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Abstract

In this note the equivalence among the Well-ordering Principle, the
Principle of Finite Induction and certain natural conditions concerning
the set of integers is discussed, thereby clarifying facts encountered in
the literature.
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1 Introduction

Peano’s Postulates for the set N = {0, 1, 2, . . . } of natural numbers [5, p.
35; 7], which may be regarded under the viewpoint of universality [3; 4; 5,
Chap. 2], subsume the Principle of Finite Induction:

If U is a subset of N such that 0 ∈ U and n+ 1 ∈ U whenever n ∈ U , then
U = N.

The Principle of Finite Induction ensures the validity of the Well-ordering
Principle, which reads:

Every non-empty subset of N admits a least element.

This is precisely the statement of Proposition 7, p. 41 of [5], in whose
proof one assumes the existence of a non-empty subset V of N which does not
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admit a least element and one shows, by induction on n, that ”x ∈ V ” implies
”x ≥ n”, from which one arrives at a contradiction.

On the other hand, the Principle of Finite Induction is a consequence of the
Well-ordering Principle, as Theorem 4, p. 10 of [1] guarantees. As a matter
of fact, in the proof of the just mentioned result, one takes U as above and
assumes that U 6= N, that is, N′ = N \ U 6= φ. If m is the least element of N′,
m− 1 ∈ U , and hence m = (m− 1) + 1 ∈ U , which cannot occur.

In this note, motivated by results appearing in Chapter I of [1] and Chap-
ter 1 of [6], equivalent conditions to the above-mentioned principles will be
discussed. Historical comments concerning Mathematical Induction may be
found, for example, in [2] and [6].

2 On the Well-ordering Principle and the Prin-

ciple of Finite Induction

As always, Z will denote the set of integers.

Firstly we shall prove a result motivated by Exercise 5, p. 11 of [1].

Proposition 2.1. The following conditions are equivalent:

(a) Well-ordering Principle;

(b) every non-empty subset of Z, with an upper bound, possesses a greatest
element;

(c) every non-empty subset of Z, with a lower bound, possesses a least ele-
ment.

Proof. (a) ⇒ (b): Let S be a non-empty subset of Z admitting an upper
bound s. Since

X = {s− t ; t ∈ S}
is a non-empty subset of N, (a) guarantees the existence of an element u of S
so that s− u ≤ s− t for all t ∈ S. Thus t ≤ u for all t ∈ S, proving (b).

(b) ⇒ (c): Let T be a non-empty subset of Z admitting a lower bound. Then
the non-empty subset −T = {−t; t ∈ T} of Z possesses an upper bound.
Hence, by (b), there is a v ∈ T such that −t ≤ −v for all t ∈ T , that is, v ≤ t
for all t ∈ T . Therefore (c) is established.

(c) ⇒ (a): It suffices to observe that N has a lower bound.

This completes the proof.
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Before proceeding, let us introduce a few notations. Indeed, for each z ∈ Z
let us write Z+

z = {t ∈ Z, t ≥ z}. Obviously, the mapping

ϕz : t ∈ Z+
z 7−→ ϕz(t) = t− z ∈ N

is bijective. Let us also write Z−z = {t ∈ Z; t ≤ z}. Clearly Z−z = −
(
Z+
−z
)

and
z is the least (resp. greatest) element of Z+

z (resp. Z−z ).

Z+
z

z z + 1 z + 2

N

0 1 2

ϕz

Remark 2.2. For all r, s ∈ Z, with r < s, the infinite sets Z+
r and Z+

s are
quite similar, in the sense that

Z+
r = Z+

s ∪ {r, . . . , s− 1}
(
Z+

r = Z+
s ∪ {r} if s = r + 1

)
.

Z+
r

r r + 1

Z+
s

s− 1 s

Evidently we would have a similar remark for the sets Z−z .

In the example below we shall furnish an infinite family of infinite subsets
of N, each of which does not coincide with a set Z+

z .

