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Abstract 

 

Ordinary differential equations (ODEs) define the relationship of 𝑥(𝑡) values with 

time (𝑡). While exact solutions for linear differential equations can be solved with 

(for example) matrix exponentials, non-linear systems generally do not have a 

closed form solution. Here, we explore a novel method (Inductive Linearization) 

that has proven to be fast and efficient for non-stiff systems and explore how it 

performs when solving non-linear stiff systems. The research team has developed 

and refined the Inductive Linearization, as an innovative numerical solver. In this 

instance, the IL solver has been applied to the Van der Pol system which represents 

a simple and tuneable stiff system. This method approximates solutions to non-

linear systems utilizing iterative linearization to create a linear time-varying (LTV) 

system of ODEs that spans the entire time interval of interest. The resultant LTV is 

then solved using eigenvalue decomposition (EVD). This study used ode45 and 

ode23s method as the non-stiff and stiff reference solvers to examine the 

performance of the IL solver. Our findings reveal that the optimized inductive 

solver greatly improves stiff system solutions more than non-stiff systems, and 

further benefits from repeating oscillations which advances the understanding of 

the solver. 

 

Keywords: Non-linear ordinary differential equations, Numerical methods, 

Optimization, Inductive Linearization, Adaptive step-size algorithm 

 

 

Introduction 

 

The Inductive Linearization (IL) method is a numerical technique that has been 

used to iteratively solve non-linear ordinary differential equations (ODEs) [1]. IL 

is a numerical method made up of two components: 1) linearization of the non-

linear ODEs to form linear time-varying (LTV) ODEs, 2) integration of the LTV 

ODEs using eigenvalue decomposition (EVD) to solve matrix exponentials [2-4]. 

In the first component the linearization is applied to the whole time span of interest 

rather than in a time-stepping approach. The IL solver has been utilized for several 

systems including a general method to simplify a non-linear quantitative systems 

pharmacology model for a stiff system in bone biology [5] and an HIV viral model 

[2]. Non-linear stiff systems are common and important in pharmacology models 

such as delay models [6], system models [7] and viral dynamic models. However, 

evaluation of the performance of solvers, including IL, in application settings is 

difficult as the stiffness of the underlying ODEs is variable and largely unknown.  
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The Van der Pol equation is a single parameter dynamic non-linear 2nd order 

differential equation established by Dutch physicist Van der Pol [6]. It is used in 

many fields of biology [8] and engineering [9]. The oscillator dynamic is considered 

a good example of a non-linear stiff system which has no algebraic solution [10].  

In this setting the Van der Pol system provides a simple tuneable reference case for 

exploring solver performance for both non-stiff and stiff systems. Given the 

absence of a closed-form algebraic solution, solving the Van der Pol system 

requires numerical integration. Algebraic integration yields a precise and 

computationally efficient closed-form solution. However, it is important to note that 

the majority of non-linear systems lack algebraic solutions.  

The aim of this study is to explore the performance of IL when applied to a reference 

ODE system (the Van Der Pol oscillator) which can be tuned to both stiff and non-

stiff settings.  

 

 

Methods 

 

All simulations were performed using MATLAB (R2024a) and the reference ODE 

solvers were the inbuilt numerical ODE solvers, ode45 (for non-stiff systems) and 

ode23s (for stiff systems). 

Inductive linearization is a numerical method introduced to solve non-linear ODEs 

[1]. It has similarities to Picard’s method [11]. IL is a type of linear multistep 

method [12] and is made up of two components which when combined are termed 

the IL solver. The components are: 

1) Inductive linearization– which linearizes the non-linear ODEs to form LTV 

ODEs. It has its own primary property, i.e., the number of iterations (𝑛) 

which is defined to determine convergence of the method. The previous 

work has identified the benefits of optimizing the number of iterations based 

on convergence of the algorithm for a non-stiff system (denoted in this work 

as N-optimized) [13].  

