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Abstract

Consider an ordinary (affine) connection on a differentiable manifold M.
In the article 1 a tensor field σ of type (1,1) has been used to define a

endomorphism, denoted by
(σ)

∇X , X ∈ D1, called σ-connection. Let ϕ
a tensor field such that ϕ ∈ D1

1, at n.1 of this article we define a con-
nection associate with the connection previously mentioned, indicated

by ϕ−1
(σ)

∇Xϕ or more briefly
(σ)

∇∗X and also written (ϕ)-connection. In
n.2 some fundamental theorems are obtained in components. We then
introduce three fields of torsion respectively, it occurs that they are ten-
sors (n.3) and the corresponding structural equations are deduced (n.4).
In (n.5) the curvature’s field of (ϕ)-connection has been obtained. For
these connections Bianchi’s equations have been given (n.6). Then the
structure equations of the curvature field introduced were been written
(n.7).

Keywords: differential geometry, tensor connection, torsion, curvature,
structure equations

1. The notion of (ϕ)-connection

Let M be a differentiable manifold of class C∞ and dimension m, we will
define the following expressions:
F or C∞(M) the algebra (on R) or functions C∞ on M;
D1 and D1 the F-module of vector fields on M and the F-dual module

1See [2]
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respectively.
Drs the tensor field of type (r,s) over M;
D the tensor field algebra over M, that is:

D =
∞∑
p,q

Dpq .

In addition the notion of D-derivation of D (See Definition 1) and of the fun-
damental property stated in Proposition 1 below, will be used.

Definition 1. A D-derivation of algebra D is a linear endomorphism D of
D that verifies the following conditions:

a) D preserves the type of tensors
b) D(T ⊗ S) = (DT )⊗ S + T ⊗ (DS)
c) D(CT ) = C(DT ),

where C indicates the contraction operation of tensors 2. For D-derivation the
following proposition is valid:

Proposition 1. A D-derivation is determined when it is known how to
operate on the algebra F and on the F-module D1 3.

Remark 1. Considered on M the non-degenerate tensor field σ ∈ D1
1 that

is, for every point p ∈ M , an endomorphism of the tangent space D1(p) in
p; for σ we will not necessarily consider verified the known condition valid
for almost-complex structure 4. For this reason, σ can be called a generalized
almost-complex structure. That said, we introduce the following:

Definition 2.5 Let ϕ be a tensor field such that ϕ ∈ D1
1. Said (ϕ)-

connection or connection associated with a generalized connection, a homomor-

fism ϕ−1
(σ)

∇Xϕ or more briefly
(σ)

∇∗X of D1 in the F-module of D-derivations of

D if verifies the condition:

(σ)

∇∗Xf = ϕ−1
(σ)

∇Xϕf = ϕ−1((σX)(ϕf)) = (σX)f, ∀X ∈ D1, ∀f ∈ F . (1)

It is a derivation (Definition 1), with ϕ−1
(σ)

∇Xϕ instead of D, satisfying (1) and
such that:

2See [5] p.25
3See [5] p.30
4That is σ2(X) = −X,∀X ∈ D1

5See [2]
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(σ)

∇∗X(T1 + T2) =
(σ)

∇∗XT1 +
(σ)

∇∗XT2, ∀X ∈ D1,∀T1, T2 ∈ D.

Then we have:
(σ)

∇∗X(fY ) = ϕ−1{
(σ)

∇Xϕ(fY )} = ϕ−1{(σX)ϕ(fY ) + f(
(σ)

∇Xϕ)(Y )}=

((σX)f)Y + f
(σ)

∇∗XY, ∀f ∈ F , ∀X, Y ∈ D1.

2. Propositions and components of a
(ϕ)-connection

Proposition 2. Let X→
(σ)

∇∗X be a (ϕ)-connection, if on the open submanifold
U (of M) vanishes the field T ∈ Drs or the field X ∈ D1, on U vanishes as well
(σ)

∇∗X T.

Proposition 3. Let X ∈ D1, T ∈ Drs. If X vanishes at one point p ∈ M ,

then also
(σ)

∇∗XT vanishes at p.

Proofs are obtained by adopting the technique for the case of affine con-
nections.

