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Abstract 

 

The study is concerned with the application of a novel idea used to find analytical 

solutions of a nonlinear boundary value problem that arises in channel flow 

problems. The velocity profile of a viscoelastic fluid between two planes is obtained 

with both slip and no-slip boundary conditions. We present analytical solutions on 

classical problems – the Poiseuille flow, and the generalized Couette flow of a 

viscoelastic fluid between two parallel planes. The viscoelastic fluid is modeled by 

an Oldroyd 6-constant fluid, giving rise to a highly nonlinear ordinary differential 

equation. This equation has been solved via a novel approach by reducing the 

differential equation to a cubic algebraic equation, giving rise to a non-recursive 

series solution to the equation. Finally, after the solution of the general differential 

equation is given Newton’s Method is used for faster convergence to solve the 

equation in the case of three common boundary conditions. 

 

Keywords: Analytical Solutions, viscoelastic fluid, spectral methods 

 

1 Introduction  
 

Viscoelastic fluids, characterized by their intricate rheological properties, defy 

description through the classical Navier-Stokes model employed for Newtonian  
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fluids due to their nonlinear stress-strain relationship [1, 2]. Unlike their Newtonian 

counterparts, which display a straightforward linear relationship between stress and 

strain rate, viscoelastic fluids exhibit a more complex behavior that necessitates 

alternative modeling approaches. In response to this challenge, various constitutive 

equations and non-Newtonian fluid models have been developed over recent 

decades [3]. 

One particularly notable viscoelastic fluid model is the Oldroyd 6-constant fluid. 

This model has gained substantial prominence in diverse fields, including polymer 

processing, food processing, and biological systems, thanks to its capacity to 

elucidate intricate flow phenomena. Unlike Newtonian fluids that merely follow a 

linear stress-strain response, Oldroyd 6-constant fluids showcase a distinctive 

behavior. They exhibit a memory effect, enabling them to recall their original shape 

after deformation, and they possess both viscous and elastic characteristics when 

subjected to shear forces [4]. Consequently, this unique behavior makes Oldroyd 6-

constant fluids an invaluable tool for simulating and modeling materials that 

manifest both viscous and elastic responses during flow, paving the way for a deeper 

understanding of complex flow dynamics in various industrial and biological 

contexts. 

When investigating the behavior of different types of Oldroyd fluids, the quest for 

analytical solutions to nonlinear differential equations stands as a pivotal endeavor 

in scientific research. However, this pursuit is often beset with formidable 

challenges stemming from the inherent complexity and nonlinearity of the 

equations under scrutiny. In response to these challenges, the scientific community 

has devised a multitude of innovative methodologies to approximate solutions for 

such intricate problems. One such formidable tool is perturbation theory, which has 

garnered significant attention for its utility in deducing approximate solutions in 

cases characterized by weak nonlinearity [5]. However, it is important to note that 

its applicability is often contingent upon the specific parameter ranges involved, as 

it may falter beyond certain limits. Beyond perturbation theory, a diverse array of 

alternative methodologies has been employed to tackle nonlinear differential 

equations in their various forms. Notably, the Adomian decomposition method, as 

introduced by Siddiqui et al. [6], offers a distinctive approach to resolving these 

equations. Similarly, several linearization techniques have been proposed, such as 

those delineated by Ramos [7]. These linearization methods aim to simplify 

complex nonlinear equations into more tractable forms. Furthermore, researchers 

have explored the effectiveness of modified Lindsedt-Poincaré methods and the 

optimal homotopy perturbation method [8, 9, 10, 11] as viable avenues for finding 

analytical solutions to nonlinear differential equations for Oldroyd type fluids.  

This paper presents a novel approach to obtain analytical solutions for the Oldroyd 

6-constant fluid; a task never previously attempted. We achieve this by transforming 

the nonlinear ordinary differential equation into a cubic algebraic equation, 

resulting in a non-recursive series solution. Additionally, to expedite convergence, 

we apply Newton's Method to solve the general differential equation. We apply this 

methodology to address two classical problems: Poiseuille flow, and generalized 

Couette flow of a viscoelastic fluid between two parallel planes under an applied  
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pressure field. To validate the accuracy of our method, we also employ the spectral 

Chebyshev method [12], a numerical technique known for its precision in solving 

differential equations. Remarkably, our spectral solutions align perfectly with our 

analytical solutions, affirming the effectiveness of our approach.  

