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Abstract

Consider an ordinary (affine) connection on a differentiable manifold M.
In the article EI a tensor field o of type (1,1) has been used to define a

g
endomorphism, denoted by V x,X € D!, called o-connection. Let ¢
a tensor field such that ¢ € Di, at n.1 of this article we define a con-
nection associate with the connection previously mentioned, indicated
g e
by go_l(V) x@ or more briefly (V)* x and also written (¢)-connection. In
n.2 some fundamental theorems are obtained in components. We then
introduce three fields of torsion respectively, it occurs that they are ten-
sors (n.3) and the corresponding structural equations are deduced (n.4).
In (n.5) the curvature’s field of (yp)-connection has been obtained. For
these connections Bianchi’s equations have been given (n.6). Then the
structure equations of the curvature field introduced were been written

(n.7).
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1. The notion of (¢)-connection

Let M be a differentiable manifold of class C*° and dimension m, we will
define the following expressions:

F or C>® (M) the algebra (on R) or functions C* on M;

D' and D, the F-module of vector fields on M and the F-dual module

1See [2]
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respectively.
D? the tensor field of type (r,s) over M;
D the tensor field algebra over M, that is:

D=3y D

p.q

In addition the notion of D-derivation of D (See Definition 1) and of the fun-
damental property stated in Proposition 1 below, will be used.

Definition 1. A D-derivation of algebra D is a linear endomorphism D of
D that verifies the following conditions:

a) D preserves the type of tensors

b) D(T®S)=(DT)®S+T® (DS)

c) D(CT) =C(DT),
where C indicates the contraction operation of tensors E] For D-derivation the
following proposition is valid:

Proposition 1. A D-derivation is determined when it is known how to
operate on the algebra F and on the F-module D* ﬂ

Remark 1. Considered on M the non-degenerate tensor field o € Dy that
is, for every point p € M, an endomorphism of the tangent space D'(p) in
p; for o we will not necessarily consider verified the known condition valid
for almost-complex structure [, For this reason, o can be called a generalized
almost-complex structure. That said, we introduce the following:

Definition 2.E] Let ¢ be a tensor field such that ¢ € Di. Said (p)-

connection or connection associated with a generalized connection, a homomor-
(o) (o)
fism =1V x© or more briefly V* x of D' in the F-module of D-derivations of

D if verifies the condition:
©, 19 —1 1
Vixf=¢ Vxof =¢ ((0X)(ef)) = (0X)f, VX €D, VfeF. (1)

(o)
It is a derivation (Definition 1), with ¢~V x¢ instead of D, satisfying (1) and
such that:

2See [5] p.25

3See [5] p.30

4That is 02(X) = —X,VX € D!
°See [2]
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(o) (o) (o)
V*X<T1+T2) = V*XT1+V*XT2, vX GDl,\V/ThTQ e D.

Then we have:

(9)

T (V) = ¢ Vo)) = ¢ {0 X)p(Y) + F(Vxp)(¥V)}=
((UX)f)YJrf(%)*XY, VfeF,VX,Y € D.

2. Propositions and components of a
(¢)-connection

(o)
Proposition 2. Let X — V*x be a (¢)-connection, if on the open submanifold
U (of M) vanishes the field T € D or the field X € D, on U vanishes as well

(o)
V*x T.
Proposition 3. Let X € D', T € D.. If X vanishes at one point p € M,

(o)
then also V* xT' vanishes at p.

Proofs are obtained by adopting the technique for the case of affine con-
nections.

From the previous propositions and from well-known theorems ﬁrelating to
the possibility of extending data fields to M on an open submanifold U of M,
it follows again:

Proposition 4. A (p)-connection given on M induces a (p)-connection
on a generic open submanifold U of M.