From the previous propositions and from well-known theorems 6relating to
the possibility of extending data fields to M on an open submanifold U of M,
it follows again:

Proposition 4. A (ϕ)-connection given on M induces a (ϕ)-connection
on a generic open submanifold U of M.

Proof. Let X, Y be two vectors on U. For each p ∈ U there exist vectors
X’, Y’ on M which agree with X and Y in an open neighborhood V of p. We

then put (
(σ)

∇∗UX(Y ))q = (
(σ)

∇∗X′(Y ′))q for q ∈ V . The right-hand side of this
equation is independent of the choice of X’, Y’. It follows immediately that the

rule:
(σ)

∇∗U : X → (
(σ)

∇∗U)X , X ∈ D1(U), is a (ϕ)-connection on U.

6See [2]
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Let {Xh} a basis (for tangent fields) valid in a certain neighborhood Vp of
a point p ∈M . With respect to {Xh}, expressions of the following type will be
valid:

σ{Xh} = arhXr, arh ∈ C∞(p),
(σ)

∇∗Xi
Xj = L∗hij Xh L∗hij ∈ C∞(p),

having denoted by C∞(p) the set of functions C∞ in some neighborhood of p.
The L∗hrs are the components of the (ϕ)-connection relative to the base

{Xh}; these components, considered together with the arh((σ)-components),
identify the (ϕ)-connection. An analytical confirmation of this fact is given by
the formulas according to which the L∗hrs varies for a basic change.

We take into account that the transition from the base {Xh} to another
base {Xh′} is done with the following formulas:

Xh′ = Θh
h′Xh, Θh

h′ ∈ C∞(V ′p). (2)

Said L∗h′i′j′ the components of
(σ)

∇∗ relating to {Xh′}, the basis change (2) gives:

L∗h
′

i′j′Θ
h
h′ = Θr

i′Θ
s
j′L
∗h
rs + Θr

i′a
t
r(XtΘ

h
j′), ar

′

h′Θ
r
r′ = arhΘ

h
h′ . (3)

The (3) are precisely the desired formulas: the presence in them of the arh
proves what has been said.

In particular, if it is assumed Xi = ei= ∂
∂xi

, being {xi} a local coordinate

system and therefore {Xi} the corresponding natural basis, we have:

Θh′

h = ∂xh
′

∂xh
= ϑh

′

h , eiΘ
h′

h = ∂2xh
′

∂xixh
= ϑh

′

ih

and the (3) are written:

Γh
′

i′j′ϑ
h
h′ = ϑri′ϑ

s
j′Γ

h
rs + ϑri′a

t
rϑ

h
tj′ with the a

r′

h′ϑ
r
r′ = arhϑ

h
h′ , (4)

where the Γhij now indicates the components of
(σ)

∇∗ in the natural basis {ei}.

Now let’s move on the components of
(σ)

∇∗Xω, with ω ∈ D1.
Let {ωi} be the dual basis of {Xi}, ωi(Xj) = δij for Xj ∈ D1(Vp), ω

i ∈
D1(Vp).

The (ϕ)-connection components relating to {ωi} (i.e.the
(σ)

∇∗Xω components),
will be defined by the:
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(σ)

∇∗Xi
ωh = L̄∗hij ω

j L̄∗hij ∈ C∞(Vp).

For b) of the Definition 1, data X,Y ∈ D1(Vp), we have the relation:

(X)(ωY ) = (
(σ)

∇∗Xω)Y + ω(
(σ)

∇∗XY )
that written for X = Xi, Y = Xj, ω = ωh, gives the:

(
(σ)

∇∗Xi
ωh)Xj + ωh(

(σ)

∇∗Xi
Xj) = 0

from which we obtain:

L̄∗hip δ
p
j + L∗pij δ

h
p = 0, and then: L̄∗hij = −L∗hij .

Remark 2. The link between the components Lhij 7 and the components L∗hij
is, b̄riL

h
rsb

s
j = L∗hij where, ϕ

−1{Xi} = b̄riXr and ϕ{Xj} = bsjXs such that b̄
i
rb
r
j =

I, with b̄ir, b
r
j ∈ C∞(p).