 

2 Mathematical Formulation 

 
We consider the steady laminar flow of an incompressible Oldryod 6-constant fluid 

between two parallel plates separated at distance d. As shown in figure 1-a,b  

 

 

 

 

 

Fig. 1-a: Geometry for Poiseuille Flow  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1-b: Generalized Couette Flow 

 

 

The channel flow of an Oldroyd 6-constant fluid is a classic problem in fluid 

mechanics. Oldroyd 6-constant fluid is a type of non-Newtonian fluid with a 

viscoelastic behavior, where the stress in the fluid depends not only on the rate of 

deformation but also on the deformation history. The governing equations for the 

flow of Oldroyd 6-constant fluid can be derived from the generalized Navier-Stokes 

equations. 

 

For this geometry of flow, governing equations have been derived by many authors 

[12], without re-producing the derivation, we directly start with the most general 

governing equation for the flow under consideration. 
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𝑑2𝑢

𝑑𝑦2
+ [(3𝛼 − 𝛽) + 𝛼𝛽 (

𝑑𝑢

𝑑𝑦
 )

2

] (
𝑑𝑢
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1

𝜇
(

𝑑𝑝

𝑑𝑥
) [1 + 𝛽 (

𝑑𝑢

𝑑𝑦
 )

2

]
2

= 0                                (1)                                 

In this equation, 𝑢 is the axial component of velocity, and 𝑝 is pressure. Most 

importantly, the viscoelastic parameters 𝛼 and 𝛽 are defined as:  

                                                 𝛼 = 𝜆1𝜆4 − (𝜆3 + 𝜆5)(𝜆4 + 𝜆2), 

                                            𝛽 = 𝜆1𝜆3 − (𝜆3 + 𝜆5)(𝜆3 + 𝜆1).                            (2)                        

Both 𝛼 and 𝛽 are two key parameters that play a crucial role in shaping the velocity 

profile of flow with Oldroyd 6-constant fluids. Parameter 𝛼 represents the 

relaxation time of the fluid, while 𝛽 quantifies the shear-thinning behavior. These 

parameters can significantly influence the flow characteristics and, consequently, 

have implications for various practical applications in industries ranging from 

polymer processing to biomedical engineering. 

Furthermore, 𝜆𝑖 (𝑖 = 1,2,3,4,5) and 𝜇 are the six material constants of the Oldroyd 

fluid. Before we move forward, it is worth noting that the model exhibits different 

fluid behaviors based on the values of the six relaxation time parameters, 𝜆1 to 𝜆5. 

When all these material parameters are zero, the model behaves as a classical 

viscous Newtonian fluid. The model also describes other non-Newtonian fluid 

behaviors, including a Maxwell model, second grade fluid, and Johnson-Segalman 

model, depending on the values of the relaxation time parameters. 

We define following set of non-dimensional variables:  

𝑢̅ =
𝑢

𝑈
,        𝑦̅ =

𝑦

𝑑
,      𝑥̅ =

𝑥

𝑑
,     𝛼̅ =

𝛼𝑈2

𝑑2
,   𝛽̅ =

𝛽𝑈2

𝑑2
,    𝑝̅ =

𝑝 𝑑

𝜇𝑈
.  𝑐 =

1

𝜇

𝑑𝑝̅

𝑑𝑥
.  

Using these non-dimensional variables in Eq (1) and in Eq. (2) and after dropping 

bars for simplification, we arrive the following set of nonlinear differential 

equations and boundary conditions.  

 

           
𝑑2𝑢

𝑑𝑦2 + [(3𝛼 − 𝛽) + 𝛼𝛽 (
𝑑𝑢

𝑑𝑦
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𝑑𝑦
 )

2

]
2

= 0         (3) 

                                                                

 

3 Analytical Solution Technique 
 

To find analytical solution to Eq. (3), we initiate the process by introducing a 

substitution: 𝑧 =  𝑦′. This substitution transforms the equation into a separable 

ordinary differential equation. Upon integrating both sides, we obtain an algebraic 

equation that can be further manipulated into a cubic equation, solvable through the  
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cubic formula. We subsequently reverse our initial substitution, effectively 

performing indefinite integration. Following this step, we can incorporate specific 

boundary conditions to restrict the constants, resulting in a set of analytical 

solutions within a defined parameter space. Given below are the details. 

