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Abstract

A new rational analytic approximation to the solution of the Thomas-Fermi
boundary value problem is presented. The approximation is a development of the
original conception of J.C. Mason [5] and has been developed to reproduce the
numerical work of Parand et al [11], as far as proved feasible. The fit to the
numerical data, by a basic collocation process applied to the rational approximation,
proved excellent.
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Introduction

In recent years great interest has again arisen in the Thomas-Fermi equation. We
mention, in particular, the work of Amore et al [1], Boyd [4] and Parand et al [8, 9,
10 and 11]. (The literature on the Thomas-Fermi equation is vast and we make no
attempt at a literature review here. However, the above quoted reference contain a
considerable number and should be referred to if guidance on the literature is
required.) In this paper we propose a new compact analytical approximation to the
Thomas-Fermi equation based on the original analytical approximation of Mason
[5] and the numerical studies of Parand et al [11]. The approximation (equation (11)
below) is a rational function and is a natural variant of Mason’s original rational
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analytic approximate solution to the Thomas-Fermi boundary value problem. Also,
equation (11) below, when differentiated, produces an excellent approximation to
the derivative of the solution of the Thomas-Fermi equation

Background and Proposed Form of Approximate Solution

The Thomas-Fermi equation is the nonlinear ordinary differential equation (ODE)

[1]

d 2 3/2
_g - yl/2 (1)
dx X

and its solution is subject to the boundary conditions

y@) =1 y(x)=0 ()

There is no exact solution to the boundary value problem (BVP) represented by (1)
and (2), however there are two exact asymptotic solutions to (1).
First, there is the series solution to (1) for ‘small’ x [4]

y(x) = 1+ﬁx+§x3/2+%ﬁ2x7/2+§x3+--~ (3)
where £, the Baker number [3], that is, the ‘missing’ initial condition

y() =4 (4)

which has to be (in some way) determined. Secondly, we have the series for ‘large’
x [4]
2 3
y(x) = %(1 — 2 +0.62569 (%) +0.31383 (%) + ) (5)

where A=~13.27094 and A ~0.772001872 Actually, the leading term in (5) is an
exact particular solution of (1) and satisfies the second of the boundary conditions
in (2).

In fact, in addition to the above facts and constraints, there are additional
restrictions or
conditions that the solution of the Thomas-Fermi equation must satisfy and these
are presented below as part of the ‘goodness-0f-fit” criteria that any approximate
analytical solution of (1) is expected to satisfy.

Finally, the Thomas-Fermi equation, (1), can be obtained as the solution of the
variational problem of minimizing the integral [2]
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subject to the BC (2); indeed, equation (1) follows from the Euler equation for the
minimization of the integral (8).

While there is no exact solution to the BVP represented by (1) and (2), there are
many approximate analytical solutions to this problem. One of the best is that of
Mason [5]. Mason’s [5] analytical approximation to (1) is

2
J0) = 1+1.81061/x +0.60112x
1+1.81061/x +1.39515x +0.77112x3/2 +0.21465x2 + 0.04792x>/2

()

An examination of Mason’s function (7) determines that it is a rational function
in terms of /X. The dependence of (7) on Jx is not surprising, as the series

solution of (1) given by (3) is an expansion in terms of Jx also. The expression (7)
is known to be an excellent ‘fit’ to the boundary value problem, with the initial
condition (4) being approximated to five places of decimals (when evaluated via
(7), but with the asymptotic coefficient given as 157 instead of 144. Below, we
consider means of overcoming this asymptotic problem and put forward a related
type of rational analytical approximation to that of (7).

As Mason makes clear in his original paper [5], (7) is part of a family of
approximate analytical solution to (1) and here we consider natural variants of
Mason’s formula (7) that incorporate the initial condition (4) and the leading term
of the asymptotic series (5) explicitly. As a first example of these natural variants
of (7), we could consider

2
1+a/x ++/144bx J ()

yi(x) =

! (1+a\/;+(12b—ﬂ/2)x+cx3/2+dx2+bx5/2
Expression (8) satisfies all of the conditions as well as having the correct asymptotic
form. However, (8) has only five coefficients available to form a fit to the problem.
In this case, we may use a more general form of our variation of Mason’s formula
and consider, instead of (8), an alternative given as

2
1+ av/x +bx ++/144cx3'2 J )

