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Abstract

In this paper, using Black-Scholes assumptions, we derive an analyt-
ical closed form solution for the pricing of a quanto forward and option
contract. We use techniques of stochastic calculus and continuous time
in order to establish a closed form solution for a quanto forward and
option.
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1 Introduction
The pricing of quanto options using the Black–Scholes model (Black and Sc-
holes, 1973) are extremely inaccurate in an empirical framework, due to the fat
tails observed in financial returns (see among others, Mittnik et al, 2000 and
Opschoor et al, 2018). Park et al (2013) price quanto options in a stochastic
volatility framework, within the Black and Scholes model. However, the skew-
ness of financial data makes their findings imprecise. Kim et al (2015) improve
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the Black and Scholes option pricing model for quanto options by introducing
random time changes into normal tempered stable (NTS) distribution, which
enables infinite jumps as well as capturing random varying time in stochastic
volatility.

In this paper we present an analytical solution for the quanto forward and
option prices, under Black-Scholes assumptions, which satisfies the general
Feynman-Kac pricing partial differential equation (Janson and Tysk, 2006).
In contrast with competing derivations assuming discrete time, the current
research of developing a closed-form solution for quanto forwards and options
allows the validation of the application of continuous time assumption and
shows that errors can occur while adopting the former approach, especially
when sampling frequencies are minuscule. Through this approach, extensions
can be made to more complicated derivative securities, especially when they
have dividend yield and intermittent income prior to the execution date. Also,
numerical values can be very efficiently computed from the newly found ana-
lytical formula.

The next section introduces the notations and assumptions used in the
pricing. The third section first prices the quanto forward contract. Based on
the price of the quanto forward, we use the Black-Scholes pricing formula to
price the European quanto option. Finally, we conclude by discussing possible
shortcomings and how further research can improve the pricing, especially
when parametric assumptions are changed.

2 Assumptions and notation
Consider a probability space (Ω,F , P ) where Ω is a set of outcomes, F a σ-
field, and P a probability measure and a time interval T = [0, T ]. For any
s, t ∈ T with s ≤ t the family Ft is called a filtration. We assume an underlying
share price S follows a stochastic process. S is adapted to the filtration Ft,
if St can be determined by information available at time t. That is St is Ft-
predictable for any t ∈ T . The return process Xt is a function of St, and 〈X〉
is the variation of X, which is known as the realized variance of the returns
on S. Bt is a Brownian motion, which is the limit, as 4t → 0, of a Gaussian
discrete-time random walk.

Bt+4t = Bt + εt
√
4t

Where εt are i.i.d standard normal distribution: εt ∼ N(0, 1). An Itô process
X has the form:

Xt = X0 +

∫ t

0

µsds+

∫ t

0

σsdBs
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Where X0 a constant, µt and σt are adapted processes satisfying regularity
conditions. The Itô process has the following properties:

dt · dt = 0,

dBt · dt = 0,

dBt · dBt = dt.

Consider a function f(t, x) whose partial derivatives
∂f

∂t
,
∂f

∂x
and

∂f

∂x2
are well-

defined and continuous, and an Itô process Xt

dXt = µtdt+ σtdBt.

This implies that Yt = f(t,Xt) is also an Itô process and

dYt =
∂f

∂t
dt+

∂f

∂x
dXt +

1

2

∂2f

∂x2
(dXt)

2

=

[
∂f

∂t
+
∂f

∂x
µt +

1

2

∂2f

∂x2
σ2
t

]
dt+

∂f

∂x
σtdBt.

(1)

The second equality follows from the fact that (dXt)
2 = σ2

t dt. The market is
arbitrage-free if and only if there exists a risk-neutral measure Q.

According to Girsanov (1960), let B be a Brownian motion and P be
the corresponding Wiener measure. Let ηt be an adapted process satisfying
Novikov’s conditions.Then a process

ξt = exp
(
−
∫ t

0

ητdBτ −
1

2

∫ t

0

η2τdτ

)
is a martingale and we can define a new measure Q by

Q(A) = EP (1AξT )

equivalent to P . Equivalent means that measures P and Q agree which events
have zero probability. Moreover, the process BQ defined by

BQ
t = Bt +

∫ t

0

ηsds,

is a Brownian motion under Q. Then

EQ[ST ] = EP [ξTST ].

