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Abstract

In this article we want to show an application of the Huygens-Steiner theorem to
number theory and in particular to the calculation of 3.

Introduction and Main results

Given that:

Given a material point P of mass m and a generic straight line r distant d from P,
the moment of inertia of P with respect to r is defined as the product md?.

In general, if we have a finite system of material points P,(i = 1,2, ...), the sum of
the moments of inertia of its individual points will be called the moment of inertia
of the system with respect to r, the sum of the moments of inertia of its individual
points:

by definition 1= Y1, m;d?.

Having said this, the moment of inertia of a system varies as the axis with respect
to which it is calculated varies and for parallel axes the Huygens-Steiner theorem
holds:

The moment of inertia of a system with respect to an axis r is equal to the moment
of inertia I, with respect to the parallel axisry, passing through the center of
gravity, increased by the product of the total mass m by the square of the d of

these two aces:
n
I: IO +<Zml>d2
i=1

Now consider a rectangular plane figure as shown below
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With respect to the x axis the moment of inertia will be

b ch bh3
IX =fo fO ydedy=_

3 b

Considering the axis passing through the center of gravity and parallel to the base
side we have

N
£

h
b 5 bh3
Ixo = fo f_ﬂzydedy ==
2

12 °

Now consider a rectangle with base b = 1 and height h = log?2.
Such a rectangle has a moment of inertia with respect to the base X equal to:

I, = §10g32.
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YA

h=log2

(_1)n+1

(P. Mengoli 1647) one can think of h =
(_1)n+1

Furthermore, since log2 = >0,

log2 as the sum of infinite segments each with an amplitude equal to o)

n
that the rectangle with base b = 1 and height h = log2 is made up of infinite

_1\n+1
rectangles all having base b = 1 and heights equal to h,, = o7

y

=4
[

h=log2 n-1 k+1

A rectangle composed in this way has, with respect to the base (x-axis), a moment
of inertia given by the sum of the moments of inertia of the individual rectangles
with respect to the same axis.

The moment of inertia of each single rectangle with base b = 1 and height h, =
(_1)n+1

with respect to the x axis is given by the moment of inertia with respect to

n
its center of gravity increased by the product of the area times the squared
distance of its center of gravity from the x axis.

1 (_1)n+1 (_1)n+1 [(_1)n+1 nz_l(_l)k+1]2
= — + + —_—
k
k=1

*n 712 n3 n 2n
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For the whole rectangle we will have:

B ( 1)n+1 ( 1)n+1 ( 1)n+1 ( 1)k+1
S e

8

So we have it

_10 12 z (- 1)n+1 Z (- 13r1+1 [( 2:“ . nz_l (_1121(.,_1]2

=1 k=1

(_1)n+1

n3

0 -1 2
16 (_1)n+1 (_1)n+1 n (_1)k+1
=—log32 -1 E E
& 3 °8 6 ] n 2n + k
n=

k=1

being that ;7 = %Z3 you get it

For log2 = Z;‘{;lnl—n you get it:

4y 1
G = §Z n323n
n=1

i (e )

1)n+1 ( 1)n+1 (_1)k+1 2
( 2n +Z k )

k=1

||M8

For log2 = you get it:

_Zn 0(2n+1)9n
o 32% 1
% =81 (2n + 1)393n
n=0 )

32 1 1
+= oy —
3 Li(2n+ Do [3(2n + 19" 34 2k + 1)9k]

~ 162 (—1)n+1 [( 1)n+t Z (— 1)k+1]

GO
For log2 = —Zn 0 GnrDenrn YU get it
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_9 = (=1)"
% EZ (3n+ 1)3(3n + 2)3

C (-n" 3 (="
+24nz=0(3n+1)(3n+2)
2

4(3n+1)(3n +2)

(—Dk
+ZE(3k+1)(3k+2)

n+1 n+1 BZ k+1
_162( 1) [( 1) Z( 1) ]

For log2 = Zn 15757 (2 5 you get it:

~ 6 Z n3(2n —-1)3

Z 2n(2n -1 (4n(2n -1 Z 2k(2k — 1))
(__1)n+1 (__1)n+1 (__1)k+1

B Z n ( 2n + Z k ) ]

n=1 k=1

+ 16

For log2 = you get it:

Zn=o (2n+1)(2n+2)

_ 1

=3 s (2n + 1)3(2n + 2)3
n:

+ 16

= 1
Z (2n + 1)(2n +2) (2(271 +1)(2n+ 2)

2

— 1
+ Z 2k + D)2k + 2)>

gyt [ qyn+1 2L Nkt 2
Fern(er S

n=1 k=1

(1)2n+1
Forlog2 =2, - (L. Euler 1748) you get it:

2
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- 6n+3 o (1\20+1 [r1y20+1 g 1\ 2K+ 1]
3_?22 3 ZZ() ) +2kz(3)

2n+1D|2n+1 s 2k + 1

oy i (_1r?n+1 [( 1)n+t z (- 1)k+1]

1
For log2 = %Z?’f’:o(m(g—) (C.S. Siracusa 2021) you get it:

+1)(2n+3)

1 & (0-2)

162 £y (2n +1)3(2n + 3)°
n=

Gz =

2n+1)(2n + 3) 12 (2n+1)(2n + 3)
_ 2
Sl
(2k+ 1)(2k + 3)
n+1 n+1 k+1
‘162( 1) [( 1) z( 1) ]

1-ox .
For log2 = Z;‘;lr(l(nilz you get it:

MG I

o)

1S (1-2) S (-HE-E) -
§Zn3(n+1)3 6Zn(n+1) En(n+1)+;k(k+1)

~ 162 (—1)n+1 [( glnﬂ N nz_f (_1lzk+1r

k=1

% ((zn)

For log2 = you get it:

—log == Z (Z(zn) - 1) Z (Z(zn) —1) [(C(zn) - 1) Z (Z(Zk) - 1)]

n=1
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ﬂzoo B =1’
3 n3
n=1

i (Gem —1) (Z(Zn) - 1) Z (e 1)]

+ 16

o (_1)n+1 (_1)n+1 (_1)k+1
DESE eSS

2
For log2 = Y,

n32n

C(Zn) you get it:

1 220 —1)3
—log32 = ( )

3 12 mazen Sen)

2

(2 22n _ 2 22n _
Z (ZD)[ 32n Z(ZU) Z k32k )Z(Zk)]

(22n _
3 Z n336n Z(2n)
( 2n (22n _ 1) (22k _ 1)
¥ 162 em) | “ongan den +ZW%

~ 162 (—1)n+t [( 1)n+t nz (— 1)k+1]

o 220-1 -
Forlog2 = 2 anlmz(m) you get it:

1 5 (22r1 - 1)3
§10g 2= E n346n <(2n)

n—-1
( 2n _ (22n _ 1) (22k _ 1)
+2 Z Com [ S + 2 ) =S
k=1

2
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(22n _ 1)3
3~ 3 n346n Z(2r1)

n=1
2

22n _ 22n 2k 1
+ 32 Z (2 C(zn) [g Cizn) + 2 Z Tk)Z(zk)]

~ 162 (—1)n+1 [( 1)n+1 nz (— 1)k+1]
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