined. To prove the left-hand sides of estimates (17) and
(5), we choose C0 = C1 and z0 = z1 (see the Appendix) and apply the comparison
theorem. We prove the right-hand sides of the estimations (17) and (5) by choosing
C0 = C∗, z0 = z2 and τ0 and the applying comparison theorem in the curved region
Gτ0,δ, where

Gτ,δ = {(x, t) : zτ(t) = τt
mp−β

(1+p)(1−β) < x < +∞,0 < t ≤ δ}.

�

Region II. Assume that u0 is defined as (4). The self-similar solution (19) follows
from Lemma 3. The proof of estimation (21) when C > C∗ (also when u0 is given
through (3)) coincides with the proof given in [7]. Let 0 < C < C∗. The formula
(23) follows from Lemma 3. The proof of the right-hand side of (21) (also when u0
is given through (3)) coincides with the proof given in [7] and the proof of the left-
hand side of (21) follows in the same way as the proof of the analogous estimate
from result (3) of [3]. �

Region III. The asymptotic estimate (10) follows from Lemma 4. The proof of the
asymptotic estimate (9) coincides with the proof given in [7]. �

Region IV. The asymptotic estimation (6) is proved in Lemma 2. From (6), (47) fol-
lows. The proof of estimate (11) follows in the same way as the analogous estimate
in result (4) from [3].

Intergration of (12) implies (24). By rescaling x with ε−1x, ε > 0 from (24) we
have

x
ε

=

∫ 1

ϕ( x
ε )

m
s

[
b
p

+
m(1 + p)

p(1−mp)(1 + m)
s1−mp

]− 1
1+p

ds, s > 0.

Letting r = −ε ln s implies
x = F [Λε(x)], (50)

where

F (s) =

∫ s

0
m

[
b
p

+
m(1 + p)

p(1−mp)(1 + m)
er(mp−1)/ε

]− 1
1+p

dr,

and
Λε(x) = −ε lnϕ

( x
ε

)
.

From (50) it follows that
Λε(x) = F −1(x), (51)

where F −1 is an inverse function of F .
Since 0 < mp < 1 it follows that

lim
ε→0
F (y) = m(b/p)−

1
1+p y, lim

ε→0
F −1(y) = m−1(b/p)

1
1+p y, (52)
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for y ≥ 0, uniformly, on bounded subsets. From (51) and (52) it follows that

− lim
ε→0+

ε lnϕ
( x
ε

)
= m−1(b/p)

1
1+p x. (53)

The asymptotic formula (26) follows by choosing y = x/ε. Inequality (27), as well
as estimations (28),(29),(30) follow from (24) and (25). �

Region V. Let either b > 0, β > mp or b < 0,β ≥ 1. The proof of this case follows in
the same way as the analogous case of result (5) of [3] The asymptotic estimation
(6) follows from Lemma 2. Take arbitrary small ε > 0. From (6), there exists a
number δ1 = δ1(ε) > 0 such that (47) holds. Let β ≥ 1, and consider a function

g(x, t) = t
α

1+p+α(1−mp) f (χ), χ = xt
−1

1+p+α(1−mp) . (54)

We have
Lg = t

αmp−1−p
1+p+α(1−mp) L1 f , (55)

where
L1 f =

α

1 + p +α(1−mp)
f −

1
1 + p +α(1−mp)

χ f ′−

−(|( f m)′|p−1( f m)′)′+ bt
1+p−α(mp−β)
1+p+α(1−mp) f β.

(56)

As a function f we select

f (χ) = C0(χ0 +χ)
1+p

mp−1 , χ ≥ 0, (57)

where C0 and χ0 are positive constants.
From (47) and Lemma 1 of [7], the right-hand side of (31) follows with δ = δ2,
where where

δ2 = δ1, if b > 0; δ2 = min(δ1, δ3), if b < 0,
and

δ3 =

[
αε(A0 + ε)1−β

(1 + ε)(−b(1 + p +α(1−mp)))

] 1+p+α(1−mp)
1+p+α(β−mp)

.

To prove a lower bound in this case we take C0 = C5 and χ0 = χ1.
The proof of the left-hand side of (31) if either b > 0, β < p(1−m)+2

1+p or b < 0, β ≥ 1 or

b > 0, β ≥ p(1−m)+2
1+p , follows in the same way as the analogous estimate in result (5)

of [3].
If b > 0 and β ≥ 1, then the proof of estimates (14), (15), and (33) follow as the
analogous proof from result (5) of [3]. While if b > 0 and 0 < mp < β < 1 the left-
hand side of (35) may be proved as left-hand side of (17) was previously proved.

