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Abstract

In this paper, we study whether a shallow water system with Coriolis
effect admits peakon-delta weak solutions in distribution sense. Mean-
while, we find that the relationship between the coefficients of key non-
linear terms of the system plays an important role in the study of exis-
tence of peakon-delta weak solutions in distribution sense.
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1 Introduction

In this paper, we consider the following shallow water system with Coriolis
effect

ut − utxx + αuux + βuxuxx + γuuxxx + ηx + 2Ωηt = 0, t > 0, x ∈ R, (1)

ηt + ((1 + η)u)x = 0, t > 0, x ∈ R, (2)

where u is related to the average of horizontal velocity, η denotes free surface
elevation from equilibrium with the boundary condition u → 0 and η → 0
as |x| → ∞, α, β and γ are real constants, Ω is a dimensionless parameter
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describing the strength of the Coriolis effect (Ω > 0). For α = 1, β = 4 and
γ = 1, system (1)-(2) reads to

ut − utxx + uux + 4uxuxx + uuxxx + ηx + 2Ωηt = 0, t > 0, x ∈ R (3)

ηt + ((1 + η)u)x = 0, t > 0, x ∈ R, (4)

which are derived by Luo, Liu, Mi and Moon [1] from the rotation-Green-
Naghdi equations by using the asymptotic expansion in the Camassa-Holm
scaling [1].

The most interesting feature of system (3)-(4) is that it admits all kinds of
travelling-wave solutions [1]. But it does not possess the Camassa-Holm-type
peaked solution [1]. It is well known that peakon solution is a kind of the
weak solution in the sense of distribution. It is shown that many equations
and systems admit peakon solution, such as Camassa-Holm equation [2–4],
Degasperis-Procesi equation [5, 6], modified Camassa-Holm equation [7, 8],
Dullin-Gottwald-Holm equation [9], the two-component Camassa-Holm sys-
tem [10, 11] and the rotation-two-component Camassa-Holm system [12] and
so on.

The main objective of this paper is to investigate whether the shallow
water system with Coriolis effect (1)-(2) admits peakon-delta weak solutions
in distribution sense. Comparing with system (3)-(4), we find that in the
study of existence of peakon-delta weak solutions in distribution sense, the
relationship between the coefficients α, β and γ in equation (1) acts a key
role. Namely, if and only if α + β

σ2 + γ
σ2 = 0 (where σ is real number to be

determined.), there exist peakon-delta weak solutions in distribution sense.

2 Construction of peakon solutions

Let us consider the traveling-wave solution of the system (1)-(2) by the setting

u(x, t) = u(ξ), ρ(x, t) = ρ(ξ), ξ = x− q(t), (5)

where q(t) is a function to be determined. Substituting (5) into system (1)-(2),
we get

−q′(t)uξ + q′(t)uξξξ + αuuξ + βuξuξξ + γuuξξξ + ηξ − 2Ωq′(t)ηξ = 0, (6)

−q′(t)ηξ + uξ + uηξ + ηuξ = 0. (7)

For (7), a distribution has zero derivative if and only if it is a constant. So
there is an ε ∈ R such that

η =
u− ε

q′(t)− u
. (8)
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Substituting (8) into (6) gives rise to

(−q′(t) + αu)(q′(t)− u)2uξ + (q′(t) + γu)(q′(t)− u)2uξξξ

+β(q′(t)− u)2uξuξξ + (1− 2Ωq′(t))(q′(t)− ε)uξ = 0. (9)

We search for peakon solution of (9) in the form

u = r + pe
−|ξ|
σ , (10)

where the r and p are constants to be determined. With the help of distribution
theory, we deduce that

uξ = − p
σ
e
−|ξ|
σ sgn(ξ), (11)

uξξ =
p

σ2
e
−|ξ|
σ − 2p

σ
δ(ξ), (12)

uξξξ = − p

σ3
e
−|ξ|
σ sgn(ξ)− 2p

σ
δξ(ξ). (13)

Substituting (11)-(13) into (9) arrives at

−2p

σ
(q′(t) + γr + γpe

−|ξ|
σ )(q′(t)− r − pe

−|ξ|
σ )2δξ(ξ)

+
2p2

σ2
β(q′(t)− r − pe

−|ξ|
σ )2e

−|ξ|
σ δ(ξ)sgn(ξ)

+
p

σ
[(1− 1

σ2
)q′(t)− αr − γr 1

σ2
](q′(t)− r − pe

−|ξ|
σ )2e

−|ξ|
σ sgn(ξ)

−p
2

σ
(α +

β

σ2
+

γ

σ2
)(q′(t)− r − pe

−|ξ|
σ )2e

−2|ξ|
σ sgn(ξ)

− p
σ

(q′(t)− ε)(1− 2Ωq′(t))e
−|ξ|
σ sgn(ξ) = 0. (14)

Noticing that for any ϕ(ξ) ∈ C∞0 (R), we claim〈
2p

σ
(q′(t) + γr + γpe

−|ξ|
σ )(q′(t)− r − pe

−|ξ|
σ )2δξ(ξ), ϕ(ξ)

〉
=

∫ ∞
−∞

2p

σ
(q′(t) + γr + γpe

−|ξ|
σ )(q′(t)− r − pe

−|ξ|
σ )2δξ(ξ)ϕ(ξ)dξ

=
d

dξ
[
2p

σ
(q′(t) + γr + γpe

−|ξ|
σ )(q′(t)− r − pe

−|ξ|
σ )2ϕ(ξ)] |ξ=0

=
2p

σ
(q′(t) + γr + γp)(q′(t)− r − p)2ϕξ(0), (15)
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and 〈
2p2