Consider the discounted price process St/S0,t. Assume there exists an
equivalent martingale measure Q such that for T > t,
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EQt
[
ST
S0,T

]
=

St
S0,t

.

At this point in the analysis, we fix an arbitrary time horizon T > 0 and
introduce the following assumptions: (i) The real interest rate r is constant.
(ii) Markets are arbitrage-free. (iii) The underlying share price S satisfies

dSt
St

= rdt+ σtdBt, St > 0 (2)

where Bt is a Brownian motion. (iv)∫ T

t

σ2
τdτ is finite. (3)

(v) Bt and Bσ
t are independent

dBtdB
σ
t = ρdt. (4)

From assumption (ii), we know that on a filtered probability space (Ω,F , P ),
there exists an equivalent probability measure Q such that ∀α, p ∈ R and
∀t ≤ T , a power contract paying at time T , αSpT has time-t price equal to
αEQt S

p
T , where EQt denotes the Ft-conditional Q-expectation. We are now in

the position to derive the pricing formulae for quanto forward contracts and
quanto European options.

3 Pricing

Quanto Forward Contract: Assume that both the foreign asset price St and
the exchange rate Xt follow a geometric Brownian motion:

dSt
St

= µsdt+ σsdB
s
t ,

dXt

Xt

= µxdt+ σxdB
x
t ,

dBs
t dB

x
t = ρdt,

where St is the foreign asset price, and Xt is the home price of one unit of the
foreign currency. Let r and rf be the domestic and the foreign interest rates
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respectively,

dS0
t

S0
t

= rdt,

dS0,f
t

S0,f
t

= rfdt.

Consider a quanto forward contract which pays X̄ST − F at time T . Here X̄
is a fixed exchange rate and F is the quanto forward price in units of domestic
currency. We derive F that makes the market value of the quanto forward
contract at time t equal to zero. Let V be the value of the derivative security
described. Given no arbitrage and the fundamental theorem of asset pricing
we obtain VT = X̄ST − F . We derive the price of a European quanto option
that pays max(X̄ST−K, 0) at time T , risk-neutral valuation, and asset pricing
equation. Under the risk-neutral measure Q, we obtain

Vt
S0
t

= EQt
[
VT
S0
T

]
,

Vt =
S0
t

S0
T

EQt [VT ],

= e−r(T−t)EQt [VT ].

We require F such that Vt = 0, which means there is no money exchanged
today. Hence

e−r(T−t)EQt [VT ] = 0,

EQt [VT ] = 0,

EQt [X̄ST − F ] = 0,

F = EQt [X̄ST ].

In order to find this value, we need to study the dynamics of St under risk-
neutral measureQ. UnderQ, the asset price is a martingale as the return under
Q is equal to the risk free rate. Given that we have two Brownian motions Bs

t

and Bx
t ; we assume that ηs and ηx are the prices of risks associated respectively.

Now, by Girsanov’s theorem we have

dBs,Q
t = dBs

t + ηsdt,

dBx,Q
t = dBx

t + ηxdt.
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We need to find ηx and ηs such that measure Q is an equivalent Martingale
measure, i.e. the discounted prices should be martingales. Let domestic and
foreign risk price assets have prices S0

t and S0,f
t , and

dS0
t

S0
t

= rdt,

dS0,f
t

S0,f
t

= rfdt.

Due to the fact that these are risk-free assets, they do not have any diffusion
(stochastic) terms. Steps (A)-(F) yield the requested results.

(A) From the domestic point of view, the foreign risky asset is an asset
with risky price Yt = StXt. Applying Ito’s lemma, we obtain a process for dYt.
If Yt = f(t, St, Xt),

dYt = ftdt+ fStdSt + fXtdXt +
1

2

[
fStSt (dSt)

2 + fXtXt (dXt)
2 + 2fStXt (dSt) (dXt)

]
= 0dt+XtSt(µsdt+ σsdB

s
t ) + StXt(µxdt+ σxdB

x
t )

+
1

2

[
0 (dSt)

2 + 0 (dXt)
2

+ 2
(
XtSt(µsµx(dt)

2) + µsσxdB
x
t dt+ σsdB

s
t dt+ σsdB

s
tµxdt+ σsσxdB

s
t dB

x
t

)]
= XtSt (µsdt+ σsdB

s
t ) + StXt (µxdt+ σxdB

x
t ) +XtSt(σsσxρdt).

