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Abstract

This article considers the recurrence of tensor products of matrices
acting on finite-dimensional spaces over different numbers of fields, and
in various forms.
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1 Introduction

Hypercyclicity is the most commonly studied notion in linear dynamics. Let
X be an infinite-dimensional, separable Fréchet space, and let T ∈ B(X) be a
linearly bounded operator on X. Then, the pair (X, T ) is said to be a linear
dynamical system. T is called a hypercyclic operator if there is a vector x ∈ X
such that Orb(x, T ) := {T nx : n ≥ 0} is dense in X. In this case, x ∈ X is
said to be a hypercyclic vector for T . T is said to be topologically transitive if,
for every pair (U, V ) of non-empty open subsets of X, there exists an integer
n such that T n (U) ∩ V is non-empty. Because the space X is assumed to
be separable, a simple Baire category argument shows that T is topologically
transitive if and only if T is hypercyclic.

Research on linear systems dates back to the first half of the 20th century,
when Birkhoff [1] showed that the translation operator Ta : H(C) → H(C),
where a 6= 0, defined by Taf(z) = f(z + a), is hypercyclic. This result was
generalized by Godefroy and Shapiro [2], who proved that every operator on
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H(CN) that commutes with all translations, and is not a scalar multiple of
identity, is chaotic. Following Birkhoff’s 1929 result, Maclane [3] proved in
1952 that the differentiation operator acting on the space of entire functions
is also hypercyclic. More precisely, he showed that the operator D : H(C) →
H(C), defined by D(f) = f ′, is hypercyclic. Hypercyclicity on Banach spaces
was researched by Rolewics [4] in 1969, and yielded the finding that λB is
hypercyclic whenever |λ| > 1, where B is the unilateral backward shift on
lp(1 ≤ p < ∞) or c0, and is defined by B(x0, x1, x2, · · · ) = (x1, x2, · · · ). A
systematic investigation of hypercyclicity has been underway since the mid-
1980s, and has attracted considerable attention from mathematicians around
the world. For more results, see [5] and [6].

On the contrary, recurrence is a central notion in topological dynamics.
This notion dates back to Poincare and Birkhoff, and refers to the existence of
points in space in which parts of their orbits under a continuous map return
to themselves. The notion of recurrence and variations of it were studied in
the context of linear dynamics by [7]. Topological recurrence is a cornerstone
of research on dynamical systems, and encapsulates the phenomenon of orbits
returning to the neighborhoods of their initial points under continuous trans-
formations. As a central theme in topological dynamics, it bridges the gap
between the topological properties of spaces and the qualitative behavior of
dynamical systems over time.

The dynamics of linear operators on a finite-dimensional space can be easily
described by the Jordan decomposition theorem. Notably, there is no hyper-
cyclic operator in finite-dimensional spaces (see [5, Theorem 2.58]). However,
linear recurrence can occur on a finite-dimensional space (see [7, 8, 9, 10], etc.).

This article contributes to the ongoing discourse by investigating the recur-
rence of tensor products of matrices. Some results and definitions are summa-
rized in Section 2, the recurrence of the tensor products of matrices in Jordan’s
form is considered in Section 3, while the recurrence of the tensor products of
matrices in rational canonical form is considered in Section 4.

2 Preliminary Notes

Definition 2.1 ([7, Definition 1.1]). Let X be a complex Banach space and
T : X → X be a bounded linear operator acting on X. An operator T acting
on X is then called recurrent if, for every open set U ⊂ X, there exists some
k ∈ N such that

U ∩ T−kU 6= ∅.

A vector x ∈ X is called recurrent for T if there exists a strictly increasing
sequence of positive integers (kn)n such that
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T knx→ x,

as n→ +∞. We denote by Rec(T ) the set of recurrent vectors for T .

Some spectral properties of recurrent operators are now summarized. We
use σ(T ) to represent the spectrum of T , σp(T ) to denote the point spectrum
of T , and r(T ) to represent its spectral radius.

Proposition 2.2 ([7, Proposition 2.9]). Let T : X → X be an operator
acting on X. If r(T ) < 1, then T is not recurrent.

