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Abstract 

 

Non-convex optimization problems are prevalent in scientific and engineering 

applications, often characterized by multiple local minima that challenge standard 

optimization techniques. Global optimization methods, such as Genetic Algorithms 

(GA) (1992) [4] and Particle Swarm Optimization (PSO) (1995) [6], provide robust 

global exploration but tend to converge slowly. Conversely, local search methods, such 

as Newton’s method (2004) [1], (2006) [7], and the Conjugate Gradient (CG) (1964) 

[3] method, offer rapid convergence but are susceptible to local minima. In this paper, 

we present four hybrid optimization algorithms that integrate the exploratory strength 

of global algorithms with the refinement ability of local methods. The proposed 

hybrids, Genetic Algorithms (GA) + Newton, GA + CG, PSO + Newton, and PSO + 

CG, are evaluated against their standalone counterparts on standard benchmark 

functions (2013) [5], including Rosenbrock, Rastrigin, Ackley, and Himmelblau. This 

work builds upon our previous research on the hybridization of two global search 

algorithms, the Nelder–Mead (simplex) algorithm and the Bat algorithm, which 

resulted in the Hybrid Simplex Bat Algorithm (HSBA) [2], recently Published. Results 

demonstrate that the hybrid approaches consistently outperform traditional methods in 

terms of accuracy, convergence rate, and computational efficiency. 
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1. Introduction 
 

Non-convex optimization is a fundamental challenge in applied mathematics, computer 

science, and engineering. Such problems often exhibit complex, multimodal 

landscapes where local search techniques may easily become trapped in suboptimal 

solutions. Global search methods, such as Genetic Algorithms (GA) and Particle 

Swarm Optimization (PSO), are capable of broad exploration but frequently suffer 

from slow convergence near optima. 

 

To address these challenges, hybrid optimization algorithms have emerged as a 

promising approach. By combining global and local search strategies, hybrid 

algorithms aim to balance exploration and exploitation, achieving both robustness and 

computational efficiency. This paper introduces and evaluates four hybrid optimization 

algorithms (codes are included in the Appendix): 

1. GA + Newton 

2. GA + Conjugate Gradient (CG) 

3. PSO + Newton 

4. PSO + CG 

 

We benchmark these hybrids against their standalone components using standard test 

functions and performance metrics. 

 

 

2. Methods 
 

2.1 Optimization Algorithms 

General setup (common notation) 

Let : nf →  be the objective function to minimize 

• nx : candidate solution(individual/particle/iterate) 

• ( ) :f x gradient of f  

• ( ) :H X Hessian matrix of f at x  

• k : iteration index 

 

Global Methods: 

1. Genetic Algorithm (GA) 

Metaheuristic Global Optimization Method 
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Steps: 

1. Initialization: Generate an initial population 
1 2{ , ,..., }Nx x x randomly. 

2. Evaluation: Compute fitness ( )f x for each individual. 

3. Selection: Select individuals for reproduction based on fitness (e.g. 

tournament or roulette). 

4. Crossover: Create offspring using arithmetic crossover: 

21 (1 ) , [0,1]
parentchild parentx x x  = + −   

5. Mutation: Apply random mutation to a percentage of offspring (e.g., 25%, 

50%). 

6. Replacement: Form a new population and repeat from step 2 until 

convergence or a stopping criterion is met. 

 

2. Particle Swarm Optimization (PSO) 

Swarm-Based Metaheuristic  

Steps: 

1. Initialization: Randomly initialize particle positions 
ix , and velocities 

, 1,2,...,iv i N= . 

2. Update velocity: 
1

1 1 2 2( ) ( )k k k k

i i i i iv v c r p x c r g x+ = + − + −  

Where: 

• :ip best position found by particle i  

• :g best position found by the swarm 

• : inertia weight, 
1 2, :c c acceleration constants 

• 1 2,r r Uniform (0,1)  

3. Update position: 
1 1k k k

i i ix x v+ += +  

4. Update Personal/Global best and repeat until convergence. 

 

Local Methods: 

  

3. Newton’s method 

Second-order local optimization utilizing gradients and Hessians for rapid 

convergence. 

Steps: 

1. Initialization: choose initial guess 0x . 

2. Iteration: 1 1( ) ( )k k k kx x H x f x+ −= −    
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3. Repeat until ( )kf x is sufficiently small or a maximum number of iterations 

is reached. 

Note: Requires computing and inverting the Hessian H , which is costly for large 

n . 

- Conjugate Gradient (CG): A derivative-efficient local search method suitable for 

large-scale problems. 

4. Conjugate Gradient Method (CG) 

First-order local optimization (A derivative-efficient local search method suitable 

for large-scale problems). 