Then we have

dYt
Yt

= (µs + µx + σxσxρ)dt+ σsdB
s
t + σxdB

x
t . (5)

(B) From the point of view of a domestic investor, the foreign risk free asset
is a risky asset with price Zt = S0,f

t Xt. Applying Ito’s lemma to get a process
for dZt, where Zt = f(t, S0,f

t , Xt). Thus

dZt = ftdt+ fSdS
0,f
t + fXdXt +

1

2

[
fSS

(
dS0,f

t

)2
+ fXX (dXt)

2 + 2fSX

(
dS0,f

t

)
(dXt)

]
= 0dt+XtS

0,f
t rfdt+XtS

0,f
t (µxdt+ σxdB

x
t )

+
1

2

[
0
(
dS0,f

t

)2
+ 0 (dXt)

2 + 2S0,f
t Xt

(
rfµx(dt)

2 + rfσxdB
x
t dt
)]

= XtS
0,f
t rfdt+XtS

0,f
t (µxdt+ σxdB

x
t ) + S0,f

t xt(0)

= XtS
0,f
t rfdt+XtS

0,f
t (µxdt+ σxdB

x
t ),
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from which we obtain

dZt
Zt

= (rf + µx)dt+ σxdB
x
t . (6)

Now, under the risk-neutral measure, the discounted prices of non-dividend

paying assets must follow a martingale. Thus, we apply Ito’s lemma to d
(
Yt
S0
t

)
and d

(
Zt

S0,f
t

)
.

(C)

d

(
Yt
S0
t

)
= 0dt+

dYt
S0
t

+

(
−Yt
(St)2

)
dS0

t

+
1

2

[
0(dYt)

2 +
2Yt

(S0
t )

3 (dS0
t )

2
+ 2

−1

(S0
t )

2dS
0
t dYt

]
=
Yt
S0
t

[(µs + µx + ρσxσs)dt+ σsdB
s
t + σxdB

x
t ]− Yt

S0
t

rdt

+
1

2

[
2Yt

(S0
t )

3 (S0
t )

2
r2(dt)2 − 2YtS

0
t

(dS0
t )

2

(
r(µs + µx + σxσsρ)(dt)2 + rσxdtdB

x
t

)]
,

from which we obtain

d

(
Yt
S0
t

)
/

(
Yt
S0
t

)
= (µs + µx + ρσxσs − r) dt+ σsdB

s
t + σxdB

x
t . (7)

(D)

d

(
Zt
S0
t

)
= 0dt+

dZt
S0
t

+

(
−Zt
(S0

t )
2

)
dS0

t

+
1

2

[
0(dZt)

2 +
2Zt

(S0
t )

3 (dS0
t )

2
+ 2

−1

(S0
t )

2dS
0
t dZt

]
=
Zt
S0
t

[(rf + µx)dt+ σxdB
x
t ]− Zt

S0
t

rdt

+
1

2

[
2Zt

(S0
t )

3 (S0
t )

2
r2(dt)2 − 2ztS

0
t

(dS0
t )

2

(
r(rf + µx)(dt)

2 + rσxdtdB
x
t

)]
.

From which we obtain

d

(
Zt
S0
t

)
/

(
Zt
S0
t

)
= (rf + µx − r) dt+ σxdB

x
t . (8)
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We use Girsanov’s theorem to express (3) and (4) under the risk-neutral

measure. Rewriting
(
Yt
S0
t

)
and

(
Zt
S0
t

)
under Q.

(E)

d

(
Yt
S0
t

)
/

(
Yt
S0
t

)
= (µs + µx + ρσxσs − r − σsηs − σxηx) dt+σsdBs,Q

t +σxdB
x,Q
t .

(9)
(F)

d

(
Zt
S0
t

)
/

(
Zt
S0
t

)
= (rf + µx − r − σxηx) dt+ σxdB

x,Q
t . (10)

Thus, both processes (9) and (10) have zero drift under Q. We use this
property in order to solve for ηs and ηx. Therefore,

σsηs = µs + ρσs + ρσsσx − rf
σxηx = rf + µx − r

yields

dSt
St

= (µs − σsηs)dt+ σsdB
s,Q
t

= (rf − ρσxσs)dt+ σsdB
s,Q
t .