Example 2.3. For each prime natural number p, let us consider the subset

Xp = {p, p2, . . . , pn, pn+1, . . . }

of N. Since
pn+1 − pn = pn(p− 1) ≥ pn ≥ 2

for every integer n ≥ 1, Xp is an infinite set whose least element is p and which
does not coincide with a set Z+

z , and the distances between two consecutive
elements of Xp may be taken as big as we wish. Moreover, if p, q are arbitrary
prime natural numbers, with p 6= q, then Xp ∩Xq = φ.

The next result was motivated by Exercise 4, p. 10 of [1] and Theorem
1.3.1, p. 25 of [6].

Proposition 2.4. The following conditions are equivalent:
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(a’) Principle of Finite Induction;

(b’) for each z ∈ Z, if R ⊂ Z+
z , z ∈ R and n + 1 ∈ R whenever n ∈ R, then

R = Z+
z ;

(c’) for each w ∈ Z, if S ⊂ Z−w , w ∈ S and n− 1 ∈ S whenever n ∈ S, then
S = Z−w .

Proof. (a’)⇒ (b’): Put L = ϕz(R); L ⊂ N and 0 = ϕz(z) ∈ L (since z ∈ R).
If m ∈ L is arbitrary, m = ϕz(n) for a (unique) element n of R. By hypothesis,
n+ 1 ∈ R and

ϕz(n+ 1) = (n+ 1)− z = (n− z) + 1 = ϕz(n) + 1 = m+ 1,

showing that m+1 ∈ L. Thus, by (a’), L = N, which is equivalent to R = Z+
z .

Hence (b’) holds.

(b’) ⇒ (c’): First −S ⊂ −(Z−w) = Z+
−w and −w ∈ −S. Moreover, if n ∈ S is

arbitrary and m = −n, m+ 1 = −n+ 1 = −(n− 1) ∈ −S, because n− 1 ∈ S
by hypothesis. Therefore, by (b’), −S = Z+

−w , which is equivalent to S = Z−w
and proves (c’).

(c’) ⇒ (a’): Let T ⊂ N be such that 0 ∈ T and n + 1 ∈ T whenever n ∈ T .
Then 0 ∈ (−T ) ⊂ (−Z+

o ) = Z−o and n− 1 ∈ (−T ) if n ∈ (−T ), and (c’) yields
−T = Z−o , which is equivalent to T = Z+

o = N and proves (a’).

This completes the proof.

What we have seen may be summarized in

Corollary 2.5. The conditions (a), (b), (c), (a’), (b’) and (c’) are equivalent.

3 Examples

Firstly let us mention the following:

Remark 3.1. Let z ∈ Z be arbitrary and let us assume that to each t ∈ Z+
z

it is associated an assertion a(t) in such a way that a(z) is true and that, for
a given t ∈ Z+

z , a(t + 1) holds whenever a(t) holds. Then a(t) is valid for all
t ∈ Z+

z .

Indeed, it suffices to consider the subset

R =
{
t ∈ Z+

z ; a(t) is valid
}
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of Z+
z and to apply Proposition 2.4 to obtain R = Z+

z .

Throughout we shall write N∗ = N \ {0}.

Example 3.2. For all n ∈ N∗, the number of subsets of the set {1, . . . , n} is
2n.

In fact, since the subsets of {1} are ∅ and {1}, the assertion holds for n = 1.
Now, let us assume its validity for a certain n ∈ N∗. Since

{1, . . . , n, n+ 1} = {1, . . . , n} ∪ {n+ 1} and {1, . . . , n} ∩ {n+ 1} = ∅,

the number of subsets A of {1, . . . , n, n + 1} for which n + 1 ∈ A coincides
with the number of subsets of {1, . . . , n}, that is, coincides with 2n. Thus the
number of subsets of {1, . . . , n, n + 1} is 2 ·2n = 2n+1, and the assertion is a
consequence of Remark 3.1.

Example 3.3. Let p be an arbitrary prime natural number. For all n ∈ Z,
with n ≥ 2, and for all non-zero integers a1, a2, . . . , an such that p|a1 ·a2 ··· an,
one has p|a1, or p|a2, . . ., or p|an.

Indeed, the case n = 2 corresponds to a fundamental result of Euclides [1,
p. 19]. Now let us assume that, for a given n ∈ Z, with n ≥ 3, the assertion
holds for n − 1. Since p|

(
a1(a2 · · · an)

)
, it follows that p|a1 or p|(a2 · · · an).

