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Abstract

This article considers the recurrence of tensor products of matrices
acting on finite-dimensional spaces over different numbers of fields, and
in various forms.
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1 Introduction

Hypercyclicity is the most commonly studied notion in linear dynamics. Let
X be an infinite-dimensional, separable Fréchet space, and let T' € B(X) be a
linearly bounded operator on X. Then, the pair (X, T') is said to be a linear
dynamical system. T is called a hypercyclic operator if there is a vector x € X
such that Orb(z,T) := {T™x : n > 0} is dense in X. In this case, x € X is
said to be a hypercyclic vector for T'. T is said to be topologically transitive if,
for every pair (U, V') of non-empty open subsets of X, there exists an integer
n such that 7™ (U) NV is non-empty. Because the space X is assumed to
be separable, a simple Baire category argument shows that 7' is topologically
transitive if and only if 7" is hypercyclic.

Research on linear systems dates back to the first half of the 20th century,
when Birkhoff [I] showed that the translation operator T, : H(C) — H(C),
where a # 0, defined by T,f(z) = f(z + a), is hypercyclic. This result was
generalized by Godefroy and Shapiro [2], who proved that every operator on
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H(CY) that commutes with all translations, and is not a scalar multiple of
identity, is chaotic. Following Birkhoft’s 1929 result, Maclane [3] proved in
1952 that the differentiation operator acting on the space of entire functions
is also hypercyclic. More precisely, he showed that the operator D : H(C) —
H(C), defined by D(f) = f’, is hypercyclic. Hypercyclicity on Banach spaces
was researched by Rolewics [4] in 1969, and yielded the finding that AB is
hypercyclic whenever |A| > 1, where B is the unilateral backward shift on
P(1 < p < o0) or ¢, and is defined by B(xg,z1,22, ) = (x1,22,--+). A
systematic investigation of hypercyclicity has been underway since the mid-
1980s, and has attracted considerable attention from mathematicians around
the world. For more results, see [5] and [0].

On the contrary, recurrence is a central notion in topological dynamics.
This notion dates back to Poincare and Birkhoff, and refers to the existence of
points in space in which parts of their orbits under a continuous map return
to themselves. The notion of recurrence and variations of it were studied in
the context of linear dynamics by [7]. Topological recurrence is a cornerstone
of research on dynamical systems, and encapsulates the phenomenon of orbits
returning to the neighborhoods of their initial points under continuous trans-
formations. As a central theme in topological dynamics, it bridges the gap
between the topological properties of spaces and the qualitative behavior of
dynamical systems over time.

The dynamics of linear operators on a finite-dimensional space can be easily
described by the Jordan decomposition theorem. Notably, there is no hyper-
cyclic operator in finite-dimensional spaces (see [0, Theorem 2.58]). However,
linear recurrence can occur on a finite-dimensional space (see [7, 8, 9, 10], etc.).

This article contributes to the ongoing discourse by investigating the recur-
rence of tensor products of matrices. Some results and definitions are summa-
rized in Section 2, the recurrence of the tensor products of matrices in Jordan’s
form is considered in Section 3, while the recurrence of the tensor products of
matrices in rational canonical form is considered in Section 4.

2 Preliminary Notes

Definition 2.1 ([7, Definition 1.1]). Let X be a complex Banach space and
T : X — X be a bounded linear operator acting on X. An operator T acting
on X 1is then called recurrent if, for every open set U C X, there exists some

k € N such that
UﬂT"“U;«é .

A wvector x € X is called recurrent for T if there exists a strictly increasing
sequence of positive integers (ky), such that
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Thy — z,
as n — +o00. We denote by Rec(T) the set of recurrent vectors for T.

Some spectral properties of recurrent operators are now summarized. We
use o(T) to represent the spectrum of 7', 0,,(7) to denote the point spectrum
of T', and r(T") to represent its spectral radius.

Proposition 2.2 ([7, Proposition 2.9]). Let T : X — X be an operator
acting on X. If r(T) < 1, then T is not recurrent.

Proposition 2.3 ([7, Proposition 2.11]). If T : X — X is a recurrent
operator, then every component of the spectrum of T, o(T'), intersects with the
unit circle T.

Theorem 2.4 ([7, Theorem 4.1]). A matriz T : C* — C? is recurrent if
and only if it s similar to a diagonal matrix with unimodular entries.

Theorem 2.5 ([7, Theorem 4.3]). A matriz T : R? — R? is recurrent if
and only if it is similar to a block diagonal matrix of the form

Ji0 - 00
0 Jy --- 0 0
A=1: o 0
0O 0 -+ Jyp1 O
o 0 --- 0  Jn

where each J;, 1 < j < 'm is either a 2 x 2 rotation matriz, or a 1 x 1 matriz
with entries that are all either 1 or —1.