 

Define     𝑧 =
𝑑𝑢

𝑑𝑦
 and   

𝑑2𝑢

𝑑𝑦2
 =

𝑑𝑧

𝑑𝑦
.   This transform Eq.(3) to first order ODE in z: 

 

            
𝑑𝑧

𝑑𝑦
+ (3𝛼 − 𝛽)𝑧2

𝑑𝑧

𝑑𝑦
+ 𝛼𝛽𝑧4

𝑑𝑧

𝑑𝑦
= 𝑐(1 + 𝛽𝑧2)2                                (4) 

 

We factor out the 
𝑑𝑧

𝑑𝑦
 and separate the variables: 

 
(1 + (3𝛼 − 𝛽)𝑧2 + 𝛼𝛽𝑧4)

(1 + 𝛽𝑧2)2
𝑑𝑧 = 𝑐𝑑𝑦                                          (5) 

Integrate both sides: 

 

∫
(1 + (3𝛼 − 𝛽)𝑧2 + 𝛼𝛽𝑧4)

(1 + 𝛽𝑧2)2
𝑑𝑧 = ∫ 𝑐𝑑𝑦 

 
We get 

                  
𝛼𝑧3 + 𝑧

1 + 𝛽𝑧2
= 𝑐𝑦 + 𝛾0                                                 (7) 

 

Where 𝛾0 is our first constant of integration. We make the substitution 𝑦0 = −𝛾/𝑐 

in order to make 𝛾 easier to solve for. Then (7) becomes 

 

                  
𝛼𝑧3 + 𝑧

1 + 𝛽𝑧2
= 𝑐(𝑦 − 𝛾)                                                 (8) 

 

Rearrange  Eq. (8) and solve for 𝑧 (which is 𝑢′ in disguise) using a cubic formula.  

 

To keep our calculation simple, we introduce the following functions: 
 

𝑝 =
𝛽𝑐(𝑦−𝛾)

3𝛼
        𝑟 =

1

3𝛼
       𝑞 = 𝑝3 −

𝛽𝑐(𝑦−𝛾)−3𝛼𝑐(𝑦−𝛾)

6𝛼2 . 

 

Using these functions, we solve Eq. (8) for 𝑧, which is actually u′: 
 

      𝑢′ = 𝑓(𝑦, 𝛾) = 𝑝 + √𝑞 + √𝑞2 + (𝑟 − 𝑝2)323

+ √𝑞 − √𝑞2 + (𝑟 − 𝑝2)323

.        (9) 

 

We will refer to (9) as 𝑓(𝑦, 𝛾). Integrating it once gives, 𝑢(𝑦)  
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𝑢(𝑦) = ∫ 𝑝 +  √𝑞 + √𝑞2 + (𝑟 − 𝑝2)323

+ √𝑞 − √𝑞2 + (𝑟 − 𝑝2)323

𝑑𝑡                   

 

We may also write 𝑢 as 

 

                                     𝑢(𝑦, 𝛾, 𝐶) = ∫ 𝑓(𝜏, 𝛾)𝑑𝜏
𝑦

0

+ 𝐶                                                 (10) 

 

In the form of (10), we can solve for 𝐶 and 𝛾 using the appropriate boundary 

conditions. We approach these problems in Sections 3 and 4.  

 

 

3 Analytical Solution for Plane Poiseuille Flow 
 

Poiseuille flow is a type of laminar flow where a fluid flows between two parallel 

plates, driven by a pressure gradient as shown in figure 1-a. The flow is 

characterized by a parabolic velocity profile, where the velocity is maximum at the 

center of the channel and decreases towards the walls. Poiseuille flow occurs when 

both plates are stationary and there is no relative motion between the plates. We will 

solve the equation (3) with following boundary conditions: 

 

                                 𝑢(0) = 0,            𝑢(𝑑) = 0,                                                   (11) 

 

where 𝑑 is the width of the channel. Armed with general solution given in Eq. (10) 

we immediately note that 𝑢(0) = 0, iff 𝐶 = 0. We also notice that if we set 𝛾 =
0,  𝑓(𝑦, 0) becomes an odd function, i.e., 𝑓 can be shown to satisfy the relation 

𝑓(𝑦) = −𝑓(−𝑦). This implies that the line 𝑥 = 𝑓(𝑦) is symmetric about the 𝑥 axis. 

