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Abstract 

 

A new rational analytic approximation to the solution of the Thomas-Fermi 

boundary value problem is presented. The approximation is a development of the 

original conception of J.C. Mason [5] and has been developed to reproduce the 

numerical work of Parand et al [11], as far as proved feasible. The fit to the 

numerical data, by a basic collocation process applied to the rational approximation, 

proved excellent. 
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Introduction 
 

In recent years great interest has again arisen in the Thomas-Fermi equation. We 

mention, in particular, the work of Amore et al [1], Boyd [4] and Parand et al [8, 9, 

10 and 11]. (The literature on the Thomas-Fermi equation is vast and we make no 

attempt at a literature review here. However, the above quoted reference contain a 

considerable number and should be referred to if guidance on the literature is 

required.) In this paper we propose a new compact analytical approximation to the 

Thomas-Fermi equation based on the original analytical approximation of Mason 

[5] and the numerical studies of Parand et al [11]. The approximation (equation (11) 

below) is a rational function and is a natural variant of Mason’s original rational  
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analytic approximate solution to the Thomas-Fermi boundary value problem. Also, 

equation (11) below, when differentiated, produces an excellent approximation to 

the derivative of the solution of the Thomas-Fermi equation 

 

Background and Proposed Form of Approximate Solution 
 

The Thomas-Fermi equation is the nonlinear ordinary differential equation (ODE) 

[1] 
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and its solution is subject to the boundary conditions 
 

                                                        0)(     ,1)0(  yy                                       (2) 
 

There is no exact solution to the boundary value problem (BVP) represented by (1) 

and (2), however there are two exact asymptotic solutions to (1).  

      First, there is the series solution to (1) for ‘small’ x [4] 
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where ,  the Baker number [3], that is, the ‘missing’ initial condition 
 

                                                             )0(y                                                    (4) 
  

which has to be (in some way) determined. Secondly, we have the series for ‘large’ 

x [4] 
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where 27094.13A  and .772001872.0  Actually, the leading term in (5) is an 

exact particular solution of (1) and satisfies the second of the boundary conditions 

in (2).  

      In fact, in addition to the above facts and constraints, there are additional 

restrictions or 

conditions that the solution of the Thomas-Fermi equation must satisfy and these 

are presented below as part of the ‘goodness-of-fit’ criteria that any approximate 

analytical solution of (1) is expected to satisfy.  

 

      Finally, the Thomas-Fermi equation, (1), can be obtained as the solution of the 

variational problem of minimizing the integral [2] 
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subject to the BC (2); indeed, equation (1) follows from the Euler equation for the 

minimization of the integral (8). 

      While there is no exact solution to the BVP represented by (1) and (2), there are 

many approximate analytical solutions to this problem. One of the best is that of 

Mason [5]. Mason’s [5] analytical approximation to (1) is 
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      An examination of Mason’s function (7) determines that it is a rational function 

in terms of .x  The dependence of (7) on x  is not surprising, as the series 

solution of (1) given by (3) is an expansion in terms of x  also. The expression (7) 

is known to be an excellent ‘fit’ to the boundary value problem, with the initial 

condition (4) being approximated to five places of decimals (when evaluated via 

(7), but with the asymptotic coefficient given as 157  instead of .144  Below, we 

consider means of overcoming this asymptotic problem and put forward a related 

type of rational analytical approximation to that of (7). 

      As Mason makes clear in his original paper [5], (7) is part of a family of 

approximate analytical solution to (1) and here we consider natural variants of 

Mason’s formula (7) that incorporate the initial condition (4) and the leading term 

of the asymptotic series (5) explicitly. As a first example of these natural variants 

of (7), we could consider 
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Expression (8) satisfies all of the conditions as well as having the correct asymptotic 

form. However, (8) has only five coefficients available to form a fit to the problem. 