2) The LTV integrator– in this study, we used EVD. Note, EVD is exact for 

linear time-invariant systems. Here we divide the LTV into a series of linear 

piecewise elements and apply EVD to each element. The greater the number 

of elements (smaller the step-size [ss]) the greater the accuracy but at the 

cost of increased run-time. The previous work [13] has identified the 

benefits of optimizing the step-size of the EVD solver for a non-stiff system 

(denoted in this work as ss-optimized). 
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Inductive linearization  

This method is described briefly here; further details are available in [1, 13]. 

Consider a simple general form of a non-linear ODE: 

 
𝑑𝑦

𝑑𝑡
= 𝑓 − 𝐴(𝑡, 𝑦) ∙ 𝑦;                                                                                                                (1) 

 

where the homogenous term 𝑨(∙) is dependent on 𝒚 and therefore the system is 

non-linear. The IL operates by removing the dependency of the homogeneous term 

on the unknown value of 𝒚 . (Note, application the IL is not limited to the 

homogeneous term). Here we redefine the function 𝑨 so that it is dependent on a 

previous iteration of 𝒚 such that the system is no longer self-referential as: 

 

𝑑𝑦[𝑛]

𝑑𝑡
= 𝑓(𝑡) − 𝐴(𝑡, 𝑦[𝑛−1]) ∙ 𝑦[𝑛];                                                                                           (2) 

 

with an initial value of 𝒚[𝑛=1] = 0 for all 𝑡. As 𝑛 → ∞ the LTV solution approaches 

the non-linear solution and the difference of successive iterations will approach 0. 

The maximum number of iterations 𝑁  (i.e., a stopping rule) can therefore be 

optimized based on the difference of successive iterations, such that 

 

max⁡
𝑡∈𝑇

|(𝑦(𝑡)[𝑛−1] − 𝑦(𝑡)[𝑛])| < 𝜀                                                                                             (3) 

 

where 𝑇 is the span of time of interest and 𝜀 is some level of tolerance, in this case 

1e-6. In the previous work the number of iterations is often less than 10 [13]. In this 

work we consider both fixed 𝑁 and optimized 𝑁 based on the stopping rule. Note 

the value of 𝑁⁡ transitions from a fixed, non-optimized state to an optimized 

condition where 𝑁 is controlled by the IL solver. 

 

Eigenvalue Decomposition 

Eigenvalue decomposition is used to solve the LTV system of ODEs (produced by 

Inductive linearization). This method is based on factorization and decomposition 

of a rate constant matrix 𝑲 . Each matrix decomposition is built on similarity 

transformations of the form: 

  

𝐾 = 𝑉̅Λ⁡𝑉̅−1. The idea being to find 𝑽̅, the eigenvectors, and Λ, the eigenvalues, of 

𝑲 , which then allow computation of 𝑒𝑡Λ  (see [14] for details of applying this 

method in this setting). 
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As per [13], the efficiency of EVD for solving an LTV is defined by the number 

and the size of each piecewise linear element. This is resolved by considering a 

step-size (𝑠𝑠) to cut the LTV into segments of various lengths. The units of 𝑠𝑠 are 

the same as the units of the independent variable, in this case time. The units of time 

here are arbitrary with no effect on the system.  In this work we consider both fixed 

step-size (for example 𝑠𝑠 = 0.01) (as per [2]) and adaptive step-size employing 

various values of 𝛼 (as per [13]). The latter determined as:  

 

𝑠𝑠 = 𝛼 |(
𝑑𝑦∗

𝑑𝑡
)
−1

|                                                                                                                      (4) 

 

The Van der Pol equation  

The Van der Pol equation is given by: 

 

𝑑2𝑦

𝑑𝑡2
− 𝜇(1 − 𝑦2)

𝑑𝑦

𝑑𝑡
+ 𝑦 = 0                                                                                                    (5) 

 

𝑑𝑥

𝑑𝑡
 is the first derivative and 

𝑑2𝑥

𝑑𝑡2
 is the second derivative, and 𝜇  is the damping 

parameter. 