Definition 2.6. Let A = (ai;j)mxn and B = (b;j)pxq. The tensor product of
A and B is then defined as the following block matrix:

anB apB - a,B
A 2 B CLQ%B QQ?B . " . CLQT'LB
anlB an2B Tt annB

Proposition 2.7. (A® B)' = AT @ B";(A®@B) ' =A'®@ B\
Proposition 2.8. (A® B) (C ® D) = (AC) ® (BD).

Theorem 2.9. Assume that A = (A;;)
matriz B, we have

s 18 @ block matrixz. Then, for any

AnB ApB - AB

ApB ApB - Ay,B
App=|"" T

AuB ApB -+ A.nB
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Theorem 2.10. Let A = (A;j)nxm and B = (
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B,q)sxt be two block matrices,

where Ay € My, m,, @ = 1,2,---,n; 5 = 1,2,--- ,m; Byy € My, 1., p =

1a27"' yS; 4 = 1727"' 7t'

Then, there exist permutation matrices P and Q)

such that
A ® By Ay ® By A ® By A ® By
All ® le All ® Bst Alm ® le Alm ® Bst
P(A®B)Q = : : : :
An ® By An1 ® By Apm ® By Apm ® By
Anl ® le Anl & Bst Anm ® Bst Anm X Bst

3 Recurrence of Tensor Product of Matrices
in Jordan’s Form

Before characterizing the recurrence of the tensor products of matrices in dif-
ferent cases, we present a necessary condition for T} ® T, to be recurrent.

Theorem 3.1. Let X and Y be F-spaces, and let S:Y —Y andT : X —
X be operators. Suppose that there is an operator ¢ : Y — X of a dense range
such that the following diagram commutes:

y 2y
v ARV
x 5 x

That is, if we have T o1 =1 o S, then the following hold:
1. If S is hypercyclic, then so is T'.
2. If S is weakly mixing, then so is T
3. If S is chaotic, then so isT.
4. If S is mixing, then so is T.
5. If S is recurrent, then so is T.

Proof. Ttems (1)—(4) can be found in Theorem [5, Definition 1.5]. We thus
prove item (5) below. Let y € Rec(S) be a recurrent vector for S. Then, there
exists a strictly increasing sequence of positive integers (k,), such that

Sty =y,
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as n — +00. According to T o) = 1) o S, we obtain

TF [ (y)] = (S™Y) — P(y), as n — +0o0.

This shows that 1 (y) is a recurrent vector for 7. O

Following [11], it is known that if T"® R is hypercyclic, then neither 7'
nor R is hypercyclic. This may happen in a recurrent case in which 7T'® R
is recurrent, but neither 7" nor R is recurrent. If we take T" := 2] and the
backward shift R := B as operators defined on [y, then T ® R = [ ® 2B is
hypercyclic and, thus, recurrent. However, T" := 2[ is not recurrent because
Thng = 2kny s g

3.1 The complex field case

By building upon Theorem 2.4, we proceed to analyze the recurrence of the
tensor products of two matrices.

Theorem 3.2. Let T} and T, be two matrices in the complex number field.
Assume that Ty and Ty are recurrent. Then, the tensor product T) ® Ty is
recurrent as well.

Proof. According to Theorem 2.4, there exists an invertible matrix P; such
that

o0 ... 0 0
0 el 0 0
PP = ' :
0 0 efm-1
0 0 - 0 ¢

Similarly, there exists an invertible matrix P such that

e o0 ... 0 0
0 % ... 0 0
Py Py = : : :
0 0 efm-1 0
0 0 0 e

According to Proposition 2.7 and Proposition 2.8, we have
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(PR P)  (Ty®T) (P, ® P,)
= (P['T1P)) ® (P ' ToPs)

et o ... 0 0 P 0 0
0 e ... 0 0 0 e ... 0 0
I 5 el : :
0 0 em-1 0 0 e¥n-1
0 0 0 ¢ifm 0 0 0 e
e(01+67) 0 0 0
0  elloito3) 0 0
0 0 IR (2N LA 0
0 0 o 0 ei0n+03,)

We conclude that 77 ® T, is similar to a diagonal matrix with unimodular
entries. Applying Theorem 2.4 once again shows that T} ® Ts is recurrent. [J

3.2 The real case

By building upon Theorem 2.5, we proceed to analyze the recurrence of the
tensor products of two matrices.

Theorem 3.3. Let T} and T, be two matrices in the real number field.
Assume that Ty and Ty are recurrent in case the similarity matriz of one of
T1 and T is diagonal matriz with all entries being either 1 or —1. Then, the
tensor product T ® Ty is recurrent.