Proof. Let X, Y be two vectors on U. For each p € U there exist vectors
X’ Y on M which agree with X and Y in an open neighborhood V of p. We

(o)

(o)
then put (V*yx(Y)), = (V*x/(Y’)), for ¢ € V. The right-hand side of this
equation is independent of the choice of X', Y’. It follows immediately that the

(9) (9)
rule: V¥i: X = (V*y)x, X € DU), is a (p)-connection on U.

6See [2]
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Let {Xn} a basis (for tangent fields) valid in a certain neighborhood V), of
a point p € M. With respect to { Xy}, expressions of the following type will be

valid:
o{Xn} = a; X, a, € C™(p),
(%)*Xin = LX), L e C>(p),
having denoted by C*=(p) the set of functions C* in some neighborhood of p.
The L:" are the components of the (p)-connection relative to the base
{X}1}; these components, considered together with the a} ((o)-components),

identify the (y)-connection. An analytical confirmation of this fact is given by
the formulas according to which the L*? varies for a basic change.

We take into account that the transition from the base {X}} to another
base { X/} is done with the following formulas:

Xy = @Z/Xh, Gh/ S COO(‘/I;) (2)

, ()
Said L}/, the components of V* relating to {X}, the basis change (2) gives:

Lo, = 0,05 L + 0)al(X,08), ay, 07, = a; 0. (3)
The (3) are precisely the desired formulas: the presence in them of the aj
proves what has been said.

In particular, if it is assumed X; = e; :%, being {x'} a local coordinate

system and therefore {X;} the corresponding natural basis, we have:

no_ oxh’ _ an no_ 9l o
On = % = Un, €Oy = grizn = Vi
and the (3) are written:
/ . /
Ly = 050500 + 9haldy, with the ap ), = apdp, (4)

(o)
where the I'}; now indicates the components of V* in the natural basis {e;}.

(o)
Now let’s move on the components of Viw, with w € D;.

Let {w'} be the dual basis of {X;},w'(X;) = d; for X; € D(V},), u' €
D1(V,).

. (9)
The (p)-connection components relating to {w'} (i.e.the V%w components),
will be defined by the:
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(o) _

V*xw' = Litw?

For b) of the Definition 1, data X,Y € D'(V,,), we have the relation
(o) (o)

(Vixw)Y +w(VLY)

w = w", gives the:

L} e C2(V,).

(X)(wY) =
that written for X = X, Y = X

(o) N N (o)
(Vix,w") X + w"(V*x,X;) =0

from which we obtain:

*h §D *p sh __ xh _ xh
Llp o; + L;;0, =0, and then: L —Lj.
and the components L*h

Remark 2. The link between the components Lh
= b; X such that b’ br =

is, b’”Lﬁslﬁs L where, ¢™{X;} = b/ X, and go{X

I, with b, b E C>(p).

Coming then to space D?(V,) and considered the base { X} ® X}.} induced
by {X;}, similarly to what it has been done before, we will be able to place:
(5)

(o)
V*x, (X @ Xy) =

If we develop the first member of (5) according to b) of the Definition 1

L7IX, ® X,.

(o)
we get: V* (Xh®Xk) (V Xh)®Xk+Xh®(V Xk) but:

(o) (o)
(V' x,. Xn) © Xip + Xp, ® (V' x, Xy) =

LTX,® Xp+ LIX,® X, =0iLYX,® X, + 0 L7IX,® X,

From the comparison of (5) with the above, we can deduce

L = 0LLY + L

By proceeding in this way it is possible to determine, in general, the components

(9)
of V*x, related to the base {r,, ®...®x, Qw? .. .Qw®} in a function

L:‘pln-pr .
q1---9s T
of the components related to the starting base {X;}, such a possibility complies

"See [2]
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with Proposition 1, of which it is a check.

The (¢)-connection is therefore determined in V), assigning the two com-

ponent systems aj. and L?fjh. In particular:

Proposition 5. If {U;} is a cover of M, and if for each open a) and F?j
are given so that they hold, at the intersection of pairs of open, the (4) for the

. (9)
T and for the af, is defined, for each open U;, a (p)-connection (V*)U; and

(9) (9)
on M a (p)-connection V*, that induces, on U;, the (V*)Ui.