Since  𝛾 only represents a translation in 𝑦, this means that 𝑓(𝑦, 𝛾) is symmetric 

about the axis 𝑥 = 𝛾. In order to induce the B.C. 𝑢(𝑑) = 0, we set 𝛾 = 𝑑/2. This 

means that the axis of symmetry is half the distance from one end of the pipe to the 

other. Therefore, since 𝑢(0) = 0, 𝑢(𝑑) = 0 as well. Having obtained 𝐶 = 0 and 

𝛾 = 𝑑/2, we present the solution as 

 

                                                              𝑢(𝑦) = ∫ 𝑓(𝜏,
𝑑

2
)

𝑦

0

𝑑𝜏.                                    (12)   

              

We have plotted the solution for several parameter values in Figures 2 and 3.. 
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Figure 2: Poiseuille flow for various values of 𝛼 keeping 𝛽 constant. The solid 

black line in each figure is 𝛼 = 4.  

 

   
 

Figure 3:  Poiseuille flow for various values of 𝛽 keeping 𝛼 constant. The solid 

black line is 𝛽 = 1.  

 

 

 

4  Analytical Solution for Generalized Couette Flow 
 

Generalized Couette flow refers to a laminar flow pattern that occurs when a fluid 

flows between two parallel plates with one in motion, but in presence of pressure 

gradient. As the plates move, the fluid experiences a changing shear stress and a 

varying velocity profile, leading to a nonlinear velocity distribution. We will solve 

the equation (3) with following boundary modified conditions: 

 

                                 𝑢(0) = 0,            𝑢(𝑑) = 𝑣0.                                                (13) 

(a) 𝑐 = 1, 𝛼 = 1, 𝛽 = 1, 2, 3, 4 (b) 𝑐 = 1, 𝛼 = 3, 𝛽 = 1, 2, 3, 4 (c) 𝑐 = 1, 𝛼 = 5, 𝛽 = 1, 2, 3, 4 

 

(c) 𝑐 = 1, 𝛽 = 9, 𝛼 = 1, 2, 3, 4 (b) 𝑐 = 1, 𝛽 = 5, 𝛼 = 1, 2, 3, 4 (a) 𝑐 = 1, 𝛽 = 3, 𝛼 = 1, 2, 3, 4 

(a)  (b)  

(c)  

(a)  (b)  (c)  
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where 𝑑 is the width of the channel. Bottom place stays stationary, whereas the 

upper wall moves at a certain velocity moves with certain velocity 𝑣0. We 

immediately can satisfy the first condition by noting that when we integrate from 0 

this condition is satisfied. Thus 𝐶 = 0. This and the second condition leaves us with 

                          𝑢(𝑦, 𝛾, 0) = 𝑢(𝑑, 𝛾) = ∫ 𝑓(𝜏, 𝛾)𝑑𝜏
𝑑

0

= 𝑣0                         (14) 

 

We solve this equation for 𝛾 using Newton’s Method. The recursion involved is 

 

                                       𝛾𝑛+1 = 𝛾𝑛 −
𝑢(𝑑, 𝛾) − 𝑣0

𝑑
𝑑𝛾

𝑢(𝑑, 𝛾)
                                     (15) 

 

A reasonable guess for 𝛾0 is ½. It and four iterations of Newton’s method is used 

to creat plots for this analysis. Plots are shown in Figs. 4 and 5. 

 

            

     
                
Figure 4: Generalized Couette Flow is plotted for 𝑑 = 1 and 𝑣0 = 1. 𝛼 is held constant while 𝛽 varies from 1 to 4. The solid 

line is 𝛽 = 1. 
        

 

 

 
 
Figure 5: Generalized Couette Flow is plotted for 𝑑 = 1 and 𝑣0 = 1. 𝛽 is held constant while 𝛼 varies from 1 to 4. The solid 

line is 𝛼 = 1.   

(b) 𝑐 = 1, 𝛽 = 5, 𝛼 = 1, 2, 3, 4 (c) 𝑐 = 1, 𝛽 = 9, 𝛼 = 1, 2, 3, 4 

(a) 𝑐 = 1, 𝛽 = 3, 𝛼 = 1, 2, 3, 4 (b) 𝑐 = 1, 𝛽 = 5, 𝛼 = 1, 2, 3, 4 (a) 𝑐 = 1, 𝛽 = 9, 𝛼 = 1, 2, 3, 4 

(a) 𝑐 = 1, 𝛼 = 1, 𝛽 = 1, 2, 3, 4 (b) 𝑐 = 1, 𝛼 = 3, 𝛽 = 1, 2, 3, 4 (c) 𝑐 = 1, 𝛼 = 5, 𝛽 = 1, 2, 3, 4 

