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Abstract

Oppermann conjecture states that there exists a prime between n2

and n(n + 1) and between n(n + 1) and (n + 1)2, respectively. In this
paper, on the basis of the characteristic function of odd primes, we
introduce some conditional extreme values problems related to above
conjecture and use the method of Lagrange multiplies and the induction
to confirm the conjecture. Here the technique of ”adding a new variable”
and the infinitude of odd primes are used.
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1 Introduction

Oppermann in 1882 proposed the following conjecture (see [1], [3]):
there exists a prime between n2 and n(n + 1) and between n(n + 1) and

(n+ 1)2, respectively.

1Corresponding author



66 Pengcheng Niu and Junli Zhang

The conjecture involves actually two statements and contacts closely with Leg-
endre conjecture (i.e., there exists a prime between n2 and (n+ 1)2). We will
confirm the conjecture.

Let δ(i) be the characteristic function of odd primes, i.e.,

δ(i) = 1, if i is an odd prime;

δ(i) = 0, if i = 1, 2 or composite number.

For example, δ(1) = 0, δ(2) = 0, δ(3) = 1, δ(4) = 0, δ(5) = 1, δ(6) = 0,
δ(7) = 1, δ(8) = 0, and δ(9) = 0, · · · . It sees easily

δ(i)2 = δ(i).

The main result of the paper is

Theorem 1.1. Oppermann conjectur is true.

To prove Theorem 1.1, we apply the induction and on the basis of the char-
acteristic function of odd primes, introduce some conditional extreme values
problems to obtain the conlusion. In the process, the technique of ”adding a
new variable” and the infinitude of odd primes are used.

The plan of the paper is as follows. The proof of Theorem 1.1 (there exists
a prime between n2 and n(n + 1)) is in Section 2. The proof of Theorem 1.1
(there exists a prime between n(n+ 1) and (n+ 1)2) is in Section 3.

2 Proof of Theorem 1.1 (there exists a

prime between n2 and n(n + 1))

Let us first relate the method of Lagrange multipliers (e.g., refer to [2]).
For seeking the maximum and minimum values of f(x)(x ∈ Rn) subject to
constraints

gi(x) = 0 (i = 1, 2, · · · , k, k < n)

(assuming that these extreme values exist and the rank of Jacobian matrix

∂(g1, · · · , gk)
∂(x1, · · · , xn)

of gi(x) (i = 1, 2, · · · , k) is k):
(a) find all x ∈ Rn, λ1, · · · , λk ∈ R such that

∂f

∂xi
+ λ1

∂g1
∂xi

+ · · ·+ λk
∂gk
∂xi

= 0, i = 1, · · · , n,
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gi(x) = 0, i = 1, 2, · · · , k,
where x is the stationary point and λ1, · · · , λk are multipliers;
(b) evaluate f at all the points x that result from (a). The largest of these
values is the maximum value of f and the smallest is the minimum value of f .

Proof of Theorem 1.1(there exists a prime between n2 and n(n+ 1))
For the positive integer n,
when n = 1, there exists a prime 2 between 12 and 1 · 2;
when n = 2, there exists a prime 5 between 22 and 2 · 3;
when n = 3, there exists a prime 11 between 32 and 3 · 4;
when n = 4, there exist primes 17, 19 between 42 and 4 · 5;
when n = 5, there exists a prime 29 between 52 and 5 · 6;
when n = 6, there exist primes 37, 41 between 62 and 6 · 7;
when n = 7, there exists a prime 53 between 72 and 7 · 8;
when n = 8, there exist primes 67, 71 between 82 and 8 · 9;
· · · · · · .
Now we apply the induction and suppose that the conclusion is true for

k(k > 8), then there exists a prime between k2 and k(k+1). Let us prove that
there exists a prime between (k + 1)2 and (k + 1)(k + 2). Denote odd primes
between 1 and k2 by

k1, k2, · · · , kl,
clearly, l > 1 from k > 8. Denote odd primes between k2 and k(k + 1) by

p1, p2, · · · , pl1 ,

we know l1 ≥ 1 from the assumption above. Denote odd primes between
k(k + 1) and (k + 1)2 by

r1, r2, · · · , rl2 ,
then l2 ≥ 0. We note that odd integers between (k + 1)2 and (k + 1)(k + 2)
have two forms. The first form is

(k + 1)2 + (pj + 1− k2) = 2k + 2 + pj,

(where 2k + 2 + pj < 2k + 2 + k(k + 1) = (k + 1)(k + 2), δ(2k + 2 + pj) = 0 or
1), and the second form is

(k + 1)2 + t (where (k + 1)2 + t 6= 2k + 2 + pj)

with writting odd primes in the second form as

q1, q2, · · · , ql3 , l3 ≥ 0.