Coming then to space D2(Vp) and considered the base {Xh ⊗Xk} induced
by {Xi}, similarly to what it has been done before, we will be able to place:

(σ)

∇∗Xi
(Xh ⊗Xk) = L∗pqihkXp ⊗Xq. (5)

If we develop the first member of (5) according to b) of the Definition 1,

we get:
(σ)

∇∗Xi
(Xh ⊗Xk) = (

(σ)

∇∗Xi
Xh)⊗Xk +Xh ⊗ (

(σ)

∇∗Xi
Xk), but:

(
(σ)

∇∗Xi
Xh)⊗Xk +Xh ⊗ (

(σ)

∇∗Xi
Xk) =

L∗pihXp ⊗Xk + L∗qikXh ⊗Xq = δqkL
∗p
ihXp ⊗Xq + δphL

∗q
ikXp ⊗Xq.

From the comparison of (5) with the above, we can deduce:

L∗pqihk = δqkL
∗p
ih + δphL

∗q
ik .

By proceeding in this way it is possible to determine, in general, the components

L∗p1...priq1...qs
of

(σ)

∇∗Xi
related to the base {xp1⊗ . . .⊗xpr⊗ωq1 . . .⊗ωqs} in a function

of the components related to the starting base {Xi}, such a possibility complies

7See [2]
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with Proposition 1, of which it is a check.

The (ϕ)-connection is therefore determined in Vp, assigning the two com-
ponent systems aij and L∗hij . In particular:

Proposition 5. If {Ui} is a cover of M, and if for each open aij and Γhij

are given so that they hold, at the intersection of pairs of open, the (4) for the

Γhij and for the aij, is defined, for each open Ui, a (ϕ)-connection (
(σ)

∇∗)Ui and

on M a (ϕ)-connection
(σ)

∇∗ , that induces, on Ui, the (
(σ)

∇∗)Ui.8

3. Torsion fields

A. Nijenhuis introduced the field
(σ)

N defined as follow:

(σ)

N (X, Y ) = [σX, σY ]− σ([σX, Y ] + [X, σY ]− σ[X, Y ]) =

[σX, σY ]− σK(X, Y ), with :

K(X, Y ) = [σX, Y ] + [X, σY ]− σ[X, Y ].

(6)

Thus the field
(σ)

N ∈ D1
2 :

{ω,X, Y } ∈ D1 ×D1 ×D1 → ω(
(σ)

N (X.Y )) ∈ R can be called a torsion on σ.

How to check immediately,
(σ)

N (X, Y ) is a tensor field, while K(X,Y) is not.
As far as the (ϕ)-connection, we now want to indicate two tensor fields

S∗, T ∗ that we can call 1° and 2° torsion field because both are reduce to the
torsion field of an ordinary connection if we make the hypotesis that σ induces
the identical endomorphism for each p ∈ M. The fields S∗, T ∗ in question are
defined by the expressions:

S∗(X, Y ) =
(σ)

∇∗XY −
(σ)

∇∗YX −K[X, Y ];

T ∗(X, Y ) =
(σ)

∇∗XσY −
(σ)

∇∗Y σX − [σX, σY ], ∀X, Y ∈ D1.

(7)

. The proof that S∗(X,Y) and T ∗(X, Y ) determine two tensor fields consists
in formally checking that both S∗ and T ∗ are F -linear applications ofD1×D1 ∈

8See[3]
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D1.
For S∗ and for T ∗ the property of antisymmetry hold, i.e that is:

S∗(X, Y ) = −S∗(Y,X), T ∗(X, Y ) = −T ∗(Y,X).

From the previous fields we can easily derive the components; if we
introduce any local base {xi}, we derive the following expressions:

S∗hij = L∗hij − L∗hji − a
q
iγ

h
qj − a

q
jγ

h
iq + ahqγ

q
ij +Xja

h
i −Xia

h
j

T ∗hij = aqjL
∗h
iq − a

q
iL
∗h
jq − ariasjγhrs,

where it still stands [Xi, Xj] = γhijXh.