Steps: 

1. initialization: choose initial 0x , compute 0 0( ),r f x= − set 0 0d x=  

2. Iteration: 

• line search to find optimal step size k along kd  

1k k k

kx x d+ = +  

• Compute new residual 1 1( ),k kr f x+ += −  

• Compute 

2
1

2

k

k
k

r

r


+

=  

• Update direction 
1 1k k k

kd r d+ += +  

3. repeat until convergence 

2.2 Hybrid Strategies 

Each hybrid algorithm uses the global method to broadly explore the search space and 

periodically applies the local method for solution refinement. For example, in the PSO 

+ Newton hybrid, PSO runs for 20 iterations, after which Newton’s method refines the 

best solution found. This process is repeated until convergence criteria are met. 

2.3 Assumptions 

- Objective functions are twice differentiable (required for Newton’s method). 

- Optimization problems are unconstrained. 

- Implementations are for two-dimensional cases but can be extended to higher 

dimensions. 

 

3. Benchmark Functions 
 

The performance of all algorithms was evaluated using the following benchmark 

functions: 

1. Rosenbrock function – smooth, unimodal but narrow curved valleys. 

Equation (2D case): 
2 2 2( , ) (1 ) 100( )f x y x y x= − + −  
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Characteristics: 

• Non-convex and unimodal 

• Has a narrow, curved valley that contains the global minimum 

• Global minimum at ( , ) (1,1)x y = where (1,1) 0f = . 

• Often used to test the performance of optimization algorithms on smooth but 

challenging surfaces. 

 

 

 

 
 

 

 

2. Rastrigin function – highly multimodal with many local minima. 

Equation ( n  dimensional): 

2

1

( ) 10 [ 10cos(2 )]
n

i i

i

f x n x x
=

= + −  

2D version 
2 2( , ) 20 10cos(2 ) 10cos(2 )f x y x x y y = + − + −  

Characteristics: 

• Non-convex and highly multimodal (many local minima) 

• Global minimum at 0x = where ( ) 0f x = . 
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• Large search space and complex landscape make it a good test for global 

optimization methods. 

• Oscillatory behavior due to the cosine terms 

 

 

 

 
 

 

 

3. Ackley function – complex landscape with a large flat outer region. 

Equation ( n  dimensional): 

2

1 1

1 1
( ) 20exp( 0.2 ) exp( cos(2 )) 20

n n

i i

i i

f x x x e
n n


= =

= − − − + +   

2D version 
2 2( , ) 20exp( 0.2 0.5( ) ) exp(0.5[cos(2 ) os(2 )]) 20f x y x y x c y e = − − + − + + +  

Characteristics: 

• Multimodal with a nearly flat outer region and a large central basin 

• Global minimum at 0x =  where ( ) 0f x = . 

• Popular for testing both convergence speed and robustness of optimization 

algorithms. 
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4. Himmelblau function – multiple global minima. 

Equation: 2 2 2 2( , ) ( 11) ( 7)f x y x y x y= + − + + −  

Characteristics: 

• Multimodal with four identical global minima 

• (3.0, 2.0)  

• ( 2.8051,3.1313)−  

• ( 3.7793, 3.2831)− −  

• (3.5844, 1.8481)−  

• Each global minimum yield ( , ) 0f x y = . 

• Symmetric landscape with multiple basins of attraction. 

• Excellent test for algorithms’ ability to find multiple optima. 
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4. Performance Metrics 
 

We tracked the following metrics to assess performance: 

- Final objective value 

- Number of iterations 

- Execution time (CPU time) 

- Convergence order 

 

 

5. Results and Discussion 
 

The hybrid algorithms consistently outperformed their standalone counterparts across 

all benchmark functions. Key findings include: 

- The GA + Newton hybrid achieved the fastest convergence and lowest final objective 

values, particularly on the Rosenbrock and Ackley functions. 

- CG-based hybrids (GA + CG and PSO + CG) demonstrated strong robustness when 

gradient or Hessian information was limited, offering competitive execution times. 

- The PSO + Newton hybrid was highly effective on smooth, differentiable functions 

due to Newton’s rapid local convergence. These results highlight the strength of 

integrating global exploration with local refinement.  

Here's a comparison table showing the performance of Newton's Method, PSO, and 

the Hybrid (PSO + Newton) algorithm on the Rosenbrock function. The hybrid clearly  
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demonstrates better convergence behavior, fewer iterations than PSO, and a much 

lower objective value than either method alone. 

 

 

 
 

 

Here’s the performance comparison of the Hybrid (PSO + Newton), against the 

standalone PSO and Newton of the four benchmark functions. 
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Here’s the performance comparison of the other three hybrid algorithms on the 

Rastrigin, Ackley, and Himmelblau test functions. You can clearly see how the 

hybrids handle complex landscapes with solid convergence properties and competitive 

execution times. 
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6. Conclusions 
 

The evaluation of four hybrid optimization algorithms demonstrates their significant 

advantage over standalone methods for solving non-convex optimization problems. By 

combining the global search capabilities of GA or PSO with the rapid convergence of 

Newton or CG, the proposed hybrids achieved superior accuracy, efficiency, and 

robustness. 

 

Future work includes extending these algorithms to constrained and higher-

dimensional problems, as well as exploring adaptive switching criteria between global 

and local phases. 
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