The only difference is that f1(z) = C∗(1− ε)(z8 + z)
1+p

mp−β
+ is chosen in (48). The proof

of (16) follows in the same way as the proof of the analogous result from result (5)
of [3].
Now, let b = 0. First assume that u0 is defined by (4). The self-similar form (36) and
the formula (18) follow from Lemma 1. To prove (37), again consider the function
g as in (54), which satisfies (55) with b = 0. As a function f take (57). The proof
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of estimate (37) follows in the same way as the proof of the analogous result from
result (5) of [3]. To prove an upper estimate we choose C0 = C7 and χ0 = χ4 and to
prove a lower estimation we choose C0 =D and χ0 = χ3. �

6 Conclusions
The following is a summary of the main results
• If b > 0, 0 < β < mp, and 0 < α < (1 + p)/(mp− β), then diffusion weakly

dominates over the absorption and the interface expands with asymptotic
formula given by

η(t) ∼ ψ(C,m, p,α)t(mp−β)/(1−β)(1+p), as t→ 0+,

where, ψ(C,m, p,α) > 0.
• If b > 0, 0 < β <mp, and α = (1+ p)/(mp−β), then diffusion and absorption

are in balance, and there is a critical value C∗ such that the interface expands
or shrinks accordingly as C > C∗ or C < C∗ and

η(t) ∼ z∗(C,m, p)t(mp−β)/(1−β)(1+p), as t→ 0+,

where z∗ ≶ 0 if C ≶ C∗.
• If b > 0, 0 < β < mp, and α > (1 + p)/(mp− β), then absorption strongly

dominates over diffusion and the interface shrinks with asymptotic formula
given by

η(t) ∼ −τ∗(C,m, p,α,β)t1/α(1−β), as t→ 0+,

where, τ∗(C,m, p,α,β) > 0.
• If b > 0, 0 < β = mp < 1, and α > 0, then domination of the diffusion over

absorption is moderate, there is an infinite speed of propagation, and the
solution has exponential decay at infinity.
• If either b> 0, β >mp or b< 0, β≥ 1, then diffusion strongly dominates over

the absorption, and the solution has power type decay at infinity independent
of α > 0, which coincides with the asymptotics of the fast diffusion equation
(b = 0).

7 Appendix
Below are the explicit values of the constants used in Sections 2, 3, and 5.

I. 0 < β < mp and 0 < α < (1 + p)/(mp−β)

z1 = (b(1−β))
mp−1

(1+p)(1−β) (m(1 + p))
p

1+p (p(m +β))
1

1+p (mp−β)
p(m+β−1)−1
(1+p)(1−β) (1−mp)

1−mp
(1+p)(1−β) ,

C1 =

(
1−β

1−mp

) 1
mp−β

C∗,

τ0 =

(1−mp
mp−β

)mp−1
1−β

(
D

C∗

) (mp−1)(β−mp)
(1+p)(1−β)

, z2 = τ0
1−β

mp−β
.
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II. 0 < β < mp and α = (1 + p)/(mp−β)

C2 = A1z
1+p
β−mp
3 , A1 = f1(0) > 0,

z3 = (m(1 + p))
p

p+1 (m +β)
1

1+p p
1

1+p (mp−β)−1(1−β)
1

1+p A
m−1
1+p
1

[
b(1−β)Aβ−1

1 + 1
] −1

1+p ,

z4 =

(
A1

C∗

)mp−β
1+p

, z5 = τ1−

(
%

C∗

) 1+p
mp−β

,C3 = C
(

1
1−δ∗Γ

) 1+p
mp−β

,

Γ = 1−
(

C
C∗

)mp−β
1+p

, z6 = δ∗Γτ2, with δ∗ such that g(δ∗) = max
δ∈(0,1)

g(δ),

g(δ) = (δΓ)
1+p−p(m+β)
(1+p)(1−β)

1−δΓ− (
C
C∗

)mp−β ( 1
1−δΓ

)p
mp−β

(1+p)(1−β)

,

τ2 = C
β−mp
1+p

b(1−β)
δ∗Γ

1−δ∗Γ− (
C
C∗

)mp−β ( 1
1−δ∗Γ

)p
mp−β

(1+p)(1−β)

.

V. β > mp

C5 = (1− ε)
1

1−mpD,

C6 =

(
α(1−mp)p+1

κb(1 + p +α(1−mp))(m(1 + p))p p(m + 1)

) 1
mp−1

,

χ1 = (A0− ε)(mp−1)/(1+p)(1− ε)1/(1+p)D(1−mp)/(1+p), if b > 0, 1 ≤ β < (p(1−m) + 2)/(1 + p),

χ1 = (A0− ε)(mp−1)/(1+p)D(1−mp)/(1+p), if b > 0, β ≥ (p(1−m) + 2)/(1 + p) or b < 0, β ≥ 1,

χ2 =

(A0 + ε

C6

)mp−1
1+p

, A0 = f (0) > 0, κb =

1, if b > 0,
1 + ε, if b < 0,

z8 =
[
b(1−β)Cβ−1

∗ (1− ε)mp−1(1− (1− ε)β−mp)
] mp−β

(1+p)(1−β) ,

χ3 = (A0/D)(mp−1)/(1+p),

χ4 = χ3(1 + (1 + p)/α(1−mp))1/(1+p),

C7 =D(1 + (1 + p)/α(1−mp))1/(1+mp).
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