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Abstract

In this note the equivalence among the Well-ordering Principle, the
Principle of Finite Induction and certain natural conditions concerning
the set of integers is discussed, thereby clarifying facts encountered in
the literature.
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1 Introduction

Peano’s Postulates for the set N = {0,1,2,...} of natural numbers [5, p.
35; 7], which may be regarded under the viewpoint of universality [3; 4; 5
Chap. 2], subsume the Principle of Finite Induction:

If U is a subset of N such that 0 € U and n+ 1 € U whenever n € U, then
U=N.

The Principle of Finite Induction ensures the validity of the Well-ordering
Principle, which reads:

)

Every non-empty subset of N admits a least element.

This is precisely the statement of Proposition 7, p. 41 of [5], in whose
proof one assumes the existence of a non-empty subset V' of N which does not
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admit a least element and one shows, by induction on n, that ”x € V” implies
"x > n”, from which one arrives at a contradiction.

On the other hand, the Principle of Finite Induction is a consequence of the
Well-ordering Principle, as Theorem 4, p. 10 of [1] guarantees. As a matter
of fact, in the proof of the just mentioned result, one takes U as above and
assumes that U # N, that is, N' = N\ U # ¢. If m is the least element of N,
m —1¢€ U, and hence m = (m — 1) + 1 € U, which cannot occur.

In this note, motivated by results appearing in Chapter I of [1] and Chap-
ter 1 of [6], equivalent conditions to the above-mentioned principles will be
discussed. Historical comments concerning Mathematical Induction may be
found, for example, in [2] and [6].

2 On the Well-ordering Principle and the Prin-
ciple of Finite Induction

As always, Z will denote the set of integers.

Firstly we shall prove a result motivated by Exercise 5, p. 11 of [1].

Proposition 2.1. The following conditions are equivalent:

(a) Well-ordering Principle;

(b) every non-empty subset of Z, with an upper bound, possesses a greatest
element;

(c) every non-empty subset of Z, with a lower bound, possesses a least ele-
ment.

Proof. (a) = (b): Let S be a non-empty subset of Z admitting an upper
bound s. Since

X={s—t;teS}

is a non-empty subset of N, (a) guarantees the existence of an element u of S
sothat s —u <s—tforallteS. Thust <w forall t € S, proving (b).

(b) = (c¢): Let T be a non-empty subset of Z admitting a lower bound. Then
the non-empty subset —T = {—t;t € T} of Z possesses an upper bound.
Hence, by (b), there is a v € T such that —t < —v for all ¢ € T, that is, v <t
for all t € T'. Therefore (c) is established.

(¢) = (a): It suffices to observe that N has a lower bound.

This completes the proof.
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Before proceeding, let us introduce a few notations. Indeed, for each z € Z
let us write Z = {t € Z,t > z}. Obviously, the mapping
o, t€L— . (t)=t—2€N

is bijective. Let us also write Z; = {t € Z; t < z}. Clearly Z; = — (Z*,) and
z is the least (resp. greatest) element of ZI (resp. Z7).

\ \ \ e |
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Remark 2.2. For all r,s € Z, with r < s, the infinite sets Z and Z! are
quite similar, in the sense that

ZF=2r0{r,...,s=1} (Z} =Zf u{r}if s=r+1).

Zr 7
\ \ \ \
! ! ! !
ror+1 s—1 5

Evidently we would have a similar remark for the sets Z .

In the example below we shall furnish an infinite family of infinite subsets
of N, each of which does not coincide with a set Z7.

Example 2.3. For each prime natural number p, let us consider the subset

Xp = {p7p27"‘7pn7pn+17"‘}

of N. Since

Pt =pt=ptp 1) > p" > 2
for every integer n > 1, X, is an infinite set whose least element is p and which
does not coincide with a set ZI , and the distances between two consecutive

elements of X, may be taken as big as we wish. Moreover, if p, ¢ are arbitrary
prime natural numbers, with p # ¢, then X, N X, = ¢.

The next result was motivated by Exercise 4, p. 10 of [1] and Theorem
1.3.1, p. 25 of [6].