Proof. For the sake of argument, we assume that 77 is a diagonal matrix in
which all entries are either 1 or -1. By Theorem 2.5, there then exists an
invertible matrix P; such that

cg 0 - 0 0
0 ¢ --- 0 0
PP = ]
0 0 -+ ¢pa1 O
0o 0 --- 0 cn
where ¢; is equal to —1 or 1 for j =1,2,--- ,;m. Assume also that there exists
an invertible matrix P» such that
J 0 .- 0 0
0 Jy --- 0 0
Py TPy = : : : :
0 0 Jm-1 0
0 0 0  Jn
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where at least one of J;, 1 < j < m, is a 2 x 2 rotation matrix. According to
Proposition 2.7 and Proposition 2.8, we then have
(ProP) (1 ®T) (P ® P)

= (PP @ (P T Ps)

cg 0 .- 0 0 J 0 - 0 0
0 ¢ - 0 0 0 J - 0 0
=|: : N N I : :

0O 0 -+ cpna O 0O 0 -+ Jn1 O
0o 0 --- 0 cn o 0 --- 0  Jn
01J1 0 0 0

0 ClJQ 0 0

0 0 - cndma 0

0 o - 0 Cmdn

It is easy to see that for the block diagonal matrix of the last matrix, each
cidj, 1 <i<mn,1<j<m,iseither a 2 x 2 rotation matrix or a 1 x 1 matrix
in which all entries are either 1 or —1. According to Theorem 2.5, we can then
conclude that 77 ® 15 is recurrent. O

4 Recurrence of Companion Matrices and their
Tensor Product

A square matrix P is a permutation matrix if exactly one entry in each of its
rows and columns is 1, and all other entries are 0. For example,

010
1 00
0 01
Let f(A) = A" —ap A" —a, 2A" 2 —a, 3A"% — -+ —a; A — ag. Then,
its companion matrix can be defined as
000 -+ 0 ag
100 - 0
10 -+ 0 a
A= . S
000 -+ 0 apo
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Theorem 4.1. Let A be a companion matriz and permutation matriz. That
18,

000 - 01
100 - 0 0
10 0 0

A= . ;
0 00 - 0 0
0 00 10

Then, A is recurrent.

Proof. The proof is straightforward because A" = FE, is an n X n identity
matrix. O

Remark 4.2. A permutation matriz constitutes a sufficient condition for
recurrence but the converse does not hold. Let A be

00 1
10 —-1],
01 1

It is then easy to see that A is the companion matriz of the polynomial f(\) =
A3 — A2+ X\ — 1, and is recurrent because

At =

O O =
O = O
— O O

However, A is not a permutation matriz.

Theorem 4.3. An nxn matriz A over a number field is similar to a unique
rational canonical form of A. That is,

A 0 0
0 A, 0
A= ' ,
0 0 A,
where A; (i =1,2,--- ,s) is companion matriz of some polynomial f(\). If A;
(i=1,2,---,s) is permutation matriz, then A is recurrent.

Proof. According to Theorem 4.1 above, we know that A; (i = 1,2,--- ,s) is
recurrent. Assume that A" = F, where i = 1,2,--- ,s. And let n be the least
common multiple of {ny,ns, -+ ,ns}. Then, we get A" = E; therefore, A is
recurrent. O
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Theorem 4.4. Let A, B be the rational canonical form, i.e.,

A 0 - 0 B, 0 - 0

0 Ay, -~ 0 0 By -+~ 0
A: . . . . 7B: . . . . 9

0 0 --- A, 0O 0 --- B

where A; (i =1,2,---,s) and B; (j =1,2,--- ,t) are companion matrices of
some polynomials f(A\) and g(X), respectively. If A; and B; are permutation
matrices, then A ® B is recurrent.

Proof.
Al 0 0 Bl 0 0
0 Ay, --- 0 0 By 0
A B=| . . R B :
0 0 A, 0 0 B,
AB; 0 0
0 0
0 A, B, 0
0 o AsB; 0 0
I ) 0O . 0 0 -
0 0 0 AB, 0 0
0 0 0 0 0
0 0 0 0 0 A.B;

As A; and B; are permutation matrices for (i = 1,2,--- ,s)and (j = 1,2,--- , 1),
respectively, and the product of two permutation matrices is also a permu-
tation matrix, A;B; is therefore a permutation matrix. Let n be the least
common multiple of {ny1,ny, - ,ng}, where (4;B;)™ = E. We then have
(A® B)" = E. Therefore, A® B is recurrent. O
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