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Abstract

In this paper, we study whether a shallow water system with Coriolis
effect admits peakon-delta weak solutions in distribution sense. Mean-
while, we find that the relationship between the coefficients of key non-
linear terms of the system plays an important role in the study of exis-
tence of peakon-delta weak solutions in distribution sense.
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1 Introduction

In this paper, we consider the following shallow water system with Coriolis
effect

Up — Upze + QUUL + PUglpr + YUUzee + Mo + 201, = 0,1 > 0,2 € R, (1)

n+ (1+n)u), =0,t >0,z €R, (2)

where u is related to the average of horizontal velocity, n denotes free surface
elevation from equilibrium with the boundary condition v — 0 and n — 0
as |r| — oo, a, § and ~y are real constants, {2 is a dimensionless parameter
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describing the strength of the Coriolis effect (2 > 0). For « = 1, § = 4 and
~v =1, system (1)-(2) reads to

Up — Uppe + Uy + UglUpy + Ulgyy + 1 + 200, = 0,8 > 0,2 € R (3)

me+ (L+nu)e =0,t> 0,z €R, (4)

which are derived by Luo, Liu, Mi and Moon [1] from the rotation-Green-
Naghdi equations by using the asymptotic expansion in the Camassa-Holm
scaling [1].

The most interesting feature of system (3)-(4) is that it admits all kinds of
travelling-wave solutions [1]. But it does not possess the Camassa-Holm-type
peaked solution [1]. It is well known that peakon solution is a kind of the
weak solution in the sense of distribution. It is shown that many equations
and systems admit peakon solution, such as Camassa-Holm equation [2-4],
Degasperis-Procesi equation [5, 6], modified Camassa-Holm equation [7, 8],
Dullin-Gottwald-Holm equation [9], the two-component Camassa-Holm sys-
tem [10,11] and the rotation-two-component Camassa-Holm system [12] and
so on.

The main objective of this paper is to investigate whether the shallow
water system with Coriolis effect (1)-(2) admits peakon-delta weak solutions
in distribution sense. Comparing with system (3)-(4), we find that in the
study of existence of peakon-delta weak solutions in distribution sense, the
relationship between the coefficients a;, § and v in equation (1) acts a key
role. Namely, if and only if o + % + % = 0 (where o is real number to be
determined.), there exist peakon-delta weak solutions in distribution sense.

2 Construction of peakon solutions

Let us consider the traveling-wave solution of the system (1)-(2) by the setting

u(z, 1) = u(), p(x, 1) = p(§), € = v = ¢(1), (5)

where ¢(t) is a function to be determined. Substituting (5) into system (1)-(2),
we get

—q (D)ug + q (t)ugee + o + Buguge + yuugee + e — 204 (e =0, (6)

—¢ (L) + g + une + nug = 0. (7)

For (7), a distribution has zero derivative if and only if it is a constant. So
there is an € € R such that

u—€
¢(t) —u

(8)

77:
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Substituting (8) into (6) gives rise to

(—=q'(t) + au)(q'(t) — u)?ue + (¢'(t) + yu)(q' (1) — u)*ueee
+6(q (t) — u)*ueuee + (1 — 294 () (q'(t) — €)ue = 0. 9)

We search for peakon solution of (9) in the form

u=r+pe f') (10)

where the r and p are constants to be determined. With the help of distribution
theory, we deduce that

ug = —2e 7 sgu(¢), (11)

uge = Lot g 12
=23} (12)

Ugge = —%e#sgn(ﬁ) - %55(6)- (13)

Substituting (11)-(13) into (9) arrives at

—2(q/(t) — (1 20¢'(#))e = sgn(€) = 0. (14)

Noticing that for any ¢(§) € C5°(R), we claim

—l&l —1¢l

(2410 + e () = = e (), 006))
— /_OO %p(q’(t) +yr +ype e )(q(t) = — pe e )*de(§)p(8)dE

d

G
= (1) + 7 + ) (1) — 7 — ) ec(0), (15)

m
|

L2 0) 1+ e @) = — pe 2 0(6)] lemo
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)?e™ sgn(§)p(€) le=o= 0. (16)

Making inner product with (14) by ¢(¢) € C§°(R) and using (15) and (16),
we get

LG/ (1) + 7+ 9)d (1) ~ 7~ ppe(0)
0= 200 - ar =] [0 == e e smnlpl)ie
Liar S D) [ @y r—pe ¥ e sm@olert
L -on-2000) [ (@ = o. )
Equation (17) holds in the sense of distribution, provided that
L (1) + 7 +9)d (1) ~ 7~ ) =0, (15)
PI(1~ ) (1) — o —r 5] =0, (19)
Zg(@+g+%):0 (20)
" ~(d/(1) = (1 = 204/(1)) = 0. (21)

Let us discuss the solutions of the system (1)-(2) from system (18)-(21) for
different cases

21 =0
In this case, the system (18)-(21) reduces to
('(t) +yr +p)(d (t) —r —p)* =0, (22)
1., 1
(1= =)d'(t) —ar —yr—] =0, (23)
o o
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(a+§;+%)—o (24)
and
¢ (t)(1 —2Q4¢'(t)) = 0. (25)
Case 1

For ¢ = 1, then r = 0. Therefore under the condition oo + 8 + v = 0, we
deduce

1
"(t) = — = 26
which leads to ]
q(t) = Et + xp. (27)
So we obtain
1 1
U= ﬁeﬂa/‘fﬁt*xou
1
n=-1+ (28)

1— €7|x7%t720|'

Case 2
For ¢ = 1, then r = 0. Therefore under the condition oo + 5 + v = 0, we
deduce

1
"t)==—==- 29
q¢(t) =55 =" (29)
which leads to
(1) = —t 4 g p = ——— (30)
So we obtain
1 1
— _27_Q€f|x7mt720|
n=—14+ 1 . (31)
v — 6—|x—$t—xo|
Case 3
Assume that 0 < 02 = =252 £ 1 then
1 afr
which implies that
_ LW, (33)
2Qa

2008 ’
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1
q(t) = ﬁt + . (35)
So, we get
a+fB+y af-a-p —fye—lw—ﬁt—xo\
 2Q0p 2Qa ’
n=—1+ ab - (36)
(@B—a—-F—y)l—e =)
where 0 = @/—%.
Case 4
Assume that 0 < 02 = =22 £ 1, then
1 afr
/ t = — = — = 37
¢(t) =55 = +p) P (37)
which implies that
a+5+77 (39)
2Qap
1 a+B8+7y
=— — 39
P= 7507 T T 2008 (39)
1
q(t) = oq! T %o (40)
So, we have
_a+ﬁ+7_( 1 Oé"—ﬁ—i-’y)e*h”*ﬁljt*xo\
 2Qap 20y 2Qa ’
h= 14 by (41)

)
—\w—ﬁljt—wol
o

Y(@B —a—B—7)+ (af+v(a+B+7)e

where o = @/—%.

Remark. Using same procedure with the above, we can obtain peakons
under the condition € # 0. Here, we omit them.

3 discussion

In this paper, we construct single peakon weak solutions for the shallow-water
system with the Coriolis effect in distribution sense. Comparing with (3)-(4),
we find that in the study of existence of peakon-delta weak solutions in distri-
bution sense, the relationship between the coefficients «,  and v in equation
(1) acts a key role. If and only if o + % + % = 0, there exist peakon-delta
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weak solutions in distribution sense.
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