4. Torsion forms and related equations of
structural equations

With reference to the torsion fields of the previous number, let’s say:

(a)


(σ)

N (X, Y ) =
(σ)

Nk(X, Y )Xk,

S∗(X, Y ) = S∗k(X, Y )Xk,

T ∗(X, Y ) = T ∗k(X, Y )Xk

by means of the (a) we define the 2-forms
(σ)

Nk, S∗k, T ∗k which we call the torsion
forms.

Proposition 6. The torsion forms of a (ϕ)-connection verify the follow-
ing relationships (structural equations)

(b)
(σ)

Nk = γkrsa
r ∧ as − 2γtrqa

k
t a

r ∧ ωq − 2akrda
r

(c) S∗k = 2{ω∗kh ∧ ωh + 2ap ∧ βkp − dak}
(d) T ∗k = 2{ω∗kh ∧ ah + βkpqa

p ∧ aq},

(8)

with the akr defined in the chapter 2, ωk belonging to the dual basis of
{Xk}, γkrs defined in the chapter 3, and the ω∗kh , ar, βkq ∈ D1, β

k
pq ∈ F , defined

as follows:

ωk(
(σ)

∇∗XXp) = ω∗kp (X)

ωk{σX} = ak(X)

(dωk)(Xp) = βkp

(dωk)(Xp, Xq) = βkpq ∀ X,Xp, Xq ∈ D1

(9)
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The proof of (b) is left to the reader while equations (c), (d) are demon-
strated by the following developments.

Proof of (c): Let’s develop the second expression of (a):

S∗k(X, Y ) = ωk
(σ)

∇∗X(ωh(Y )Xh)− ωk
(σ)

∇∗Y (ωh(X)Xh)−ωk[σX, Y ]− ωk[X, σY ]+

ωkσ[X, Y ] = ωh(Y )ω∗kh (X) − ωh(X)ω∗kh (Y )+ (σX)ωk(Y ) − (σY )ωk(X) − ωk

[σX, Y ]+Xωk(σY )−Y ωk(σX)−ωk[X, σY ]+Y ωk(σX)−Xωk(σY )+ωkσ[X, Y ]

= {2ω∗kh ∧ ωh − 2dak}(X, Y ) + 2dωk(σX, Y )+ 2dωk(X, σY )9 = {2ω∗kh ∧ ωh −

2dak}(X, Y )+4dωk(σX, Y ) = 2{ω∗kh ∧ωh−dak}(X, Y )+ 4(ap(X), dωkXp(Y )) =

2{ω∗kh ∧ωh+2ap∧βkp −dak}(X, Y ), since dωk(σX, Y ) = dωk(X, σY ), it follows
(c).

Proof of (d):

T ∗k(X, Y ) = ωk
(σ)

∇∗X(ωh(σY )Xh)−ωk
(σ)

∇∗Y (ωh(σX)Xh)− ωk[σX, σY ] = ωh(σY )

ωkh(X)−ωh(σX)ωkh(Y ) + (σX)ωk(σY )− (σY )ωk(σX)−ωk[σX, σY ] = 2[ω∗kh ∧
ah + dωk(Xp, Xq)a

p ∧ aq](X, Y ) = 2[ω∗kh ∧ ah + βkpqa
p ∧ aq](X, Y ), ∀X, Y ∈ D1,

from which we obtain (d).

5. Curvature’s field of generalized integrable
(ϕ)-connection

In the theory of connections it is interesting to consider the curvature tensor as
a tensor field by means of which formulas are expressed for the commutation of
the operation of " covariant derivation" as a consequence of the very definition

of connection; in the case of an operator of connection
(σ)

∇X , it is known that
the field of curvature it can be expressed as follows:

Q(X, Y )Z = (
(σ)

∇X

(σ)

∇Y −
(σ)

∇Y

(σ)

∇X −
(σ)

∇K(X,Y ))Z ∀ X, Y.Z ∈ D1

with −K(X, Y ) = S(X, Y )− (
(σ)

∇XY −
(σ)

∇YX)

and S is the torsion field of the connection under consideration.We want to
proceed in a similar way for a (ϕ)-connection. There are already two possibil-
ities arising from the presence of two torsion fields (S∗ and T ∗). Between the
two fields of torsion, the 1° presents greater analogy with the ordinary case;
infact, consequently from the 1° of (7), we derive:

9See [3] p.21
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−K(X, Y ) = S∗(X, Y )− (
(σ)

∇∗Y −
(σ)

∇∗X);

Using S∗, we are thus let to construct the following field:

Q∗(X, Y )Z = (
(σ)

∇∗X
(σ)

∇∗Y −
(σ)

∇∗Y
(σ)

∇∗X −
(σ)

∇∗K(X,Y ))Z, (10)

with K given by (6).

