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Abstract 

 
In this paper, we introduce a new subclass of analytic functions associated with the q-

Sălăgean differential operator. It determines the initial coefficients 𝑎2 and 𝑎3, and 

establishes the upper bound for the Fekete-Szegö inequality |𝑎3 − 𝛿𝑎2
2| within this 

subclass.  
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1 Introduction 
 

   In the field of complex analysis, analytic functions defined within the open unit 

disk 𝕌 = {𝑧: 𝑧 ∈ ℂ 𝑎𝑛𝑑  |𝑧| < 1} play a fundamental role in understanding the 

geometric characteristics and theories of functions. As explained by [6], these 

functions represented as 𝒜, are those that are differentiable at every point within 

the domain D and can often be expressed through a Taylor series expansion: 

𝑓(𝑧) = 𝑧 +∑𝑎𝑛𝑧
𝑛

∞

𝑛=2

(1) 

wherei 𝑎𝑛 ∈ ℂ, 𝑛 = 2,3,⋯. 
Subordination is a key concept for analyzing the relationships between 

functions in this class. As described by [4], a function 𝑓(𝑧) is said to be subordinate 

to another function 𝑔(𝑧), symbolized as 𝑓(𝑧) ≺ 𝑔(𝑧) if Schwarz function 𝑤(𝑧) 
exist in 𝕌, with 𝑤(0) = 0 and |𝑤(𝑧) | < 1. 

Moreover, the Fekete-Szegö problem continues to be an important research 

topic, especially in calculating the initial coefficients 𝑎2 and 𝑎3, as well as 

determining the upper bound for the functional |𝑎3 − 𝛿𝑎2
2|. Extensive contributions 

by researchers like [1], [8] and [4] have provided valuable insights into these 

problem. 

Therefore, this paper aims to present a new subclass of analytic functions 

and further explore the determination of the initial coefficients 𝑎2 and 𝑎3, alongside 

the upper bound for the Fekete-Szegö inequality for functions within this new 

subclass, which is linked to the q-Sălăgean differential operator. 

The application of the q-derivative operator has opened new avenues for 

extending the analysis of analytic functions. As outlined by [5], the q-derivative 

operator for 𝑓 ∈ 𝒜 in the open unit disk 𝕌 is defined as: 

𝐷𝑞𝑓(𝑧) = 1 +∑[𝑛]𝑞𝑎𝑛𝑧
𝑛−1

∞

𝑛=2

  

where [𝑛]𝑞 =
1−𝑞𝑛

1−𝑞
. 

By incorporating q-calculus and the concept of subordination, researchers 

have been able to refine existing bounds for the coefficients 𝑎2 and 𝑎3 and uncover 

new geometric properties of these functions. Researchers like [2] have extended 

this by defining the q-Sălăgean differential operator 𝑀𝑞
𝑛, for given 𝑓 ∈ 𝒜 and 0 <

𝑞 < 1,  𝑀𝑞
𝑛 is defined as 

𝑀𝑞
𝑛𝑓(𝑧) = 𝑧𝐷𝑞 (𝑀𝑞

𝑛−1𝑓(𝑧)) = 𝑧 +∑[𝑗]𝑞
𝑛𝑎𝑗𝑧

𝑗    (𝑧 ∈ 𝕌)

∞

𝑗=2

.  

This extension of classical results is expected to provide new insights into 

the study of analytic functions, their coefficient result and Fekete-Szegö problem. 

 

Definition 1 A function 𝑓 ∈ 𝒜 is said to belong to the new subclass ℒ𝑞,𝑛(𝜙) if it 

satisfies the following subordination condition: 
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(
𝑧𝐷𝑞 (𝑀𝑞

𝑛𝑓(𝑧))

𝑀𝑞
𝑛𝑓(𝑧)

)

𝜀

(1 +
𝑧𝑞𝐷𝑞 (𝐷𝑞 (𝑀𝑞

𝑛𝑓(𝑧)))

𝐷𝑞 (𝑀𝑞
𝑛𝑓(𝑧))

)

1−𝜀

≺ 𝜙(𝑧), 𝜀 ≥ 0.  

 

2 Preliminary Results 
 

   The main findings are based on the following lemmas: 

Lemma 1 ([7]) If 𝑝(𝑧) = 1 + 𝑐1𝑧 + 𝑐2𝑧
2 + 𝑐3𝑧

3 +⋯ represents a function with a 

positive real part in the open unit disk 𝕌, and 𝛾 is a complex number, then 

|𝑐2 − 𝛾𝑐1
2| ≤ 2𝑚𝑎𝑥{1; |2𝛾 − 1|} . 

Lemma 2 ([7]) If 𝑝(𝑧) = 1 + 𝑐1𝑧 + 𝑐2𝑧
2 + 𝑐3𝑧

3 +⋯ is a function with positive 

real part in open unit disk 𝕌 and 𝛾 is a complex number, then 

|𝑐2 − 𝛾𝑐1
2| ≤ {

−4𝛾 + 2, 𝛾 < 0
2, 0 ≤ 𝛾 ≤ 1

4𝛾 − 2, 𝛾 ≥ 1
 . 