In this case, we may use a more general form of our variation of Mason’s formula 

and consider, instead of (8), an alternative given as 
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Expression (9) satisfies all of the conditions as well as having the correct asymptotic 

form again. Now, though, (9) has seven coefficients available to produce a fit to the 

problem. The problem, then, is how to determine the unknown coefficients in (9). 
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      There are various ways to determine the coefficients in the trial solution (9). In 

this paper we will consider only the method of collocation, whereby we will fit the 

trial solutions against a known solution to equation (1) for six points on the solution 

curve of (1), the value of   being taken as a given to obtain the best fit possible. 

While we note that are various standard ways of picking the collocation points see 

Amore et al [1], for an example, in this case the collocation points were chosen 

through numerical experience (trial and error!). Even so, the resulting analytical 

approximation proved remarkably good over the entire range of values examined. 

 

Analysis, Results and Conclusions 
 

      Using data from Table 5 of Parand et al [11], the values of a to f in (9) were 

evaluated by collocation, while the value of   was taken from Table 3 of the same 

reference. The six points of collocation and the accompanying values of the 

Thomas-Fermi function ( )(xy ) used are given in Table 1 below. 
 

x )(xy  

0.25 0.7552014653133312760 

1 0.4240080520807056002 

1.5 0.3147774637004581729 

5 7.880777925136990042e-2 

10 2.431429298868086418e-2 

25 3.473754416765632470e-3 

 

Table 1. Collocation Points and Given Values of the Thomas-Fermi Function. 

 

      The value of   used was .9501098684509423113753127158807102261.β   

In fact, the values used in the collocation process were rounded, as shown in Table 

2 below. 
 

Collocation Parameter Parameter Value 

a 1.977880202 

b 0.880361414 

c 0.00578866639 

d 0.9735905328 

e 0.324021964 

f 0.07619038231 

 

Table 2. Values of the Collocation Parameters 

 

      There are various ways of checking the goodness of fit of the model (9) with 

the parameter values as given in Table 2. Obviously a comparison with the other  
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values in Table 5 of Parand et al [11] can be made, along with a comparison of the 

values of the derivative )(2 xy  versus those presented in Table 6 of Parand et al 

[11]. (A comparison of the fit of (9) and its derivative can be made with Table 3 

and Table 4 of the arXiv version of [1], but these results are, for our purpose, 

effectively the same as those of [11]) Further, we can examine the values of the 

following integral relations, which are the constraints that any solution to (1) is 

expected to conform to, as mentioned above. Indeed, when this is done we get the 

following results [12] 
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and the fit is apparently very close. 

      This close fit to the data is confirmed by the direct comparison of the calculated 

values of )(2 xy  and )(2 xy  with the tabulate values of )(xy  and )(xy  in Tables 5 

and 6 of Parand et al [11], with agreement in the first 5 or 6 decimal places between 

the fit and the ‘raw data’. Further, when we evaluate the integral in (6), we find that 
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in good agreement, again, with published figures [2]. This close fit to the data 

continues when comparison is made with numerical data quoted in Oulne’s work 

[6, 7] for small values of .x  

      It is instructive to make a comparison of the ‘fit’ of (9) to the data with that of 

Mason’s original conception given by (7). The Mason function (7) is still a very 

good approximation to the numerical solution of Parand et al [11], agreeing to 

within four decimal places with the Parand et al data up to ,100x  after which it 

gradually tails-off. The fit obtained by (9) tails-off slightly from the numerical data 

also, but even at the end )000,5( x  is still within %33.0  of the numerical solution 

whereas by this point Mason’s function (9) is more than %4.6  out from the 

numerical data. Further the Mason approximation (7) is a poorer fit to the 

constraints (10a), (10c) and (11), though (7) is a good fit to (10b). Similar results 

hold for the derivatives of (7) and (9). 
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      In conclusion, we have presented a natural variant of Mason’s [5] rational 

approximate analytical solution to the Thomas-Fermi equation that incorporates an 

explicit representation of the Baker number and the correct asymptotic format of 

the known particular solution. The final fit to the numerical data of our variant (9) 

agrees with the data [11] to within %33.0  across the entire range of value quoted 

in [11], as well as giving close agreement with the known constraints represented 

by (10) and (11). Indeed, the fit (11) gives a closer fit to the data and constraints 

across the entire range of value quoted in [11] than (7), as would be hoped, if not 

expected. 
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