If p|a1, we are done. On the other hand, if p|(a2 · · · an), there would exist a
j ∈ {2, . . . , n} for which p|aj. Therefore, by Remark 3.1, our claim is justified.

Example 3.4. For all n ∈ Z, with n ≥ 4, one has 2n−2 ≥ n.

In fact, since the claim is obvious for n = 4, let us suppose 2(n−1)−2 =
2n−3 ≥ n− 1 for a certain n > 4. Then,

2n−2 = 2(n−3)+1 = 2·2n−3 ≥ 2(n− 1) = 2n− 2 > n,

so that our claim holds for n. Therefore, by Remark 3.1, our claim is justified.

Consequently, 2n > n for all n ∈ N. Indeed, the claim is obvious if n ∈
{0, 1, 2, 3}. And, if n ≥ 4, what we have just seen gives

2n = 222n−2 ≥ 4n > n.

Example 3.5. For all n ∈ N∗,

1 + · · ·+ n =
n(n+ 1)

2
.

Indeed, since our assertion is obvious for n = 1, let us suppose its validity
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for a given n ∈ N∗. Then

1 + · · ·+ n+ n+ 1 =
n(n+ 1)

2
+ n+ 1 =

n2 + n+ 2n+ 2

2
=
n2 + 3n+ 2

2

=
(n+ 1)(n+ 2)

2
,

and our assertion is valid for n+1. Hence, by Remark 3.1, our claim is justified.

Example 3.6. For all n ∈ N,

9|(10n + 3·4n+2 + 5)

(that is, 9 is a divisor of 10n + 3·4n+2 + 5).

In fact, since our claim is obvious for n = 0, let us assume its validity for
a given n ∈ N∗. Thus, since

10n+1 + 3·4(n+1)+2 + 5 = (9 + 1)10n + 12·4n+2 + 5

= (10n + 3·4n+2 + 5) + 9(10n + 4n+2),

it follows that 9|(10n+1 +3·4(n+1)+2 +5), so that our assertion is valid for n+1.
Hence, by Remark 3.1, our claim holds.

Example 3.7. For all n ∈ N∗ and for all x1, . . . , xn in the set R of real
numbers,

|x1 + · · ·+ xn| ≤ |x1|+ · · · |xn|,
where | · | denotes the absolute value on R.

Indeed, since the assertion is clear for n = 1, let us suppose its validity for
a given n ∈ N∗. Therefore, for x1, . . . , xn, xn+1 ∈ R, the triangle inequality
and what we have just assumed give

|x1 + · · ·+ xn + xn+1| ≤ |x1 + · · ·+ xn|+ |xn+1| ≤ |x1|+ · · ·+ |xn|+ |xn+1|,

showing the validity of our claim for n+ 1. Thus, by Remark 3.1, our claim is
justified.

Example 3.8. For all x ∈ R, with x > 0, one has

lim
n→∞

n
√
x = 1.

Firstly let us suppose x > 1 and let us show that (1 + x)n ≥ 1 + nx for all
n ∈ N∗, which also follows from the binomial formula [1, p. 13].

In fact, since the inequality is clear for n = 1, let us assume its validity for
a given n ∈ N∗. Then

(1 + x)n+1 = (1 + x)n(1 + x) ≥ (1 + nx)(1 + x)

= 1 + (n+ 1)x+ nx2 > 1 + (n+ 1)x
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and the inequality holds for n + 1. Hence Remark 3.1 ensures the validity of
the inequality for all n ∈ N∗. Now, for each n ∈ N∗ let us write n

√
x = 1 + hn,

where hn > 0. Therefore

x =
(

n
√
x
)n

= (1 + hn)n ≥ 1 + nhn

for all n ∈ N∗, in such a way that

0 < hn ≤
x− 1

n

for all n ∈ N∗. But, since limn→∞
x−1
n

= 0 in view of the Archimedean property,
one concludes that limn→∞ hn = 0, and consequently limn→∞

n
√
x = 1.