Remarks. The previously mentioned upper bound is sharp and can be adjusted as 

shown below, provided the conditions 0 < γ < 1 are met. 

 

3 Main Results 
 

Theorem 1 Let 𝜙(𝑧) = 1 + 𝐵1𝑧 + 𝐵2𝑧
2 + 𝐵3𝑧

3 +⋯ with 𝐵1 ≠ 0, and 𝑓 given by 

(1) belongs to ℒ𝑞,𝑛(𝜙), then 

|𝑎3 − 𝛿𝑎2
2| ≤

|𝐵1|

[3]𝑞
𝑛[(1 − 𝜀)𝑞[3]𝑞

2 + 𝜀([3]𝑞 − 1)]
𝑚𝑎𝑥 {1; |

𝐵2
𝐵1

+
𝐵1

((1 − 𝜀)𝑞[2]𝑞
2 + 𝜀([2]𝑞 − 1))

2 (𝜌

− 𝛿
[3]𝑞

𝑛[(1 − 𝜀)𝑞[3]𝑞
2 + 𝜀([3]𝑞 − 1)]

[2]𝑞
2𝑛 )|}  

where 

𝜌 = (
𝜀2 + 𝜀 − 2

2
)𝑞[2]𝑞

3 + 𝜀(1 − 𝜀)𝑞[2]𝑞
2([2]𝑞 − 1) + (

𝜀2 − 3𝜀

2
) ([2]𝑞 − 1). 

 

Proof. Let 𝑓 ∈ ℒ𝑞,𝑛(𝜙), by definition there exist a function 𝑤(𝑧) with 𝑤(0) = 0, 

and |𝑤(𝑧)| < 1 in 𝕌 such that  

(
𝑧𝐷𝑞 (𝑀𝑞

𝑛𝑓(𝑧))

𝑀𝑞
𝑛𝑓(𝑧)

)

𝜀

(1 +
𝑧𝑞𝐷𝑞 (𝐷𝑞 (𝑀𝑞

𝑛𝑓(𝑧)))

𝐷𝑞 (𝑀𝑞
𝑛𝑓(𝑧))

)

1−𝜀

= 𝜙(𝑤(𝑧)) . (2) 

Now, define the function 𝑝(𝑧) by 
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𝑝(𝑧) =
1 + 𝑤(𝑧)

1 − 𝑤(𝑧)
= 1 + 𝑝1𝑧 + 𝑝2𝑧

2 +⋯ . (3) 

Since 𝑤(𝑧) is a schwarz function 𝑅𝑒(𝑝(𝑧)) > 0 and 𝑝(0) = 1. Let 

𝑔(𝑧) = (
𝑧𝐷𝑞 (𝑀𝑞

𝑛𝑓(𝑧))

𝑀𝑞
𝑛𝑓(𝑧)

)

𝜀

(1 +
𝑧𝑞𝐷𝑞 (𝐷𝑞 (𝑀𝑞

𝑛𝑓(𝑧)))

𝐷𝑞 (𝑀𝑞
𝑛𝑓(𝑧))

)

1−𝜀

= 1 + 𝑑1𝑧 + 𝑑2𝑧
2 +⋯ . (4)

 

From equation (2), (3) and (4), we obtain 

𝑔(𝑧) =  𝜙(𝑤(𝑧)) 
and from equation (3) we know that 

𝑔(𝑧) = 1 +
1

2
𝐵1𝑝1𝑧 + (

1

2
𝐵1 (𝑝2 −

1

2
𝑝1
2) +

1

4
𝐵2𝑝1

2) 𝑧2 +⋯ . (5) 

Hence, from equation (4) and (5) we get  

𝑑1 =
1

2
𝐵1𝑝1   (6) 

𝑑2 =
1

2
𝐵1 (𝑝2 −

1

2
𝑝1
2) +

1

4
𝐵2𝑝1

2 (7) 

Therefore, computation shows that 

(
𝑧𝐷𝑞 (𝑀𝑞

𝑛𝑓(𝑧))

𝑀𝑞
𝑛𝑓(𝑧)

)

𝜀

(1 +
𝑧𝑞𝐷𝑞 (𝐷𝑞 (𝑀𝑞

𝑛𝑓(𝑧)))

𝐷𝑞 (𝑀𝑞
𝑛𝑓(𝑧))

)

1−𝜀

  

  = 1 + ((1 − 𝜀)𝑞[2]𝑞
𝑛+2 + 𝜀[2]𝑞

𝑛([2]𝑞 − 1)) 𝑎2𝑧 + [((1 − 𝜀)𝑞[3]𝑞
𝑛+2 + 𝜀[3]𝑞

𝑛([3]𝑞 − 1)) 𝑎3 +

((
𝜀2+𝜀−2

2
)𝑞[2]𝑞

2𝑛+3 + 𝜀(1 − 𝜀)𝑞[2]𝑞
2𝑛+2([2]𝑞 − 1) + (

𝜀2−3𝜀

2
) [2]𝑞

2𝑛([2]𝑞 − 1))𝑎2
2] 𝑧2 +⋯ (8) 