(a)  (b)  (c)  

(a)  (b)  
(c)  
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4 Chebyshev Spectral Solutions 
 

In this section, we employ Chebyshev spectral solutions to assess the accuracy of 

our analytical solutions. Specifically, we employ the Chebyshev spectral 

collocation method to obtain numerical solutions. It's noteworthy that Chebyshev 

polynomials have a well-established track record in effectively delivering 

numerical solutions across a broad spectrum of boundary value problems and have 

significantly contributed to the advancement of computational fluid dynamics [13]. 

 

When addressing ordinary differential equations, whether they exhibit linearity or 

nonlinearity, particularly within straightforward domains characterized by smooth 

data that define the problem, spectral methods consistently emerge as the preferred 

methodology. These methods exhibit an extraordinary capacity for achieving 

exceptionally high levels of precision, often attaining up to ten significant digits. 

This stands in sharp contrast to finite difference or finite element methods [14], 

which typically offer lower-order accuracy. 

 

While we refrain from delving into the intricate details of implementation, we 

present a comparative analysis between spectral and analytical solutions for plane 

Poiseuille flow. Figure 6 clearly demonstrates a perfect match between the results 

of the analytical and numerical solutions, thereby affirming the validity and 

accuracy of our chosen methodology. 

 

  
         Figure 6: Comparison of the graphs of numerical and analytical solutions for the plane Poiseuille flow 

   

 

5  Conclusions 

 
In this study, we introduce a novel methodology for deducing analytical solutions 

to the nonlinear differential equations governing the flow of Oldroyd 6-constant 

fluid between two parallel planes. These solutions carry substantial significance 

within the realm of fluid dynamics and rheology. The availability of closed-form 

solutions plays a pivotal role in enhancing our theoretical comprehension of fluid 

behavior and opens up avenues for rigorous mathematical analysis. 

 

(a) 𝑐 = −1, 𝛼 = 1, 𝛽 = 4, 
(b) 𝑐 = −1, 𝛼 = 4, 𝛽 = 1, 
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This heightened understanding, in turn, has the potential to offer valuable insights 

into the fundamental physics at play, thus empowering researchers to refine and 

construct more precise constitutive models for industrial fluids of this nature. 

 

This work presents analytical and numerical results across a broad spectrum of 

parameter values of the fluid. A comprehensive examination of the Oldroyd 6-

constant model, encompassing viscoelastic and shear-thinning characteristics, is 

conducted to scrutinize the impact of α and β on the velocity profile within the 

context of parallel plate flow for an Oldroyd 6-constant fluid. This rigorous 

investigation provides valuable insights into the dynamic behavior of these fluids 

under diverse conditions. 

 

The material parameters α and β, of paramount significance, exert a profound 

influence on the velocity profile. α represents the relaxation time of the fluid, while 

β quantifies its shear-thinning behavior. Their pivotal roles in shaping the flow 

characteristics bear significant implications for a myriad of practical applications, 

spanning industries from polymer processing to biomedical engineering. 

 

Examining Figures 2 to 5 reveals that, as α assumes large values relative to the 

characteristic timescales of the flow, the fluid behaves akin to a purely elastic 

material, yielding a parabolic velocity profile reminiscent of Newtonian fluids. 

However, as α decreases or approaches the characteristic timescales, the 

viscoelastic effects become increasingly conspicuous, leading to deviations from 

the traditional Poiseuille flow profile (Fig. 2-c). The fluid exhibits a delayed 

response to alterations in applied shear stress, resulting in elongation and the 

emergence of "stress waves" within the fluid, particularly near the walls where the 

shear rate attains its zenith. 

 

Conversely, β governs the shear-thinning propensity of the fluid. With higher β 

values, the fluid exhibits a more pronounced shear-thinning behavior, signifying a 

reduction in viscosity as the shear rate escalates. This phenomenon can induce 

variations in the velocity profile, with the region near the wall experiencing elevated 

shear rates and consequently lower viscosity relative to the central region. The 

intricate interplay between α and β, coupled with other factors such as boundary 

conditions and flow rates, engenders a diverse spectrum of velocity profiles within 

Oldroyd 6-constant fluids. Mastery of these profiles is indispensable for the 

optimization of processes and systems involving the transportation of these intricate 

fluids. 
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