Relative to (10) we have the:

Proposition 7. Necessary and sufficient condition such:

Q∗ : {ω,X, Y, Z} ∈ D3
1 → ω{Q(X, Y )Z} ∈ F

is a tensorial field is that the sigma torsion is zero.

Proof. In (10) we put fX, gY, hZ with f, g, h ∈ F instead of X, Y, Z,
unfolding and simplifying we have successively:

Q∗(fX, gY )hZ = (
(σ)

∇∗fX
(σ)

∇∗gY−
(σ)

∇∗gY
(σ)

∇∗fX −
(σ)

∇∗K(fX,gY ))hZ = fgh{
(σ)

∇∗X
(σ)

∇∗Y −
(σ)

∇∗Y
(σ)

∇∗X}Z+fh(σX)g)
(σ)

∇∗YZ+ f(σX)g(σY )h)Z+fg([σX, σY ]h)Z−

gh(σY )f
(σ)

∇∗XZ−g(σY )f(σX)hZ)−fgh
(σ)

∇∗ [σX,Y ]Z−fg(σ[σX, Y ]h)Z−fh((σX

)g)
(σ)

∇∗YZ − f(σX)g)(σY )hZ − fgh
(σ)

∇∗[X,σY ]Z − fg(σ[X, σY ]h)Z + gh((σY )f)
(σ)

∇∗XZ+g(σY )f(σX)hZ+fgh
(σ)

∇∗σ[X,Y ]Z+ fg(σ2[X, Y ]h)Z = fghQ∗(X, Y )Z+

fg{([σX, σY ]− σK(X, Y )h}, which proves the assertion if and only if:

[σX, σY ]− σK(X, Y ) = 0.

If σ determines on M an almost complex structure (i.e. if σ is such that
σ2 = −I, with identical endomorphism I), and moreover the relative torsion is
zero, σ is said to be integrable. If we agree to call σ integrable connections in
a generalized sense those for which σ is torsionless (regardless σ2 = −I), the
Proposition 7 can be started as follows:

Proposition 8. Necessary and sufficient condition that:

Q∗ : {ω,X, Y, Z} ∈ D3
1 → {Q(X, Y )Z} ∈ F
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to be a tensor field is that σ is integrable in a generalized sense.
In particular: if σ2 = - I, σ determines a quasi-complex structure on M,

the field (10) then gives the curvature tensor of an almost complex integrable
structure.

6. Bianchi’s Identities

The field Q*, introduced in the previous issue, satisfies two identities that are
a generalization of Bianchi’s identities and therefore we still call them by the
same name. The identities in question are the following ones:

P{Q∗(X, Y )Z} = P{
(σ)

∇∗XS∗(Y, Z)+S∗(X,K(Y, Z))+K(X,K(Y, Z))}. (11)

P{
(σ)

∇∗XQ∗(Y, Z)−Q∗(X, Y )
(σ)

∇∗Z −Q∗(K(X, Y ), Z)}W =

P{
(σ)

∇∗K(K(X,Y ),Z)}W,
(12)

where X,Y,Z,W ∈ D1 and P denotes the circular permutation with respect
to the arguments X,Y,Z.

The following steps prove (11).

P{Q∗(X, Y )Z} =
(σ)

∇∗X
(σ)

∇∗YZ −
(σ)

∇∗Y
(σ)

∇∗XZ −
(σ)

∇∗K(X,Y )Z +
(σ)

∇∗Y
(σ)

∇∗ZX −
(σ)

∇∗Z
(σ)

∇∗YX −
(σ)

∇∗K(Y,Z)X +
(σ)

∇∗Z
(σ)

∇∗XY −
(σ)

∇∗X
(σ)

∇∗ZY −
(σ)

∇∗K(Z,X)Y.
Using the 1° of (7), it is successively obtained:

(σ)