Y2(X) =

? [1+a\/§+(b—,8/2)x+dx3/2+ex2+fx5/2+cx3
Expression (9) satisfies all of the conditions as well as having the correct asymptotic
form again. Now, though, (9) has seven coefficients available to produce a fit to the
problem. The problem, then, is how to determine the unknown coefficients in (9).
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There are various ways to determine the coefficients in the trial solution (9). In
this paper we will consider only the method of collocation, whereby we will fit the
trial solutions against a known solution to equation (1) for six points on the solution
curve of (1), the value of S being taken as a given to obtain the best fit possible.
While we note that are various standard ways of picking the collocation points see
Amore et al [1], for an example, in this case the collocation points were chosen
through numerical experience (trial and error!). Even so, the resulting analytical
approximation proved remarkably good over the entire range of values examined.

Analysis, Results and Conclusions

Using data from Table 5 of Parand et al [11], the values of a to f in (9) were
evaluated by collocation, while the value of g was taken from Table 3 of the same
reference. The six points of collocation and the accompanying values of the
Thomas-Fermi function ( y(x)) used are given in Table 1 below.

X y(x)
0.25 0.7552014653133312760
1 0.4240080520807056002
1.5 0.3147774637004581729
5 7.880777925136990042¢-2
10 2.431429298868086418e-2
25 3.473754416765632470e-3

Table 1. Collocation Points and Given Values of the Thomas-Fermi Function.

The value of g used was g =-15880710226.13753127868450942350109,

In fact, the values used in the collocation process were rounded, as shown in Table
2 below.

Collocation Parameter Parameter Value
a 1.977880202
0.880361414

0.00578866639
0.9735905328
0.324021964

0.07619038231

-~ D | Q| O |T

Table 2. VValues of the Collocation Parameters

There are various ways of checking the goodness of fit of the model (9) with
the parameter values as given in Table 2. Obviously a comparison with the other
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values in Table 5 of Parand et al [11] can be made, along with a comparison of the
values of the derivative y',(X) versus those presented in Table 6 of Parand et al

[11]. (A comparison of the fit of (9) and its derivative can be made with Table 3
and Table 4 of the arXiv version of [1], but these results are, for our purpose,
effectively the same as those of [11]) Further, we can examine the values of the
following integral relations, which are the constraints that any solution to (1) is
expected to conform to, as mentioned above. Indeed, when this is done we get the
following results [12]

lc = Ojoxl’ 2y, (X)%2dx =1~ 09999991551 (10a)
and i

lp = Tx‘“ 2y, (X)% 2dx = 158807098~ 1587859476 (10b)
and ’

I = j X2y, (%)% 2dx =1.134336414~1.134124621 (10c)
0

and the fit is apparently very close.
This close fit to the data is confirmed by the direct comparison of the calculated

values of y,(x) and y',(x) with the tabulate values of y(x) and y’(x) in Tables 5

and 6 of Parand et al [11], with agreement in the first 5 or 6 decimal places between
the fit and the ‘raw data’. Further, when we evaluate the integral in (6), we find that

o0

1 2 X 5/2
o = j(a Y2(x)? te y2)((1/)2
0

]dx ~0.680517379 (11)

in good agreement, again, with published figures [2]. This close fit to the data
continues when comparison is made with numerical data quoted in Oulne’s work
[6, 7] for small values of x.

It is instructive to make a comparison of the ‘fit’ of (9) to the data with that of
Mason’s original conception given by (7). The Mason function (7) is still a very
good approximation to the numerical solution of Parand et al [11], agreeing to
within four decimal places with the Parand et al data up to x =100, after which it
gradually tails-off. The fit obtained by (9) tails-off slightly from the numerical data
also, but even at the end (x =5,000) is still within 0.33% of the numerical solution
whereas by this point Mason’s function (9) is more than 6.4% out from the
numerical data. Further the Mason approximation (7) is a poorer fit to the
constraints (10a), (10c) and (11), though (7) is a good fit to (10b). Similar results
hold for the derivatives of (7) and (9).
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In conclusion, we have presented a natural variant of Mason’s [5] rational
approximate analytical solution to the Thomas-Fermi equation that incorporates an
explicit representation of the Baker number and the correct asymptotic format of
the known particular solution. The final fit to the numerical data of our variant (9)
agrees with the data [11] to within 0.33% across the entire range of value quoted
in [11], as well as giving close agreement with the known constraints represented
by (10) and (11). Indeed, the fit (11) gives a closer fit to the data and constraints
across the entire range of value quoted in [11] than (7), as would be hoped, if not
expected.
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