By reforming Equation 5, we can obtain the following form for typical ODEs: 

 

𝑑2𝑦

𝑑𝑡2
= 𝜇(1 − 𝑦2)

𝑑𝑦

𝑑𝑡
− 𝑦;                                                                                                         (6) 

 

The function can be rewritten as a system of two first-order ODEs (Equation 7), 

with its initial conditions: 

 

𝑑𝑦

𝑑𝑡
= (

𝑑𝑦1

𝑑𝑡
𝑑𝑦2

𝑑𝑡

) = [
𝑦2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

−𝑦1 + 𝜇(1 − 𝑦1
2)𝑦2

] ; ⁡⁡⁡𝑦1(0) = 1;⁡𝑦2(0) = 0⁡                (7) 

 

Linearizing the ODEs yields the ODEs as per equations 8 & 9 which than then be 

formulated as a 𝑲 matrix (Equation 10): 

 

 
𝑑𝑦1

𝑑𝑡
= 𝑦2                                                                                                                        (8) 

𝑑𝑦2
[𝑛]

𝑑𝑡
= −𝑦1 + 𝜇 (1 − (𝑦1

[𝑛−1])
2

) 𝑦2
[𝑛]                                                                     (9) 
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𝐾 = [
0 1

−1 ⁡𝜇 (1 − (𝑦1
[𝑛−1])

2

)
]                                                                                  (10) 

 

The reference simulation was based on Equation 6 and the IL expression on 

Equation 7. The Van der Pol system was examined for two values of the damping 

parameter 𝜇 = 1, 10  denoting the non-stiff and stiff versions, respectively. The 

MATLAB built-in functions ode23s (stiff) and ode45 (non-stiff) were the reference 

time-stepping ODE solvers. We arbitrarily set the time units as hours. 

 

Exploring the Van der Pol equation using the Inductive Linearization solver 

The following scenarios were considered: 

The reference IL settings 

Non-stiff (𝜇 = 1): fixed number of iterations of the linearization (𝑁 =

20) and fixed step-size (𝑠𝑠 = 0.01) for EVD (as per [2])  

Stiff (𝜇 = 10): fixed number of iterations of the linearization 𝑁 = 60 

and fixed step-size (𝑠𝑠 = 0.001) for EVD  

 The optimized IL settings 

optimizing stopping rule with 𝜀⁡ = ⁡1𝑒 − 6 (N-optimized) 

optimizing adaptive step-size within a limited range of possible values 

𝛼⁡ = {0.001, 0.01, 0.03} (ss-optimized) 

The timespan of interest for the oscillator was 𝑇 = [0: 30]  for optimization of 

settings. The two phases of optimization here were (1) N-optimized then (2) adding 

on adaptive step-size (N-ss-optimized). 

Finally, we took advantage of the known periodicity of the oscillator by solving the 

first cycle of the Van der Pol system and carrying forward the values of 𝒚𝟏 and 𝒚𝟐 

from the first cycle to be the plug-in values of 𝒚𝟎 for all future cycles and setting 

𝑁 = 0 for subsequent cycles. This yields a single-step linearization process for the 

subsequent cycles. For the non-stiff system, the timespan of the first cycle is 10 

hours and that for the 2 cycles is therefore 20 hours. In contrast, for the stiff system 

the timespan of the first cycle is 20 hours and that for the 2 cycles is therefore 40 

hours. For both systems, the first cycle was solved using a N-ss-optimized IL and 

the second cycle using a 1-step linearized IL (i.e., the second cycle was linearized 

in a single-step approach rather than iteratively). 

Results of the application of the IL are described in terms of accuracy and run-time. 