Applying Itô’s lemma to ln(St) yields

d ln(St) =
dSt
St
− (dSt)

2

2S2
t

= (rf − ρσxσs)dt+ σsdB
s,Q
t .

Since (dSt)
2 = S2

t σ
2
sdt,

d ln(St) = (rf − ρσxσs − σ2
s/2)dt+ σsdB

s,Q
t .

Integrating from t to T yields

∫ T

t

d ln(Sτ )dτ =

∫ T

t

(rf − ρσxσs − σ2
s/2)dτ +

∫ T

t

σsdB
s,Q
τ dτ.

ln(ST )− ln(St) = (rf − ρσxσs − σ2
s/2)(T − t) + σs(B

s,Q
T −Bs,Q

t ),

ST = St exp
[
(rf − ρσxσs − σ2

s/2)(T − t) + σs(B
s,Q
T −Bs,Q

t )
]
.
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We now conclude that

F = EQt (X̄ST ) = X̄EQt (ST ).

Using the property that E expx = exp

(
E(x) +

1

2
var(x)

)
we derive

EQt (ST ) = EQt St exp
[
(rf − ρσxσs − σ2

s/2)(T − t) + σs(B
s,Q
T −Bs,Q

t )
]

= StEQt exp
[
(rf − ρσxσs − σ2

s/2)(T − t) + σs(B
s,Q
T −Bs,Q

t )
]

= St exp
[
EQt
{

(rf − ρσxσs − σ2
s/2)(T − t) + σs(B

s,Q
T −Bs,Q

t )
}]

+
1

2
var
{

(rf − ρσxσs − σ2
s/2)(T − t) + σs(B

s,Q
T −Bs,Q

t )
}
.

= St exp

{
(rf − ρσxσs − σ2

s/2)(T − t) +
1

2
σ2
s(T − t)

}
= St exp {(rf − ρσxσs)(T − t)} .

It follows that

F = X̄St exp [(rf − ρσxσs)(T − t)] (11)

as requested. Next, let’s find the price of a European quanto option paying
max(X̄ST −K, 0) at time T . Let this price be denoted by P . We apply the
Black-Scholes pricing formula.

max(X̄ST −K, 0) = X̄ max(ST −
K

X̄
, 0). (12)

Let P ′ be the price of an option that pays max(ST −
K

X̄
, 0) at maturity.

Given no arbitrage and the fundamental theorem of asset pricing: P = X̄P ′.
Thus, we price P ′ first then multiply it by X̄. This yields

dSt
St

= (rf − ρσxσs)dt+ σsdB
s,Q
t

EQt
(
dSt
St

)
= (rf − ρσxσs)dt 6= rdt.

This is not an arbitrage because the foreign asset St is denominated in for-
eign currency. At this point we cannot directly use the Black-Scholes formula.
Let q = r − rf + ρσxσs, then

dSt
St

= (r − q)dt+ σsdB
s,Q
t .
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This is now analogous to pricing an asset using the Black-Scholes formula
with constant dividend yield (q).

P ′ = exp(−q(T − t))StN(d1)− exp(−r(T − t))K
X̄
N(d2)

P = X̄P ′ = exp((rf − r − ρσxσs)(T − t))X̄StN(d1)− exp(−r(T − t))KN(d2),
(13)

where

d1 = ln

(
X̄St
K

+ (rf − ρσsσx +
σ2
s

2
)(T − t)

)
/
(
σs
√
T − t

)
d2 = d1 − σs

√
T − t.

4 Conclusions

Using Black-Scholes assumptions, this paper provides an analytical closed form
solution for the pricing of a quanto forward and option contract. This is a
desired contribution to the mathematical finance literature given that, most
prior research obtains quanto option solutions using numerical techniques and
Monte-Carlo simulations. Our solution provides very interesting avenues for
further research. First, stochastic volatility could be incorporated into the
pricing methodology (Heston, 1993), as both option and currency volatility
is typically time-varying. More advanced derivatives can also be written on
quanto, like quanto swaptions and quanto-forward floating-strike Asian op-
tions, for which higher parametric sophistication and processes for additional
variables like interest rate would be required.
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