Then
(2.1)
l∑

i=1

δ(ki)+

l1∑
j=1

δ(pj)+

l2∑
s=1

δ(rs)+

l1∑
j=1

δ(2k + 2 + pj)+

l3∑
α=1

δ(qα) = π((k+1)(k+2)),
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where π((k + 1)(k + 2)) means the number of odd primes not excedding (k +
1)(k + 2).

Take a large odd prime N > (k + 1)(k + 2), i.e., δ(N) = 1. Such N can be
chosen from the infinitude of odd primes.

If l3 > 0, then it shows that there exists a prime between (k + 1)2 and
(k + 1)(k + 2), the result is obtained. If l3 = 0, we will prove that there exists
some pj, such that 2k + 2 + pj is an prime.

Denote the point with the components

δ(ki)(i = 1, · · · , l), δ(pj)(i = 1, · · · , l1), δ(rs)(s = 1, · · · , l2), δ(2k+2+pj)(j = 1, · · · , l1), δ(N)

by P ∈ R2l+l1+l2+1, where R2l+l1+l2+1 is the 2l + l1 + l2 + 1 dimensional Eu-
clidean space. Denote

x = (x1, x2, · · · , xl), y = (y1, y2, · · · , yl1), u = (u1, u2, · · · , ul2), v = (v1, v2, · · · , vl1), z = z.

Introduce an objective function on R2l+l1+l2+1:

(2.2) f(x, y, u, v, z) =
l∑

j=1

(
v2j + vj

)
.

Noting (2.1), properties of δ(i) and P satisfies

l∑
i=1

δ(ki)
2+

l1∑
j=1

δ(pj)
2+

l2∑
s=1

δ(rs)
2+

l1∑
j=1

δ(2k + 2 + pj)
2 = π((k+1)(k+2))δ(N)

and

l∑
i=1

(
δ(ki)

2
+ δ(ki)

)
+

l1∑
i=1

(
δ(pj)

2
+ δ(pj)

)
+

l2∑
s=1

(
δ(rs)

2
+ δ(δ(rs))

)
+

l1∑
j=1

δ(2k + 2 + pj)
2

=π((k + 1)(k + 2) + l + l1 + l2,

we define two functions

(2.3) g(x, y, u, v, z) =
l∑

i=1

x2i +

l1∑
j=1

y2j +

l2∑
s=1

u2s +

l1∑
j=1

v2j − π((k + 1)(k + 2))z,

h(x, y, u, v, z) =
l∑

i=1

(
x2i + xi

)
+

l1∑
i=1

(
y2j + yj

)
+

l2∑
s=1

(
u2s + us

)
+

l1∑
j=1

v2j(2.4)

− π((k + 1)(k + 2)− l − l1 − l2.

Consider the extreme values of f(x, y, u, v, z) subject to constraits

g(x, y, u, v, z) = 0 and h(x, y, u, v, z) = 0.
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Denote

A = {(x, y, u, v, z) ∈ R2l+l1+l2+1|g(x, y, u, v, z) = 0, h(x, y, u, v, z) = 0}.

Obviously,
P ∈ A.

Since g(x, y, u, v, z) = 0 is the rotating paraboloid in R2l+l1+l2+1 and h(x, y, u, v,
z) = 0 is the ellipse cylinder in R2l+l1+l2+1, we see that A is a bounded closed
set in R2l+l1+l2+1, and the rank of Jacobian matrix on A of g(x, y, u, v, z) and
h(x, y, u, v, z) is 2. Then f(x, y, u, v, z) allows the maximum value and mini-
mum value on A.

Define the Lagrange function

(2.5) Q(x, y, u, v, z, λ, µ) = f(x, y, u, v, z) + λg(x, y, u, v, z) + µh(x, y, u, v, z).

We will use the method of Lagrange multipliers to solve all stationary points
of f(x, y, u, v, z) on A.

Because of
Qz = −π((k + 1)(k + 2))λ = 0,

we have
λ = 0.