Hence, from equation (8) and (6) 

𝑎2 =
𝐵1𝑝1

2[2]𝑞
𝑛[(1 − 𝜀)𝑞[2]𝑞

2 + 𝜀([2]𝑞 − 1)]
(9) 

Also, from equation (8) and (7), we have 

𝑎3 =
𝐵1

2[3]𝑞
𝑛[(1−𝜀)𝑞[3]𝑞

2+𝜀([3]𝑞−1)]
[𝑝2 − (

1

2
−

𝐵2

2𝐵1
−

𝜌𝐵1

2[(1−𝜀)𝑞[2]𝑞
2+𝜀([2]𝑞−1)]

2)𝑝1
2] . (10)  

 where 

𝜌 = (
𝜀2 + 𝜀 − 2

2
)𝑞[2]𝑞

3 + 𝜀(1 − 𝜀)𝑞[2]𝑞
2([2]𝑞 − 1) + (

𝜀2 − 3𝜀

2
) ([2]𝑞 − 1). 

By using equation (9) and equation (10), we define 

𝑎3 − 𝛿𝑎2
2 =

𝐵1

2[3]𝑞
𝑛[(1 − 𝜀)𝑞[3]𝑞

2 + 𝜀([3]𝑞 − 1)]
[𝑝2 − 𝛾𝑝1

2]  

where 

𝛾 =
1

2
[1 −

𝐵2
𝐵1
−

𝐵1

[(1 − 𝜀)𝑞[2]𝑞
2 + 𝜀([2]𝑞 − 1)]

2 𝜌 − 𝛿
[3]𝑞

𝑛[(1 − 𝜀)𝑞[3]𝑞
2 + 𝜀([3]𝑞 − 1)]

[2]𝑞
2𝑛

] .  

Our result now follows an application of Lemma 1. Hence, Theorem 1 has been 

proved. 

 

(11) 
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Theorem 2 Let 𝜙(𝑧) = 1 + 𝐵1𝑧 + 𝐵2𝑧
2 + 𝐵3𝑧

3 +⋯ with 𝐵1 > 0 and 𝐵2 ≥
0, and 𝑓 given by equation (1) belongs to ℒ𝑞,𝑛(𝜙), and 

 

𝜀1 =
[2]𝑞

2𝑛

[3]𝑞
𝑛[(1−𝜀)𝑞[3]𝑞

2+𝜀([3]𝑞−1)]
(
𝜌𝐵1

2+((1−𝜀)𝑞[2]𝑞
2+𝜀([2]𝑞−1))

2
(𝐵2−𝐵1)

𝐵1
2 ) ,    

𝜀2 =
[2]𝑞

2𝑛

[3]𝑞
𝑛[(1−𝜀)𝑞[3]𝑞

2+𝜀([3]𝑞−1)]
(
𝜌𝐵1

2+((1−𝜀)𝑞[2]𝑞
2+𝜀([2]𝑞−1))

2
(𝐵2+𝐵1)

𝐵1
2 ) .   

Then 

|𝑎3 − 𝛿𝑎2
2| ≤

{
 
 
 
 
 

 
 
 
 
 

𝐵2

[3]𝑞
𝑛[(1−𝜀)𝑞[3]𝑞

2+𝜀([3]𝑞−1)]

+
𝜌𝐵1

2

[3]𝑞
𝑛[(1−𝜀)𝑞[3]𝑞

2+𝜀𝑞[2]𝑞][(1−𝜀)𝑞[2]𝑞
2+𝜀𝑞]

2

−𝛿
𝐵1
2

[2]𝑞
2𝑛[(1−𝜀)𝑞[2]𝑞

2+𝜀𝑞]
2

                         , if 𝛿 ≤ 𝜀1

𝐵1

[3]𝑞
𝑛[(1−𝜀)𝑞[3]𝑞

2+𝜀([3]𝑞−1)]
                                         , if 𝜀1 ≤ 𝛿 ≤ 𝜀2

𝛿
𝐵1
2

[2]𝑞
2𝑛[(1−𝜀)𝑞[2]𝑞

2+𝜀𝑞]
2 −

𝐵2

[3]𝑞
𝑛[(1−𝜀)𝑞[3]𝑞

2+𝜀([3]𝑞−1)]

−
𝜌𝐵1

2

[3]𝑞
𝑛[(1−𝜀)𝑞[3]𝑞

2+𝜀([3]𝑞−1)][(1−𝜀)𝑞[2]𝑞
2+𝜀𝑞]

2

     , if 𝛿 ≥ 𝜀2

  

where 

𝜌 = (
𝜀2 + 𝜀 − 2

2
) 𝑞[2]𝑞

3 + 𝜀(1 − 𝜀)𝑞[2]𝑞
2([2]𝑞 − 1) + (

𝜀2 − 3𝜀

2
) ([2]𝑞 − 1). 
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