Proposition 2.3 ([7, Proposition 2.11]). If T : X → X is a recurrent
operator, then every component of the spectrum of T , σ(T ), intersects with the
unit circle T.

Theorem 2.4 ([7, Theorem 4.1]). A matrix T : Cd → Cd is recurrent if
and only if it is similar to a diagonal matrix with unimodular entries.

Theorem 2.5 ([7, Theorem 4.3]). A matrix T : Rd → Rd is recurrent if
and only if it is similar to a block diagonal matrix of the form

A =


J1 0 · · · 0 0
0 J2 · · · 0 0
...

...
...

...
...

0 0 · · · Jm−1 0
0 0 · · · 0 Jm


where each Jj, 1 ≤ j ≤ m is either a 2× 2 rotation matrix, or a 1× 1 matrix
with entries that are all either 1 or −1.

Definition 2.6. Let A = (aij)m×n and B = (bij)p×q. The tensor product of
A and B is then defined as the following block matrix:

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
...

an1B an2B · · · annB

 .

Proposition 2.7. (A⊗B)T = AT ⊗BT ; (A⊗B)−1 = A−1 ⊗B−1.

Proposition 2.8. (A⊗B) (C ⊗D) = (AC)⊗ (BD).

Theorem 2.9. Assume that A = (Aij)n×m is a block matrix. Then, for any
matrix B, we have

A⊗B =


A11B A12B · · · A1mB
A21B A22B · · · A2mB

...
...

...
...

An1B An2B · · · AnmB

 .
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Theorem 2.10. Let A = (Aij)n×m and B = (Bpq)s×t be two block matrices,
where Aij ∈ Mni,mi

, i = 1, 2, · · · , n; j = 1, 2, · · · ,m; Bpq ∈ Msp,tq , p =
1, 2, · · · , s; q = 1, 2, · · · , t. Then, there exist permutation matrices P and Q
such that

P (A⊗B)Q =



A11 ⊗B11 · · · A11 ⊗B1t · · · A1m ⊗B11 · · · A1m ⊗B1t

· · · · · · · · · · · · · · · · · · · · ·
A11 ⊗Bs1 · · · A11 ⊗Bst · · · A1m ⊗Bs1 · · · A1m ⊗Bst

...
...

...
...

...
...

...
An1 ⊗B11 · · · An1 ⊗B1t · · · Anm ⊗B1t · · · Anm ⊗B1t

· · · · · · · · · · · · · · · · · · · · ·
An1 ⊗Bs1 · · · An1 ⊗Bst · · · Anm ⊗Bst · · · Anm ⊗Bst


.

3 Recurrence of Tensor Product of Matrices

in Jordan’s Form

Before characterizing the recurrence of the tensor products of matrices in dif-
ferent cases, we present a necessary condition for T1 ⊗ T2 to be recurrent.

Theorem 3.1. Let X and Y be F -spaces, and let S : Y → Y and T : X →
X be operators. Suppose that there is an operator ϕ : Y → X of a dense range
such that the following diagram commutes:

Y
S−→ Y

↓ψ ↓ψ
X

T−→ X

That is, if we have T ◦ ψ = ψ ◦ S, then the following hold:

1. If S is hypercyclic, then so is T .

2. If S is weakly mixing, then so is T .

3. If S is chaotic, then so is T .

4. If S is mixing, then so is T .

5. If S is recurrent, then so is T .

Proof. Items (1)–(4) can be found in Theorem [5, Definition 1.5]. We thus
prove item (5) below. Let y ∈ Rec(S) be a recurrent vector for S. Then, there
exists a strictly increasing sequence of positive integers (kn)n such that

Skny → y,
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as n→ +∞. According to T ◦ ψ = ψ ◦ S, we obtain

T kn [ψ(y)] = ψ(Snky)→ ψ(y), as n→ +∞.

This shows that ψ(y) is a recurrent vector for T .