3. Torsion fields

(o)
A. Nijenhuis introduced the field N defined as follow:
(o)
N(X,)Y)=[oX,0Y]| —0o([cX,Y]+ [X,0Y] —0[X,Y]) =
[cX,0Y] —oK(X,Y),with : (6)
K(X)Y)=[oX,Y]|+[X,0Y] —0[X,Y].

(9)
Thus the field N € D) :
(o)
{w,X,Y} € D; x D' x D' = w(N(X.Y)) € R can be called a torsion on o.

(o)

How to check immediately, N (X,Y) is a tensor field, while K(X,Y) is not.

As far as the (p)-connection, we now want to indicate two tensor fields
S*,T* that we can call 1° and 2° torsion field because both are reduce to the
torsion field of an ordinary connection if we make the hypotesis that ¢ induces
the identical endomorphism for each p € M. The fields S*, 7™ in question are
defined by the expressions:

(o) (o)
SYX,Y)=V'xY - Vv X — K[X,Y]; )
(o) (o)
T(X,Y)=V*xoY — V*'yoX — [0X,0Y], VX,Y € D".
The proof that S*(X,Y) and 7*(X,Y") determine two tensor fields consists
in formally checking that both S* and T are F-linear applications of D' x D! €

8See|3]
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D*.
For S* and for T™ the property of antisymmetry hold, i.e that is:
S*X,Y)=-5"(Y, X), T(X,Y)=-T*(Y, X).

From the previous fields we can easily derive the components; if we
introduce any local base {x;}, we derive the following expressions:

xh _ r«h __ 7*h _ 4. h __ _4.h hA4d h v .,h
Sij = Lij — Lji — aivg; — ajvig + agi; + Xjai — Xdj

«h _ 4dr«h _ d7*h _ _r_s.h
Tz’j _ajLiq aiqu A5 A5 Yps)

where it still stands [X;, X;] = 7/, X.

4. Torsion forms and related equations of
structural equations

With reference to the torsion fields of the previous number, let’s say:

(0)
(X,Y) = NF(X,Y)X,,

(@) € 57X, V) = S™(X, V)X,
T*(X,Y) =T"(X,Y)X,

=5

(o)
by means of the (a) we define the 2-forms N* S** T** which we call the torsion

forms.

Proposition 6. The torsion forms of a (p)-connection verify the follow-
ing relationships (structural equations)

(o)
(b) NF=~Fa"Na® — QWﬁqafar A w? — 2aFda”

() S = 2{wik Aw! + 247 A BE — da¥} (8)
(d) T =2{w* Na" + ;fqap A a’},
with the a* defined in the chapter 2, w* belonging to the dual basis of

X}, 7% defined in the chapter 3, and the wi*, a", B* € Dy, 3% € F, defined
s h q Pq
as follows:

v k
WiV x Xp) = w,"(X)

wk{aX} :ak(X) (9)
(d™)(X,) = By
(dw®)(X,p, Xy) = B2, vV X, X,, X, €D
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The proof of (b) is left to the reader while equations (c¢), (d) are demon-
strated by the following developments.
Proof of (c): Let’s develop the second expression of (a):

(9)

S*(X)Y) = WPV x (W(Y) X)) — wk@*y(wh(X)Xh)—wk[aX, Y]— w*[X, oY ]+
Who[ X Y] = WM(Y)wiF(X) — M X)wiF(V)+ (6 X)Wk (Y) — (oY )w*(X) — w”
[0 X, Y]+ Xw* (oY) =YWk (o X)—wk[X, oV]+ YWk (0 X) - Xuwk (oY) +wFo[X, Y]
= {2wiF Awh = 2da"}(X,Y) + 2dwF (0 X, Y )+ 2dwt (X, oY | = {2wik A wh —

2da*}(X,Y)+4dw* (0 X, Y) = 2{wiF A" —da* } (X, Y )+ 4(a? (X)), dw* X, (Y)) =

2{wpF AW +2aP A\ B — daF}(X,Y), since dw*(0X,Y) = dw* (X, oY), it follows
(c).

