
Journal of Innovative Technology and Education, Vol. 6, 2019, no. 1, 13 - 17
HIKARI Ltd, www.m-hikari.com

https://doi.org/10.12988/jite.2019.962

Teaching about Schimidt’s Orthogonalization

Hailing Li

School of Mathematics and Statistics
Shandong University of Technology

Zibo, 255049, China

This article is distributed under the Creative Commons by-nc-nd Attribution License.

Copyright c© 2019 Hikari Ltd.

Abstract

Schimidt’s orthogonalization is very important in linear algebra and
has many applications. In this paper, we introduce Schimidt’s orthog-
onalization from three aspects: background, step, application. And
we describe the process of Schimidt’s orthogonalization by elementary
transformation of matrices.
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1 Introduction

In analytic geometry, we often choose Cartesian rectangular coordinate sys-
tem, since the coordinates of a vector are exactly the projection on axis of
coordinates and the length of a vector and expressions of some curves are par-
ticularly simple under it. But in an skew coordinate system, everything above
becomes complicated, we are not familiar with the coordinates of a vector.
So Cartesian rectangular coordinate system is very important in the study of
metric space. As an extension, firstly, we introduce the concept of orthonormal
basis.

Definition 1[1−2] Let ε1, ε2, . . . , εn be a basis of the n−dimensional vector
space V , which is called a orthonormal basis if ε1, ε2, . . . , εn are orthogonal
and unit vectors.

Example 1
ε1 = (1, 0, 0)T , ε2 = (0, 1, 0)T , ε3 = (0, 0, 1)T ;
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ε1 =
1√
3

(1, 1, 1)T , ε2 =
1√
2

(1, 0,−1)T , ε3 =
1√
6

(1,−2, 1)T .

Orthonormal basis has outstanding advantages in dealing with problems.
The expressions of coordinates and inner product for vectors are very simple
under a orthonormal basis,

α =
n∑
i=1

[α, εi]εi, [α, β] =
n∑
i=1

[α, εi][β, εi].

Lemma 1[1−2] Orthogonal vectors must be linearly independent.
However, linear independent vectors are not necessarily orthogonal. How

to transform them into orthogonal vectors? In the following, the concept of
projective vector is given.

Definition 2 Let nonzero vectors α, β be in vector space V , [β,α]
α,α

α is called
a projective vector of β on α. That is,

- α�
�
�
���
β
6
β − [β,α]

[α,α]
α ⊥ α

For three vectors α, β, γ, set

η1 = α, η2 = β − [β1, η1]

η1, η1
η1, η3 = γ − [γ, η1]

[η1, η1]
η1 −

[γ, η2]

[η2, η2]
η2,

then η1, η2, η3 is a orthogonal vector group. Set

ε1 =
η1
‖η1‖

, ε2 =
η2
‖η2‖

, ε3 =
η3
‖η3‖

,

there by ε1, ε2, ε3 is a orthonormal vector group. Repeat this process, we get
Schimidt’s orthogonalization.

2 Schimidt’s Orthogonalization

Theorem 1 [1−2] Let α1, α2, . . . , αk be a linear independent vector group, set

η1 = α1,

η2 = α2 −
[α2, η1]

[η1, η1]
η1,

...

ηk = αk −
[αk, η1]

[η1, η1]
η1 − · · · −

[αk, ηk−1]

[ηk−1, ηk−1]
ηk−1,
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then η1, η2, · · · , ηk is a orthogonal vector group. Set

ε1 =
η1
‖η1‖

, ε2 =
η2
‖η2‖

, · · · , εk =
ηk
‖ηk‖

,

then ε1, ε2, · · · , εk is a orthonormal vector group. That is,

α1, α2, . . . , αk - η1, η2, · · · , ηk - ε1, ε2, · · · , εk.step1 step2

Note 1 (1)Step 1 is orthogonalization, step 2 is unitization, they are not
interchangeable;

(2)α1, α2, · · · , αk is equivalent to η1, η2, · · · , ηk and ε1, ε2, · · · , εk.
Schmidt’s orthogonalization not only illustrates the existence of orthonor-

mal basis in any vector space, but also gives a concrete algorithm for con-
structing orthonormal basis.

Example 2 Transforming α1 = (1,−1, 0, 0)T , α2 = (1, 0,−1, 0)T , α3 = (1, 0, 0,−1)T

into a orthonormal vector group.

Solution: By Theorem 1, we have

η1 = α1,

η2 = α2 −
[α2, η1]

[η1, η1]
η1 =

1

2
(1, 1,−2, 0)T ,

η3 = α3 −
[α3, η1]

[η1, η1]
η1 − · · · −

[α3, η2]

[η2, η2]
η2 =

1

3
(1, 1, 1,−3)T ,

and

ε1 =
η1
‖η1‖

=
1√
2

(1,−1, 0, 0)T ,

ε2 =
η2
‖η2‖

=
1√
6

(1, 1,−2, 0)T ,

ε3 =
η3
‖η3‖

=
1√
12

(1, 1, 1,−3)T .

3 Matrix Form of Schimidt’s Orthogonaliza-

tion

In this section, using elementary transformation of matrices, we describe Schimidt’s
orthogonalization.
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Let (η1, · · · , ηk) = (α1, · · · , αk)C, where C =


1 ∗

. . .

1

, then

Λ =


η

′
1
...
η

′
k

 (η1, · · · , ηk) = C
′


α

′
1
...
α

′
k

 (α1, · · · , αk)C. (1)

Denote (α1, · · · , αk) by A, (1) is equivalent to C
′
(A

′
A)C = Λ. Since A has

full column rank, hence A
′
A is a positive definite matrix and we have Theorem

2 as follows.

Theorem 2 Let α1, α2, . . . , αk be a linear independent vector group, by con-
tract transformation, there exists a matrix C as above such that (η1, · · · , ηk) =
(α1, · · · , αk)C and η1, · · · , ηk is a orthogonal vector group. Furthermore, there
exists a matrix C such that (ε1, · · · , εk) = (α1, · · · , αk)C and ε1, · · · , εk is a
orthonormal vector group.

Example 3 Transforming α1 = (1,−1, 0, 0)T , α2 = (1, 0,−1, 0)T , α3 = (1, 0, 0,−1)T

into a orthonormal vector group by Theorem 2.

Solution:

(
A

′
A
E

)
=



2 1 1
1 2 1
1 1 2
1 0 0
0 1 0
0 0 1


−→



2 0 0
0 3

2
0

0 0 4
3

1 −1
2
−1

3

0 1 −1
3

0 0 1


−→



1 0 0
0 1 0
0 0 1
1√
2
− 1√

6
− 1√

12

0 2√
6
− 1√

12

0 0 3√
12


.

Set C1 =

 1 −1
2
−1

3

0 1 −1
3

0 0 1

 , then

(η1, η2, η3) = (α1, α2, α3)C1 =


1 1

2
1
3

−1 1
2

1
3

0 −1 1
3

0 0 −1

 .

Furthermore, set C2 =


1√
2
− 1√

6
− 1√

6

0 2√
6
− 1√

6

0 0
√
3
2

 , then

(ε1, ε2, ε3) = (α1, α2, α3)C2 =


1√
2

1√
6

1√
12

− 1√
2

1√
6

1√
12

0 − 2√
6

1√
12

0 0 − 3√
12

 .
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Note 2 If A is a invertible, we can get (α1, · · · , αk) = (ε1, · · · , εk)C−1, let
C−1 = R, (ε1, ε2, · · · , εk) = Q, then A has QR−decomposition, where Q is a
orthogonal matrix and R is a upper triangular matrix.
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