Following [11], it is known that if T ⊗ R is hypercyclic, then neither T
nor R is hypercyclic. This may happen in a recurrent case in which T ⊗ R
is recurrent, but neither T nor R is recurrent. If we take T := 2I and the
backward shift R := B as operators defined on l2, then T ⊗ R = I ⊗ 2B is
hypercyclic and, thus, recurrent. However, T := 2I is not recurrent because
T knx = 2knx9 x.

3.1 The complex field case

By building upon Theorem 2.4, we proceed to analyze the recurrence of the
tensor products of two matrices.

Theorem 3.2. Let T1 and T2 be two matrices in the complex number field.
Assume that T1 and T2 are recurrent. Then, the tensor product T1 ⊗ T2 is
recurrent as well.

Proof. According to Theorem 2.4, there exists an invertible matrix P1 such
that

P−11 T1P1 =


eiθ

1
1 0 · · · 0 0

0 eiθ
1
2 · · · 0 0

...
...

...
...

...

0 0 · · · eiθ
1
m−1 0

0 0 · · · 0 eiθ
1
m

 .

Similarly, there exists an invertible matrix P2 such that

P−12 T2P2 =


eiθ

2
1 0 · · · 0 0

0 eiθ
2
2 · · · 0 0

...
...

...
...

...

0 0 · · · eiθ
2
m−1 0

0 0 · · · 0 eiθ
2
m

 .

According to Proposition 2.7 and Proposition 2.8, we have
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(P1 ⊗ P1)
−1 (T1 ⊗ T2) (P1 ⊗ P2)

=
(
P−11 T1P1

)
⊗
(
P−12 T2P2

)

=


eiθ

1
1 0 · · · 0 0

0 eiθ
1
2 · · · 0 0

...
...

...
...

...

0 0 · · · eiθ
1
m−1 0

0 0 · · · 0 eiθ
1
m

⊗

eiθ

2
1 0 · · · 0 0

0 eiθ
2
2 · · · 0 0

...
...

...
...

...

0 0 · · · eiθ
2
m−1 0

0 0 · · · 0 eiθ
2
m



=


ei(θ

1
1+θ

2
1) 0 · · · 0 0

0 ei(θ
1
1+θ

2
2) · · · 0 0

...
...

...
...

...

0 0 · · · ei(θ
1
m+θ2m−1) 0

0 0 · · · 0 ei(θ
1
m+θ2m)

 .

We conclude that T1 ⊗ T2 is similar to a diagonal matrix with unimodular
entries. Applying Theorem 2.4 once again shows that T1⊗T2 is recurrent.

3.2 The real case

By building upon Theorem 2.5, we proceed to analyze the recurrence of the
tensor products of two matrices.

Theorem 3.3. Let T1 and T2 be two matrices in the real number field.
Assume that T1 and T2 are recurrent in case the similarity matrix of one of
T1 and T2 is diagonal matrix with all entries being either 1 or −1. Then, the
tensor product T1 ⊗ T2 is recurrent.

Proof. For the sake of argument, we assume that T1 is a diagonal matrix in
which all entries are either 1 or -1. By Theorem 2.5, there then exists an
invertible matrix P1 such that

P−11 T1P1 =


c1 0 · · · 0 0
0 c2 · · · 0 0
...

...
...

...
...

0 0 · · · cm−1 0
0 0 · · · 0 cm

 ,

where cj is equal to −1 or 1 for j = 1, 2, · · · ,m. Assume also that there exists
an invertible matrix P2 such that

P−12 T2P2 =


J1 0 · · · 0 0
0 J2 · · · 0 0
...

...
...

...
...

0 0 · · · Jm−1 0
0 0 · · · 0 Jm


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where at least one of Jj, 1 ≤ j ≤ m, is a 2× 2 rotation matrix. According to
Proposition 2.7 and Proposition 2.8, we then have

(P1 ⊗ P1)
−1 (T1 ⊗ T2) (P1 ⊗ P2)

=
(
P−11 T1P1

)
⊗
(
P−12 T2P2

)

=


c1 0 · · · 0 0
0 c2 · · · 0 0
...

...
...

...
...