On the other hand, if 0 < x < 1 (if x = 1 our claim is obvious), 1
x
> 1, and

what we have proved furnishes limn→∞
n

√
1
x

= 1. Thus limn→∞
n
√
x = 1.

By a similar argument [3, p. 35], one justifies:

Example 3.9. lim
n→∞

n
√
n = 1.

Example 3.10. If X is a non-empty set and f : X → X is an injective (resp.
a surjective) function, then the composite function

fn = f ◦ · · · ◦ f︸ ︷︷ ︸
n times

: X → X

is injective (resp. surjective) for all n ∈ N∗. In particular, if f is bijective,
then fn is bijective for all n ∈ N∗.

We shall restrict ourselves to the injectivity. As a matter of fact, assume
that f is injective, so that the assertion is obvious for n = 1. Suppose that fn

is injective for a given n ∈ N∗. Then, since

fn+1 = fn ◦ f,

it follows immediately that fn+1 is injective. Thus, by Remark 3.1, fn is
injective for all n ∈ N∗.

Let a, b ∈ R, with a < b. By recalling that the sum f+g and the product fg
of two continuous functions f, g : [a, b] → R on [a, b] are continuous functions
on [a, b], one may apply Remark 3.1 to conclude:

Example 3.11. For all n ∈ N∗, if f1, . . . , fn : [a, b] → R are continuous
functions on [a, b], then f1 + · · ·+ fn and f1 ··· fn are continuous functions on
[a, b].

In particular, every polynomial p(x) = c0 + c1x+ · · ·+ cnx
n (c0, c1, . . . , cn ∈

R) is a continuous function on R.
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Example 3.12. Let Q be the set of rational numbers and f : Q → Q an
injective function such that f(x+ y) = f(x) + f(y) and f(xy) = f(x)f(y) for
all x, y ∈ Q. Then f(x) = x for all x ∈ Q.

Initially, we shall show that f(n) = n for all n ∈ N. Indeed, f(0) = 0, since
f(0) = f(0 + 0) = f(0) + f(0). Hence f(1) 6= 0, because f is injective, and
the equality f(1) = f(1 ·1) = f(1)f(1) = f(1)2 furnishes f(1) = 1. Assume
f(n) = n for some n ∈ N. Then f(n + 1) = f(n) + f(1) = n + 1. Thus, by
Remark 3.1, f(n) = n for all n ∈ N. Consequently, for any n ∈ N∗,

0 = f(0) = f
(
n+ (−n)

)
= f(n) + f(−n) = n+ f(−n),

that is, f(−n) = −n. Hence f(n) = n for all n ∈ Z.

Now, let m ∈ Z, with m 6= 0. Since

1 = f(1) = f

(
m· 1

m

)
= f(m)f

(
1

m

)
= mf

(
1

m

)
,

f
(

1
m

)
= 1

m
. Finally, for all m,n ∈ Z, with m 6= 0,

f
( n
m

)
= f

(
n· 1

m

)
= f(n)f

(
1

m

)
=

n

m
,

as was to be shown.

4 Conclusion

In this note the equivalence among the Well-ordering Principle, the Prin-
ciple of Finite Induction and certain natural conditions has been established,
and a few known examples have been included.

References

[1] G. Birkhoff and S. Mac Lane, A Survey of Modern Algebra, Eighth Print-
ing, Macmillan, New York, 1971. https://doi.org/10.1201/9781315275499

[2] F. Cajori, Origin of the Name “Mathematical Induction”, Amer.
Math. Monthly, 25 (1918), 197-201.
https://doi.org/10.1080/00029890.1918.11998417



On mathematical induction 9

[3] F.W. Lawvere, An elementary theory of the category of sets, Proc.
Nat. Acad. Sci. U.S.A., 52 (1964), 1506-1511.
https://doi.org/10.1073/pnas.52.6.1506

[4] F.W. Lawvere, An elementary theory of the category of sets (long version)
with commentary, Reprints in Theory and Applications of Categories, 11
(2005), 1-35. https://doi.org/10.1007/bfb0080769

[5] S. Mac Lane and G. Birkhoff, Algebra, Sixth Printing, Macmillan, New
York, 1971.

[6] C.P. Milies and S.P. Coelho, Números: Uma Introduão à Matemática,
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