Proof of (d):
(9) (9)
T*(X,Y) = WP V* x (W (oY) X))~ Vy (W (0 X) X)) — wF[o X, oY ] = w'(oY)
Wh(X) = WMo X)Wk (Y) + (6 X)w*(0Y)— (oY )wF(0X) —wFo X, oY ] = 2[wik A
a4+ dwF(X,, Xg)aP A af)(X,Y) = 2w Aa" + BEaP Na](X,Y), VXY € Dy,

from which we obtain (d).

5. Curvature’s field of generalized integrable
(¢)-connection

In the theory of connections it is interesting to consider the curvature tensor as
a tensor field by means of which formulas are expressed for the commutation of

the operation of " covariant derivation" as a consequence of the very definition
(o)
of connection; in the case of an operator of connection V x, it is known that

the field of curvature it can be expressed as follows:
(@) (o) (@) (9) (o)

Q(X,Y)Z:(vay—vYVX—VK()Qy))Z \V/X,YZE'D1
(o) (o)
with CK(X,Y) = S(X,Y) — (VY — VyX)

and S is the torsion field of the connection under consideration.We want to
proceed in a similar way for a (y)-connection. There are already two possibil-
ities arising from the presence of two torsion fields (S* and 7). Between the
two fields of torsion, the 1° presents greater analogy with the ordinary case;
infact, consequently from the 1° of (7), we derive:

9See [3] p.21
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(o) (o)
—K(X,)Y)=5(X,Y)— (V'Y — V*X);
Using S*, we are thus let to construct the following field:

@ @ @ @ ()
Q(X,Y)Z = (V'xV'y = V'yV'x — Vkxy)Z, (10)

with K given by (6).

Relative to (10) we have the:

Proposition 7. Necessary and sufficient condition such:
Q" {w, X,)Y, Z} e D} —» w{Q(X,Y)Z} e F

is a tensorial field is that the sigma torsion is zero.

Proof. In (10) we put fX, gY, hZ with f, g, h € F instead of X, Y, Z,

unfolding and simplifying we have successively:
(@) (9) (@)  (9) (o) (o)
Q (fX,gY)hZ = (V* jx V¥ oy — V* vV ix — Vi k(sx,9v))RZ = fgh{V*x

%)*y — (%)*y(%)*X}Z—I—fh(UX)g)%)*yZ—i- fleX)g(eY)h)Z+ fg([ocX,0Y|h)Z —
Gh(oY) [V x Z—g(0Y) (e X)hZ) — FghV* o1 7~ Fglolo X, VIR Z—Fh{(oX
OV Z — fleX)g) oY )Z — FghV 1o Z — FololX, oY ID)Z + ghl(oY)f)
(VJLXZng(aY)f(aX)hZJrfgh%)*a[X,y}Z+ f9(d*[X,Y]h)Z = fghQ*(X,Y)Z+
Fol(oX, Y] — oK (X, Y)h}, which proves the assertion if and only if:

oX,0Y] —0K(X,Y) = 0.

If 0 determines on M an almost complex structure (i.e. if o is such that
0? = —I, with identical endomorphism I), and moreover the relative torsion is
zero, o is said to be integrable. If we agree to call o integrable connections in
a generalized sense those for which o is torsionless (regardless o = —1), the

Proposition 7 can be started as follows:

Proposition 8. Necessary and sufficient condition that:

Q" {w, X,Y, Z} e D} - {Q(X,Y)Z} € F
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to be a tensor field is that o is integrable in a generalized sense.
In particular: if 0> = - I, o determines a quasi-complex structure on M,

the field (10) then gives the curvature tensor of an almost complez integrable
structure.