0 0 · · · cm−1 0
0 0 · · · 0 cm

⊗

J1 0 · · · 0 0
0 J2 · · · 0 0
...

...
...

...
...

0 0 · · · Jm−1 0
0 0 · · · 0 Jm



=


c1J1 0 · · · 0 0

0 c1J2 · · · 0 0
...

...
...

...
...

0 0 · · · cmJm−1 0
0 0 · · · 0 cmJn

 .

It is easy to see that for the block diagonal matrix of the last matrix, each
ciJj, 1 ≤ i ≤ n, 1 ≤ j ≤ m, is either a 2× 2 rotation matrix or a 1× 1 matrix
in which all entries are either 1 or −1. According to Theorem 2.5, we can then
conclude that T1 ⊗ T2 is recurrent.

4 Recurrence of Companion Matrices and their

Tensor Product

A square matrix P is a permutation matrix if exactly one entry in each of its
rows and columns is 1, and all other entries are 0. For example,0 1 0

1 0 0
0 0 1


Let f(λ) = λn − an−1λn−1 − an−2λn−2 − an−3λn−3 − · · · − a1λ− a0. Then,

its companion matrix can be defined as

A =



0 0 0 · · · 0 a0
1 0 0 · · · 0 a1
0 1 0 · · · 0 a2
...

...
...

. . .
...

...
0 0 0 · · · 0 an−2
0 0 0 · · · 1 an−1


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Theorem 4.1. Let A be a companion matrix and permutation matrix. That
is,

A =



0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 0
0 0 0 · · · 1 0


,

Then, A is recurrent.

Proof. The proof is straightforward because An = En is an n × n identity
matrix.

Remark 4.2. A permutation matrix constitutes a sufficient condition for
recurrence but the converse does not hold. Let A be0 0 1

1 0 −1
0 1 1

 ,

It is then easy to see that A is the companion matrix of the polynomial f(λ) =
λ3 − λ2 + λ− 1, and is recurrent because

A4 =

1 0 0
0 1 0
0 0 1

 .

However, A is not a permutation matrix.

Theorem 4.3. An n×n matrix A over a number field is similar to a unique
rational canonical form of A. That is,

A =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · As

 ,

where Ai (i = 1, 2, · · · , s) is companion matrix of some polynomial f(λ). If Ai
(i = 1, 2, · · · , s) is permutation matrix, then A is recurrent.

Proof. According to Theorem 4.1 above, we know that Ai (i = 1, 2, · · · , s) is
recurrent. Assume that Ani

i = E, where i = 1, 2, · · · , s. And let n be the least
common multiple of {n1, n2, · · · , ns}. Then, we get An = E; therefore, A is
recurrent.
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Theorem 4.4. Let A,B be the rational canonical form, i.e.,

A =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · As

 , B =


B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 0 · · · Bt

 ,

where Ai (i = 1, 2, · · · , s) and Bj (j = 1, 2, · · · , t) are companion matrices of
some polynomials f(λ) and g(λ), respectively. If Ai and Bj are permutation
matrices, then A⊗B is recurrent.

Proof.

A⊗B =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · As

⊗

B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 0 · · · Bt



=



A1B1 0 · · · · · · · · · · · · · · · 0

0
. . . 0 · · · · · · · · · · · · · · ·

0 · · · A1Bt 0 · · · · · · · · · · · ·
0 · · · · · · A2B1 0 0 · · · · · ·
0 · · · · · · 0

. . . 0 0 · · ·
0 · · · · · · 0 0 A2Bt 0 0

0 · · · · · · 0 0 0
. . . 0

0 · · · · · · 0 0 0 0 AsBt


AsAi andBj are permutation matrices for (i = 1, 2, · · · , s) and (j = 1, 2, · · · , t),
respectively, and the product of two permutation matrices is also a permu-
tation matrix, AiBj is therefore a permutation matrix. Let n be the least
common multiple of {n11, n1t, · · · , nst}, where (AiBj)

nij = E. We then have
(A⊗B)n = E. Therefore, A⊗B is recurrent.
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