∇∗X{
(σ)

∇∗YZ−
(σ)

∇∗ZY −K(Y, Z)}+
(σ)

∇∗XK(Y, Z)−
(σ)

∇∗K(Y,Z)X+
(σ)

∇∗Y {
(σ)

∇∗ZX−
(σ)

∇∗XZ − K(Z,X)} +
(σ)

∇∗YK(Z,X) −
(σ)

∇∗K(Z,X)Y +
(σ)

∇∗Z{
(σ)

∇∗XY −
(σ)

∇∗YX −

K(X, Y )}+
(σ)

∇∗ZK(X, Y )−
(σ)

∇∗K(X,Y )Z =

P{
(σ)

∇∗XS∗(Y, Z) +
(σ)

∇∗XK(Y, Z)−
(σ)

∇∗K(Y,Z)X}

= P{
(σ)

∇∗XS∗(Y, Z) + S∗(X,K(Y, Z)) +K(X,K(Y, Z))}.

The proof of (10) is similar.

Remark 3. From (11) you can see that P{Q∗(X, Y )Z}=0 if and only
if they are simultaneously S∗(X, Y ) = 0 and K(X,Y)=0 ∀X, Y ∈ D1, while
the second member of (12) is equal to zero if and only if it is K(X,Y)=0
∀X, Y ∈ D1.



On connections associated with generalized connections 43

7. Curvature formes and related structural
equation

In analogy with what was done in n. 4 for torsion, let us now introduce with

regard to the field of curvature Q∗ (with
(σ)

N=0), the 2 forms Q∗kh defined as
follows:

Q∗(X, Y )Xh = Q∗kh (X, Y )Xk (Q∗h(X, Y ) = Q∗(X, Y )Xh) (13)

we will say Q∗kh the curvature formes of (ϕ)-connession. Again on the assump-
tion that σ is integrable in a generalized sense, the following proposition is
valid:

Proposition 9. The curvature formes of (ϕ)-connection verify the rela-
tionships (structural equations):

Q∗kh = 2{−ω∗qh ∧ ω
∗k
q + 2ap ∧ η∗khp − da∗kh ), (14)

where the ω∗qh , a
p are the forms already considered in (7) and η∗khp, a

∗k
h ∈ D1

are defined as follow:

(dω∗kh )(Xp) = η∗khp. ω∗kh σ = a∗kh

To prove (14) we develop (13) with recourse to the (10), the following steps
are then obtained:

Q∗h(X, Y )Xh =
(σ)

∇∗X
(σ)

∇∗YXh−
(σ)

∇∗Y
(σ)

∇∗XXh−
(σ)

∇∗K(X,Y )Xh =
(σ)

∇∗X(ω∗qh (Y )Xq)−
(σ)

∇∗Y (ω∗qh (X)Xq)−
(σ)

∇∗ [σX,Y ]Xh−
(σ)

∇∗ [X,σY ]Xh+
(σ)

∇∗σ[X,Y ]Xh = ω∗qh (Y )ω∗kq (X)Xk−
ω∗qh (X)ω∗kq (Y )Xk + (σ(X)ω∗kh (Y ))Xk − (σ(Y )ω∗kh (X))Xk − ω∗kh [σX, Y ]Xk−

ω∗kh [X, σY ]Xk+ω∗kh σ[X, Y ]Xk+Xω∗kh (σY )Xk−Xω∗kh (σY )Xk+Y ω∗kh (σX)Xk−

Y ω∗kh (σX)Xk = −2ω∗qh ∧ ω∗kq (X, Y )Xk + {(σX)(ω∗kh Y ) − (Y )(ω∗kh (σX)Y )−

ω∗kh [σX, Y ]}Xk + {Xω∗kh (σY )− (σY )ω∗kh (X)−ω∗kh [X, σY ]}Xk −{Xω∗kh (σY )−

Y ω∗kh (σX)− ω∗kh σ[X, Y ]Xk}Xk = [−2ω∗qh ∧ ω∗kq + 4ap ∧ dω∗kh Xp− 2da∗kh ](X, Y )

Xk, taking into account that the expression in the first curly brackets is the
same as these in the second curly brackets. From the above, (14) is obtained.
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