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Abstract

One of the possible ways of dealing with interval uncertainty is to use
Monte-Carlo simulations. A recent study of using this technique for the
analysis of different smart electric grid-related algorithms shows that
we need approximately 500 simulations to compute the corresponding
interval range with 5% accuracy. In this paper, we provide a theoretical
explanation for these empirical results.

Mathematics Subject Classification: 65G40 65C05 93C95 93D99

Keywords: interval uncertainty, Monte-Carlo simulations, electric grid

1 Formulation of the Problem

Need for interval uncertainty. Data processing means processing mea-
surement results. Measurements are never absolutely accurate: the result x
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of measuring a physical quantity is, in general, somewhat different from the
actual (unknown) value x of the corresponding quantity.

In the ideal case, we should know which values of the measurement error
Ar ¥ 5 — 2 are possible, and what is the probability of different possible
values. These probabilities can be determined if we have a sufficiently large
number of situations in which:

e we know the exact values (to be more precise, we have very good esti-
mates of the exact values) and

e we also have measurement results.

In practice, however, we often do not have enough data to determine the
corresponding probabilities. In such situations, often, the only information
that we have about the measurement error is the upper bound A on its absolute
value:

|Az| < A;

see, e.g., [6]. Then, once we have the measurement result Z, the only infor-
mation that we have about the (unknown) actual value x is that this value
belongs to the interval [x,Z] = [T — A, Z + A]. The resulting uncertainty is
therefore known as interval uncertainty; see, e.g., [1, 4, 5].

Need to propagate interval uncertainty. A data processing algorithm f:
e starts with the results zy,..., 7, of data processing, and
e uses these results to compute an output g = f(Z1,...,Z,).
This output:
e can be an estimate of some difficult-to-measure quantity, or
e it can be an estimate of the future value of some quantity y.

The corresponding algorithm is usually based on the known relation y =
f(z1,...,x,) between the actual values of the corresponding quantities. Since,
in general, the measurement results z; are somewhat different from the actual
values z;, the result § = f(Zy,...,%,) of applying the algorithm f to the
measurement results is, in general, somewhat different from the actual value

y=f(z1,...,2,):
def ~

Ay =y—y#0.

It is therefore desirable not only to produce the estimate y, but also to find
out what the possible values of the corresponding quantity y are.
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We know that each quantity z; can take any values within the corresponding
interval [z;,7;]. Thus, the desired range of possible values of y have the form

[Qay} = {y = f(xlw--:xn) 1T € [Qlafl]a---axn € [imfn]}

The problem of computing this range is known as the main problem of interval
computations; see, e.g., [1, 4, 5].

Need for approximate methods. It is known that, in general, the problem
of computing the range [ g,g} exactly is NP-hard; see, e.g., [2]. This means
that, unless P=NP (which most computer scientists believe to be impossible),
no feasible algorithm can always compute this range exactly. Thus, we need
to use approximate methods for computing the desired range.

A natural option: Monte-Carlo technique. One of the natural ways to
compute the range is to use Monte-Carlo techniques. In this technique, several
(N) times:

e we generate random numbers xgk)
sponding intervals [x;,Z;], and then

uniformly distributed on the corre-

e we compute y*) = f (xgk), . ,a:ff)).
When N — oo, the generated random values z®) = (xgk), e ,m%’”), 1<k <
N, cover all parts of the box [z,,T1] X ... X [z,,,T,]. Thus, in the same limit,
the corresponding values y*) = f (:r;gk), e ,xﬁ@) fill the entire interval {g@]
So, to estimate the desired range, we can use the range formed by the values
y®) corresponding to a sufficiently large number N, namely, the range

[min (y(l), e ,y(N)) , max (y(l), o ,y(N))} .

How many simulations do we need? Which value N should we choose?
Usually, N is chosen as follows: we repeat the simulations for larger and larger
N, and we stop when a further increase in N does not change the resulting
range.

Smart electric grid simulations: empirical results. One of the important
application areas is the application to electric grids. Electric grids are known
to be unstable: a minor change in supply or demand can potentially cause a
serious disruption and a blackout. To avoid such situations, engineers employ
complicated (“smart”) control algorithms.

New improvements for such algorithms are being proposed all the time. To
make sure that the new algorithm works well, we need to make sure that the
resulting characteristics of the electric grids remain within their stable bounds.
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Since the parameters of the electric grid are only measured with uncertainty, it
is important to make sure that we have stability for all possible combinations
of these parameters. One way to do it is to perform Monte-Carlo simulations
and to check that the system remains stable for all N resulting combinations
(xgk), e ,ng)), 1 <k < N. How many combinations should we choose?

An empirical study [3] showed that if we are interested in 5% accuracy — a
typical requirement for data analysis — then we need approximately N = 500
simulations to get good results:

e if we have smaller N, e.g., N = 100 or N = 200, we underestimate the
range of y’s;

e on the other hand, if we use a larger N — e.g., N = 1000 — we do not
achieve any significant improvement in comparison to the case N =~ 500.

The authors of this study do not have any theoretical explanation for this
empirical result.

What we do in this paper. In this paper, we provide the desired theoretical
explanation.

2 Explanation
Accuracy of Monte-Carlo simulations: reminder. It is known (see, e.g.,

[7]) that if we estimate a quantity based on m measurements, then the relative
accuracy of this estimate is

3"

Let us apply this general feature to our case study. Our goal is to reach
the accuracy of € &~ 5% = 0.05.

In view of the above formula, to find the number of simulations needed to
reach this accuracy, we must find the value m for which

1
—— =~ 0.05.

vm

This approximate equality is equivalent to

1

Vim & o =

20.

By squaring both sides of this approximate equality, we get

m ~ 20% = 400.
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Taking into account that 500 was not the exact optimal value — it was just
better than 100, 200, and 1000 — we conclude that m = 400 is a perfect fit for
the observed empirical data.

Thus, we provide the desired explanation for the smart electric grid-related

simulation results.
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