Proposition 2.4. The following conditions are equivalent:



4 Dinamérico P. Pombo Jr.

(a’) Principle of Finite Induction;

(b’) for each z € Z, if R C Z}, 2 € R and n + 1 € R whenever n € R, then
R =17

(¢) for each w € Z,if S C Z,,, w € S and n — 1 € S whenever n € S, then
S =7y

Proof. (a’) = (b"): Put L =¢,(R); L C Nand 0 = p,(2) € L (since z € R).
If m € L is arbitrary, m = ¢,(n) for a (unique) element n of R. By hypothesis,
n+1¢€ R and

e.n+1l)=n+1)—z=mn—-2)+1=¢.(n)+1=m+1,

showing that m+1 € L. Thus, by (a’), L = N, which is equivalent to R = Z} .
Hence (b’) holds.

(b)) = (¢’): First =S € —(Z,)) = ZF,, and —w € —S. Moreover, if n € S is
arbitrary and m = —n, m+1=-n+1=—(n—1) € =5, becausen—1€ S
by hypothesis. Therefore, by (b’), —S = Z*,,, which is equivalent to S = Z
and proves (c’).

(¢') = (a’): Let ' C N be such that 0 € T and n + 1 € T whenever n € T'.
Then 0 € (—=T) C (-Z}) =7, andn—1¢€ (-T) if n € (=T), and (¢’) yields
—T =7 , which is equivalent to T'= ZF = N and proves (a’).

This completes the proof.

What we have seen may be summarized in

Corollary 2.5. The conditions (a), (b), (¢), (a’), (b’) and (¢’) are equivalent.

3 Examples

Firstly let us mention the following:

Remark 3.1. Let z € Z be arbitrary and let us assume that to each t € Z7
it is associated an assertion a(t) in such a way that a(z) is true and that, for
a given t € ZF, a(t + 1) holds whenever a(t) holds. Then a(t) is valid for all
teZ;.

Indeed, it suffices to consider the subset

R={teZ!;a(t)is valid}
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of ZF and to apply Proposition 2.4 to obtain R = Z7.

Throughout we shall write N* = N\ {0}.
Example 3.2. For all n € N*, the number of subsets of the set {1,...,n} is
2",

In fact, since the subsets of {1} are () and {1}, the assertion holds for n = 1.
Now, let us assume its validity for a certain n € N*. Since

{1,....n,n+1}={1,...,n}U{n+1} and {1,....,n}Nn{n+1} =10,

the number of subsets A of {1,...,n,n + 1} for which n + 1 € A coincides
with the number of subsets of {1,...,n}, that is, coincides with 2". Thus the
number of subsets of {1,...,n,n + 1} is 2-2" = 2""! and the assertion is a
consequence of Remark 3.1.

Example 3.3. Let p be an arbitrary prime natural number. For all n € Z,
with n > 2, and for all non-zero integers ay, as, . .., a, such that pla;-as--- a,,
one has play, or plag, ..., or pla,.

Indeed, the case n = 2 corresponds to a fundamental result of Euclides |1,
p. 19]. Now let us assume that, for a given n € Z, with n > 3, the assertion
holds for n — 1. Since p|(ai(as--- a,)), it follows that pla; or p|(as--- ay).
If pla;, we are done. On the other hand, if p|(ay--- a,), there would exist a
Jj €{2,...,n} for which p|a;. Therefore, by Remark 3.1, our claim is justified.

Example 3.4. For all n € Z, with n > 4, one has 272 > n.

In fact, since the claim is obvious for n = 4, let us suppose 2("~"D-2 =

2n=3 >n — 1 for a certain n > 4. Then,
o172 = o=+l — 9.9 =3 > 9(p — 1) =2n — 2> n,

so that our claim holds for n. Therefore, by Remark 3.1, our claim is justified.

Consequently, 2" > n for all n € N. Indeed, the claim is obvious if n €
{0,1,2,3}. And, if n > 4, what we have just seen gives

2" = 2%2"72 > 4n > n.
Example 3.5. For all n € N*,
1

Indeed, since our assertion is obvious for n = 1, let us suppose its validity
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for a given n € N*. Then

(n+1)
2

_n2+n+2n—|—2_n2+3n+2

14 4n+ntl=— tn+l= . .

~ (n+1)(n+2)
- 5 :

and our assertion is valid for n+1. Hence, by Remark 3.1, our claim is justified.

Example 3.6. For all n € N,
9|(10™ 4 3-4™*% + 5)
(that is, 9 is a divisor of 10" + 3-4"%2 4 5).