Accuracy was evaluated both numerically as the relative difference of the reference 

of IL from the ODE solutions (ode45 and ode23s). In addition, since the IL 

approach linearizes the whole time span of interest during each iteration and the 

accuracy of IL decreases with increasing time it is therefore easy to visualize  
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divergence of IL from the reference time-stepping ODE solvers (ode45 or ode23s) 

which provides a simple and pragmatic tool for evaluating the IL solver.  

 

Results 

 

The results for run-time are presented in Table 1., Fig. 1a and Fig. 1b  which show 

the graphical outcomes of the best 𝑁 -𝑠𝑠⁡ combinations for non-stiff and stiff 

systems, respectively. For the non-stiff setting the N-optimized IL converged in 

1.86 seconds, which was twice the speed of the reference (non-optimized) IL. For 

the stiff setting the N-optimized was 4 times faster. Both solutions were however 

much slower than MATLAB’s inbuilt time-stepping ODE solvers (ode45 and 

od23s). Applying the N-ss-optimized IL to the non-stiff problem yielded a further 

3 fold improvement in speed (𝛼 = 0.001) which tracked the reference solution 

closely (Fig. 1a) but was slower than the reference ode45. For the stiff setting the 

N-ss-optimized solution was 6 times faster than the non-optimized approach (𝛼 =

0.03) but was 2-fold slower than ode23s. Again this optimized setting tracked 

ode23s closely.  

A benefit of the Inductive linearization solver is its ability to take advantage of 

repetitive patterns in the system. Results for solving the system for the first period 

and using this as a 1-step linearization for the subsequent period are provided in 

Table 2, Fig. 2a and Fig. 2b. Using the model predictions of 𝑦1 and 𝑦2 from period 

1 as the 1-step linearization for period 2 resulted in a 4.7- and 2.3- fold increase in 

speed for cycle 2 for the non-stiff and stiff Van der Pol settings. This speed 

advantage improved the overall speed of the IL-solver over both non-stiff and stiff 

settings which would continue to improve the more cycles were solved.  For the 

stiff system this improvement was comparable to ode23s.  

Finally, accuracy defined as relative error versus time is shown in Fig.3a &3b for 

𝑦1. specified that the relative error between the reference solver (ode45) and the 

optimized IL compared for non-stiff Van der Pol to (𝜇⁡ = ⁡1, 𝛼⁡ = ⁡0.001, 𝑦1 ) 

increased over the time after the two cycle more than IL for the stiff system. 

Therefore, the optimized IL more accurately solved the stiff Van der Pol (𝜇⁡ =

⁡10, 𝛼⁡ = ⁡0.03, 𝑦1).  

 

Discussion 

 

We have investigated the performance of the Inductive linearization solver for both 

non-stiff and stiff non-linear differential equations. Our findings indicate that the 

optimized IL is capable of solving the stiff system with comparable performance to  
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the non-stiff system. It is slower for the stiff system which is also a feature of 

reference time-stepping solvers. The optimization settings within IL were different 

between the stiff and non-stiff system which indicates a need to efficiently 

recognize stiff numerical ODE systems. 

As anticipated optimizing, the number of iterations of the linearization component, 

via a stopping rule for N, resulted in significant improvements in run-time without 

loss of accuracy. Essentially, N is a linear operator on the computation load as it 

defines the number of times with which the system is integrated. In the case we 

explored, the improvement in run-time was modest over the reference non-

optimized IL because our initial guess of the fixed value of N was not very different 

from the optimized value (see the non-stiff example where our fixed value was 

N=20 and the optimized value for this problem was N=19).  

In addition, our findings also supported the importance of optimizing the step-size 

of the EVD integrator. In the case of the stiff system, our findings identified that 

𝛼 = 0.03  was preferable to 𝛼 = 0.001 . Applying the adaptive step-size 

optimization step with the best value of 𝛼⁡for each scenario improved the run-time 

for both non-stiff and stiff systems about 3- and 6-fold, respectively. In the current 

work, values of 𝛼  were chosen from a small set of possible values (based on 

previous experience (see [13])). Further research is required to optimize the value 

of⁡𝛼 which will depend on the properties of the underlying system.  