6. Bianchi’s Identities

The field Q*, introduced in the previous issue, satisfies two identities that are
a generalization of Bianchi’s identities and therefore we still call them by the
same name. The identities in question are the following ones:

PUQ"(X,Y)Z} = P{V" x5°(V. 2)+ 5" (X, K (Y, 2))+ K(X, K(Y, 2))}. (11)

o) o)
PV <@ (Y, 7) — @ (X, V)V — Q*(K(X, V), Z)}W = -

(o)
PV k(k(x,v),2) W,

where X,Y,Z,W € D! and P denotes the circular permutation with respect
to the arguments X,Y,Z.

The following steps prove (11).

(o) (o) (o) (o) (o) (o) (o)
P{Q* (X, Y)Z} = V*xV*vZ — V*vV*x 7 — V*K(Xy Z +V*V*; X —
(o) (o) (o) (o) (o)  (9) (o)
V*zV'y X — V Ky,)X + V2V xY — V' xV* 7Y — V' gz x)Y.

Using the 1 of (7), it is successwely obtained:
- X{% 7 -Gy K(Y Z)}+V*XK(Y Z)— (%)*K vz X+(%)*y{(%)*ZX—
7 — K(ZX)} + Oy K(2,X) — & kzx)Y + %) AV Y - Py -
K(X,Y)}+ (%)*ZK(X, Y)— %)*K(X,Y)Z =

(o)

(o) (o)
PV xS* (Y, Z) + V*xK(Y,Z) = Vg7 X}
(o)
=P{V*xS*(Y,Z)+ S*(X,K(Y, 2)) + K(X,K(Y, Z))}.

The proof of (10) is similar.

Remark 3. From (11) you can see that P{Q*(X,Y)Z}=0 if and only
if they are simultaneously S*(X,Y) = 0 and K(X,Y)=0 VX,Y € D', while
the second member of (12) is equal to zero if and only if it is K(X,Y)=0
VXY € D
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7. Curvature formes and related structural
equation

In analogy with what was done in n. 4 for torsion, let us now introduce with

(o)
regard to the field of curvature Q* (with N=0), the 2 forms Q;* defined as
follows:

Q*<X7 Y)Xh = Zk(X’ Y)Xk (QZ(X’ Y) = Q*(Xa Y)Xh) (13)

we will say Q;* the curvature formes of (p)-connession. Again on the assump-
tion that o is integrable in a generalized sense, the following proposition is
valid:

Proposition 9. The curvature formes of (p)-connection verify the rela-
tionships (structural equations):

QiF = 2{~w AWk + 20 Ak — dajF), (14)

where the w,?,a? are the forms already considered in (7) and n;r, a;* € Dy
are defined as follow:

(dwi®) (X,) = iy wi'o = aj

To prove (14) we develop (13) with recourse to the (10), the following steps

are then obtaim(ed): o) o o o) (@)
QX Y)X) = V' xV'y X, —V'y V' x X3, — Vi g(x ) X = Vix (W (Y)X,) —

(%)*y(w;q(X)Xq)—@* X, Y] Xh— (%)* [Xygy]Xth(%)*a[X’y]Xh = w;q(Y)w;k (X)Xp—
w! (X)w" (V) Xy + (e(X)wp* (V) Xy = (o(V)wit (X)) Xe — wpf[o X, Y] X, —
Wik [X, oYX o [ X, Y] Xk X (oY) X — Xwi* (oY) Xt Y wi* (0X) Xj—
YwiF (e X)Xy, = —2w;® A w;k(X, Y)Xi + {(eX)(wi*Y) — (V) (wik (e X)Y)—
Wik o X, Y} X + {XwiF (oY) — (oY)wiF(X) — wiF[X, oY} X, — { Xwik (oY) —
YWt (oX) — wiko[X, VIXi} Xp = [~ 2007 Aw!® + 4aP A dwi X, — 2da;t] (X, V)

X}, taking into account that the expression in the first curly brackets is the

same as these in the second curly brackets. From the above, (14) is obtained.
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