In fact, since our claim is obvious for n = 0, let us assume its validity for
a given n € N*. Thus, since

107+ 4 3.400F0+2 15 — (9 4 1)10" 4 12:4"72 + 5
= (10" + 3-4""2 £ 5) 4 9(10™ 4 4"*2),

it follows that 9|(10"+! 4 3-4"*+D+2 4 5) 50 that our assertion is valid for n+ 1.
Hence, by Remark 3.1, our claim holds.

Example 3.7. For all n € N* and for all z;,...,z, in the set R of real
numbers,
|21+ x| <z + -zl

where | - | denotes the absolute value on R.

Indeed, since the assertion is clear for n = 1, let us suppose its validity for
a given n € N*. Therefore, for x,...,2,,x,11 € R, the triangle inequality
and what we have just assumed give
o R A R ] I I R S 0 [ ol F ] I 1 [ SR o o I F Y

showing the validity of our claim for n + 1. Thus, by Remark 3.1, our claim is
justified.

Example 3.8. For all x € R, with x > 0, one has

lim ¥z = 1.

n—oo
Firstly let us suppose z > 1 and let us show that (1 + )" > 1 + nx for all
n € N*, which also follows from the binomial formula [1, p. 13].

In fact, since the inequality is clear for n = 1, let us assume its validity for
a given n € N*. Then

(1+z)""=0+2)"(1+2z) > (1+nz)(1+z)
=l+(n+Dz+nz®>1+n+ 1)
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and the inequality holds for n + 1. Hence Remark 3.1 ensures the validity of
the inequality for all n € N*. Now, for each n € N* let us write /z = 1 + h,,,
where h,, > 0. Therefore

z=(¥x)" =1 +h,)" > 1+nh,

for all n € N* in such a way that

z—1

0<h, <
n

for all n € N*. But, since lim,,_, %1 = 0 in view of the Archimedean property,
one concludes that lim,, . h, = 0, and consequently lim,, .., ¥z = 1.

On the other hand, if 0 < z < 1 (if x = 1 our claim is obvious), % > 1, and
what we have proved furnishes lim,, ., % = 1. Thus lim, ., ¥/ = 1.

By a similar argument [3, p. 35|, one justifies:
Example 3.9. lim {/n = 1.

n—oo

Example 3.10. If X is a non-empty set and f : X — X is an injective (resp.
a surjective) function, then the composite function

ff=foiof: X=X
—_—
n times
is injective (resp. surjective) for all n € N*. In particular, if f is bijective,
then f™ is bijective for all n € N*.
We shall restrict ourselves to the injectivity. As a matter of fact, assume

that f is injective, so that the assertion is obvious for n = 1. Suppose that f"
is injective for a given n € N*. Then, since

frt=yrof.

it follows immediately that f"*! is injective. Thus, by Remark 3.1, f" is
injective for all n € N*.

Let a,b € R, with a < b. By recalling that the sum f+g¢ and the product fg
of two continuous functions f, g : [a,b] — R on [a, b] are continuous functions
on [a, b], one may apply Remark 3.1 to conclude:

Example 3.11. For all n € N* if fi,...,f, : [a,b] — R are continuous
functions on [a, b, then f; +---+ f,, and fi--- f,, are continuous functions on

la, b].

In particular, every polynomial p(z) = co+c1x+- -+ c,x™ (co, 1, ..., Cn €
R) is a continuous function on R.
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Example 3.12. Let Q be the set of rational numbers and f : Q — Q an
injective function such that f(z +y) = f(z) + f(y) and f(zy) = f(z)f(y) for
all z,y € Q. Then f(z) = x for all z € Q.

Initially, we shall show that f(n) = n for all n € N. Indeed, f(0) = 0, since
f(0) = f(0+0) = f(0) 4+ f(0). Hence f(1) # 0, because f is injective, and
the equality f(1) = f(1-1) = f(1)f(1) = f(1)? furnishes f(1) = 1. Assume
f(n) = n for some n € N. Then f(n+1) = f(n)+ f(1) = n+ 1. Thus, by
Remark 3.1, f(n) = n for all n € N. Consequently, for any n € N*|

0=f(0) = f(n+(-n)) = f(n) + f(-n) =n+ f(-n),

that is, f(—n) = —n. Hence f(n) =n for all n € Z.
Now, let m € Z, with m # 0. Since

f (i) = % Finally, for all m,n € Z, with m # 0,

m

as was to be shown.

4 Conclusion

In this note the equivalence among the Well-ordering Principle, the Prin-
ciple of Finite Induction and certain natural conditions has been established,
and a few known examples have been included.
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