σ2
β(q′(t)− r − pe

−|ξ|
σ )2e

−|ξ|
σ δ(ξ)sgn(ξ), ϕ(ξ)

〉
=

∫ ∞
−∞

2p2

σ2
β(q′(t)− r − pe

−|ξ|
σ )2e

−|ξ|
σ δ(ξ)sgn(ξ)ϕ(ξ)dξ

=
2p2

σ2
β(q′(t)− r − pe

−|ξ|
σ )2e

−|ξ|
σ sgn(ξ)ϕ(ξ) |ξ=0= 0. (16)

Making inner product with (14) by ϕ(ξ) ∈ C∞0 (R) and using (15) and (16),
we get

2p

σ
(q′(t) + γr + γp)(q′(t)− r − p)2ϕξ(0)

+
p

σ
[(1− 1

σ2
)q′(t)− αr − γr 1

σ2
]

∫ ∞
−∞

(q′(t)− r − pe
−|ξ|
σ )2e

−|ξ|
σ sgn(ξ)ϕ(ξ)dξ

−p
2

σ
(α +

β

σ2
+

γ

σ2
)

∫ ∞
−∞

(q′(t)− r − pe
−|ξ|
σ )2e

−2|ξ|
σ sgn(ξ)ϕ(ξ)dξ

− p
σ

(q′(t)− ε)(1− 2Ωq′(t))

∫ ∞
−∞

e
−|ξ|
σ sgn(ξ)ϕ(ξ)dξ = 0. (17)

Equation (17) holds in the sense of distribution, provided that

2p

σ
(q′(t) + γr + γp)(q′(t)− r − p)2 = 0, (18)

p

σ
[(1− 1

σ2
)q′(t)− αr − γr 1

σ2
] = 0, (19)

p2

σ
(α +

β

σ2
+

γ

σ2
) = 0 (20)

and
p

σ
(q′(t)− ε)(1− 2Ωq′(t)) = 0. (21)

Let us discuss the solutions of the system (1)-(2) from system (18)-(21) for
different cases

2.1 ε = 0

In this case, the system (18)-(21) reduces to

(q′(t) + γr + γp)(q′(t)− r − p)2 = 0, (22)

[(1− 1

σ2
)q′(t)− αr − γr 1

σ2
] = 0, (23)
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(α +
β

σ2
+

γ

σ2
) = 0 (24)

and
q′(t)(1− 2Ωq′(t)) = 0. (25)

Case 1
For σ = 1, then r = 0. Therefore under the condition α + β + γ = 0, we

deduce

q′(t) =
1

2Ω
= p, (26)

which leads to

q(t) =
1

2Ω
t+ x0. (27)

So we obtain

u =
1

2Ω
e−|x−

1
2Ω
t−x0|,

η = −1 +
1

1− e−|x− 1
2Ω
t−x0|

. (28)

Case 2
For σ = 1, then r = 0. Therefore under the condition α + β + γ = 0, we

deduce

q′(t) =
1

2Ω
= −γp, (29)

which leads to

q(t) =
1

2Ω
t+ x0, p = − 1

2γΩ
. (30)

So we obtain

u = − 1

2γΩ
e−|x−

1
2Ω
t−x0|,

η = −1 +
γ

γ − e−|x− 1
2Ω
t−x0|

. (31)

Case 3
Assume that 0 < σ2 = −β+γ

α
6= 1, then

q′(t) =
1

2Ω
= r + p =

αβr

α + β + γ
, (32)

which implies that

r =
α + β + γ

2Ωαβ
, (33)

p =
αβ − α− β − γ

2Ωαβ
, (34)
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q(t) =
1

2Ω
t+ x0. (35)

So, we get

u =
α + β + γ

2Ωαβ
+
αβ − α− β − γ

2Ωαβ
e
−|x− 1

2Ω
t−x0|

σ ,

η = −1 +
αβ

(αβ − α− β − γ)(1− e
−|x− 1

2Ω
t−x0|

σ )
, (36)

where σ =
√
−β+γ

α
.

Case 4
Assume that 0 < σ2 = −β+γ

α
6= 1, then

q′(t) =
1

2Ω
= −γ(r + p) =

αβr

α + β + γ
, (37)

which implies that

r =
α + β + γ

2Ωαβ
, (38)

p = − 1

2Ωγ
− α + β + γ

2Ωαβ
, (39)

q(t) =
1

2Ω
t+ x0. (40)

So, we have

u =
α + β + γ

2Ωαβ
− (

1

2Ωγ
+
α + β + γ

2Ωαβ
)e
−|x− 1

2Ω
t−x0|

σ ,

η = −1 +
αβγ

γ(αβ − α− β − γ) + (αβ + γ(α + β + γ))e
−|x− 1

2Ω
t−x0|

σ

, (41)

where σ =
√
−β+γ

α
.

Remark. Using same procedure with the above, we can obtain peakons
under the condition ε 6= 0. Here, we omit them.

3 discussion

In this paper, we construct single peakon weak solutions for the shallow-water
system with the Coriolis effect in distribution sense. Comparing with (3)-(4),
we find that in the study of existence of peakon-delta weak solutions in distri-
bution sense, the relationship between the coefficients α, β and γ in equation
(1) acts a key role. If and only if α + β

σ2 + γ
σ2 = 0 , there exist peakon-delta
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weak solutions in distribution sense.
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