Using 
Qxi = 2λxi + 2µxi + µ = 0,
Qyj = 2λyj + 2µyj + µ = 0,
Qus = 2λus + 2µus + µ = 0,

Qvj = 2vj + 1 + 2λvj + 2µvj = 0,

we combine λ = 0 to derive

(2.6)


µ(2xi + 1) = 0,
µ(2yj + 1) = 0,
µ(2us + 1) = 0,

(2 + 2µ)vj = −1.

Now we deal with cases µ = 0 and µ 6= 0.
If µ = 0, it follows from (2.6) that

xi, yj, us are arbitrary, vj = −1
2
,

so

f =

(
1

4
− 1

2

)
l1 < 0,

and

fmax = −1

4
l1 < 0,
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hence f(P ) =
l1∑
j=1

(δ(2k + 2 + pj)
2 + δ(2k + 2 + pj)) ≤ fmax < 0, but it contra-

dicts to f(P ) ≥ 0.
If µ 6= 0, then

xi = −1

2
, yj = −1

2
, us = −1

2
, vj = − 1

2 + 2µ

(where µ 6= −1, otherwise, it will yield 0 · vj = −1 from µ = −1, a contradic-
tion), and

0 = h(x, y, u, v, z) = −1

4
l−1

4
l1−

1

4
l2+

l1

(2 + 2µ)2
−(π((k + 1)(k + 1)) + l + l1 + l2) ,

i.e.,

1

2 + 2µ
= ±

√
5(l + l1 + l2)

4l1
+
π(n2 + 2n+ 1)

l1
,

vj = ∓

√
5(l + l1 + l2)

4l1
+
π(n2 + 2n+ 1)

l1
,

therefore,

fmin = l1

5(l + l1 + l2)

4l1
+
π((k + 1)(k + 2))

l1
−

√
5(l + l1 + l2)

4l1
+
π((k + 1)(k + 2))

l1

 > 0,

and

f(P ) =

l1∑
j=1

(
δ(2k + 2 + pj)

2 + δ(2k + 2 + pj)
)
≥ fmin > 0.

It shows that there exists some pi such that 2k + 2 + pi is an odd prime. The
conclusion is proved.

3 Proof of Theorem 1.1 (there exists a

prime between n(n + 1) and (n + 1)2)

For the positive integer n,
when n = 1, there exist primes 2, 3 between 1 · 2 and 22;
when n = 2, there exists a prime 7 between 2 · 3 and 32;
when n = 3, there exists a prime 13 between 3 · 4 and 42;
when n = 4, there exists a prime 23 between 4 · 5 and 52;
when n = 5, there exists a prime 31 between 5 · 6 and 62;
when n = 6, there exist primes 43, 47 between 6 · 7 and 72;



On Oppermann conjecture 71

when n = 7, there exist primes 59, 61 between 7 · 8 and 82;
when n = 8, there exist primes 73, 79 between 8 · 9 and 92;
· · · · · · .
We apply the induction and assume that the conclusion holds for k(k > 8),

i.e., there exists a prime between k(k + 1) and (k + 1)2. We will prove that
there exists a prime between (k + 1)(k + 2) and (k + 2)2. Let us denote odd
primes between 1 and k(k + 1) by

k1, k2, · · · , kl,

then l > 1 from k > 8. Denote odd primes between k(k + 1) and (k + 1)2 by

p1, p2, · · · , pl1 ,

so l1 ≥ 1 from the assumption above. Denote odd primes between (k + 1)2

and (k + 1)(k + 2) by
r1, r2, · · · , rl2 ,

then l2 ≥ 0. The odd integers between (k + 1)(k + 2) and (k + 2)2 have the
first form

(k + 1)(k + 2) + pj − k(k + 1) = 2k + 2 + pj,

(note 2k+ 2 + pj < 2k+ 2 + (k + 1)2 < (k + 2)2, δ(2k+ 2 + pj) = 0 or 1), and
the second form is (k + 1)(k + 2) + t (where (k + 1)(k + 2) + t 6= 2k+ 2 + pj).
Denote odd primes in the second form by

q1, q2, · · · , ql3 , l3 ≥ 0.

Then

l∑
i=1

δ(ki)+

l1∑
j=1

δ(pj)+

l2∑
s=1

δ(rs)+

l1∑
j=1

δ(2k + 2 + pj)+

l3∑
α=1

δ(qα) = π((k+1)(k+2)).

From now on we can do as in the prevous section, and omit details.
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