We showed that based on the information provided in Fig. 1a and Fig. 3a, it 

becomes evident that the IL solver solves the system throughout the entire time 

span. As the time span shortens, the solver operates more rapidly. However, due to 

the propagation of errors over time, the deviation between the solver's results and a 

reference solution increases over time. 

We observed that the optimized IL can take advantage of periodicity, where 

solutions of 𝒚(𝑡)⁡from the first cycle can be plugged in as 𝒚𝟎(𝑡) for subsequent 

oscillatory cycles. In this setting 𝒚𝟎(𝑡)  was not updated further. This is a 

compelling feature of IL as reusing the solution from period 1 for multi-period 

problems reduces the time-domain of the iterative linearization with subsequent 

periods being evaluated as a single function call.  

A further benefit of IL is its application in iterative optimization problems, such as 

a gradient search method for parameter estimation. In this scenario it is 

straightforward to evaluate the next step in the parameter optimization process with 

the final estimates of the last step. As the optimization algorithm proceeds then each 

subsequent iteration will provide a solution that is closer to the final iteration. Hence 

plugging in the values of 𝒚(𝑡) in the previous set iteration as the starting point of 

next iterations, 𝒚𝟎(𝑡), takes advantage of the convergent nature of the algorithm 

and has been shown to result in significant benefits in run-time [13].  
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Conclusion 

 

In conclusion, our brief investigation supports the application of the Inductive 

Linearization solver for stiff systems of non-linear ordinary differential equations. 

Of interest, the IL method can also take advantage of known periodicities in 

oscillatory systems that considerably improve its efficiency . 
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Table 1. Run-time of the optimized Inductive Linearization solver  
 

 

 

Table 2. Run-time of the one cycle solver predicting into subsequent cycles 
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Figure legends 

 

 

 
 

 

Fig. 1a The solutions for both dependent variables 𝒚𝟏 and 𝒚𝟐 for the Van der Pol 

equation solved by the optimized Inductive Linearization solver (𝜇 = 1 , 𝛼 =

0.001 ). Red (or green) and blue lines represent the ode45 and Inductive 

Linearization solver solution, respectively. 

https://doi.org/10.1137/0703053
https://doi.org/10.1007/s10928-022-09813-z
https://doi.org/10.1137/s00361445024180


 

Exploring the performance of the optimized inductive linearization solver                29 

 

 

 
 

 

Fig. 1b The solutions for both dependent variables 𝒚𝟏 and 𝒚𝟐 for the Van der Pol 

equation solved by the optimized Inductive Linearization solver (𝜇 = 10 , 𝛼 =

0.03 ). Red (or green) and blue lines represent the ode23s and Inductive 

Linearization solver solution, respectively. 

 

 
 

Fig. 2a The solutions for periodicity optimization for the non-stiff system while it 

can solve the second cycle based on the first solution. Red (or green) and blue lines 

represent the ode45 and Inductive Linearization solver solution, respectively. 



 

30        Sepideh Sharif, Chihiro Hasegawa, Matthew Fidler and Stephen B. Duffull 

 

 

 
 

Fig. 2b The solutions for periodicity optimization for the stiff system while it can 

solve the second cycle based on the first solution. Red (or green) and blue lines 

represent the ode23s and Inductive Linearization solver solution, respectively. 

 

 
 

Fig. 3a The relative error (RelError) vs. Time (hour) for the optimized IL solver (𝜇 

= 1, 𝛼 = 0.001, 𝑦1) and ode45 solver. 
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Fig. 3b The relative error (RelError) vs. Time (hour) for the optimized IL solver (𝜇 

= 10, 𝛼 = 0.03, 𝑦1) and ode23s solver. 
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