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Abstract

In this paper, a kind of convex feasibility problem on pesudomono-
tone variational inequality problem and fixed point problem of demicon-
traction mapping in Hadamard manifold is considered. For solving the
kind of convex feasibility problem, two inertial viscosity-type extragra-
dient algorithms are proposed and two strong convergence theorems are
established when some conditions are satisfied. Moreover, a convex min-
imization problem is solved by the main results of this paper. Finally,
the convergence of the two algorithms are demonstrated by numerical
experiments.
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1 Introduction

Let {C’i}il be some nonempty closed convex sets of a space H with inner
product (-,-) and norm |-||]. Convex feasibility problem (in short, CFP) is to
find a common element of {Ci}?zl, that is, to find z* e C,NCyN -+ - N Cy.

CFPs arise from various problems of nonlinear analysis fields. In fact,
many common solution problems are CFPs, the details can be found in [1-9].
In terms of application, CFP is a universal problem appeared in diverse ap-
plication areas, such as radiation therapy treatment planning, image recovery,
crystallography, and so on [10-13].

In recent years, many important problems in nonlinear analysis field on
the spaces with linear structure have been extended to Hadamard manifolds,
which is a space without linear structure. Since some nonconvex problems and
constrained problems in the spaces with linear structure may be transformed
into convex problems and unconstrained problems in the spaces without linear
structure.

In 2012, Bento et al. [14] introduced subgradient type algorithm to solve
CFP in Riemannian manifolds. In order to solve the CFP presented by Bento
et al. in [14], Wang et al. [15] proposed cyclic subgradient projection algorithm
and solved partially the open problem proposed in [14]. Further, Wang et
al. [16] modified the subgradient algorithm presented by [14] in 2015 to solve
CFP without Slater condition assumption in Riemannian manifolds.

On the other hand, some scholars focus on many nonliner problems on
Hadamard manifolds, such as optimization problem, variational inequality
problem, inclusion problem, fixed point problem, and so on. In 2019, Al-
Homidan et al. [17] proposed Halpern-type and Mann-type algorithms to find
a common point of the fixed point set of a nonexpansive mapping and the solu-
tion set of the maximal monotone variational inclusion problem on Hadamard
manifolds. In 2021, Filali et al. [18] proposed a kind of viscosity type method
to find a common point of solution set of monotone variational inclusion prob-
lem and fixed point set of a nonexpansive mapping on Hadamard manifolds.
In 2021, Chang et al. [19] introduced proximal point method to find a common
element of the common fixed point set of a quasi-pseudocontractive mapping
and a demicontraction mapping and the zero point set of monotone inclusion
problem on Hadamard manifolds. In the same year, Chang et al. [20] solved
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a finite family of quasi-variational inclusion problems on Hadamard manifolds
by shrinking projection method. In 2022, using inertial technique, Khamma-
hawong et al. [21] proposed two kinds of inertial type algorithms to solve the
common solution problems of monotone variational inequality problems and
fixed point problems of nonexpansive mapping on Hadamard manifolds.

In fact, the CFP on Hadamard manifold is to solve a common element of
some nonempty closed geodesic convex sets, that is, to find a point z € M,
such that = € K; N Ky N --- N Ky, where {Ki}iil are some nonempty closed
geodesic convex subsets of Hadamard manifold M.

Let K be a nonempty closed geodesic convex subset of M and exp : TM —
M be an exponential vector field, where T'M is the tangent bundle of M.
The variational inequality problem on Hadamard manifolds was introduced by
Nmeth [22], which is to find ¢ € K, such that

(A(q),exp;ty) >0, Yy € K, (1.1)

where A : K — TM is a vector field, denote the solution set of (1.1) by
VI(A, K). In addition, the fixed point set of mapping F' : K — K is denoted
by Fiz(F).

For solving variational inequality problems on Hadamard manifolds, many
scholars proposed various algorithms, the details can be found in [23-25]. In
2021, Chen et al. [26] proposed two kind of Tsengs extragradient algorithms to
sovle variational inequality problem on Hadamard manifolds. For avoiding the
computation cost of Lipschitzian constant, Ma et al. in 2023 [27] proposed vis-
cosity type subgradient extragradient algorithm with Armijo-like linear search
technique to solve variational inequality problem on Hadamard manifolds.

Inspired by the work above, we focus our attention on a kind of convex
feasibility problem, that is, find a point x € M such that

x € Fiz(U)NVI(M,A) NVI(M,B), (1.2)

where M is a Hadamard manifold, VI(M, A) and VI(M, B) are solution sets of
variational inequality problems with respect to pesudomonotone vector fields A
and B, respectively, Fiz(U) is the fixed point set of demicontractive mapping
U. We introduce two inertial extragradient algorithms whose step sizes do not
depend on the Lipschitzian constant of the vector fields to solve (1.2). Finally,
we establish two convergence theorems for (1.2).

The rest of the paper is organized as follows: In Section 2, we provide
some useful lemmas and definitions on Riemannian manifolds. In Section 3,
we present the details of our two algorithms and prove the convergence of our
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algorithms. In Section 4, we use the main results obtained in section 3 to
solve a convex minimization problem on Hadamard manifolds. In Section 5,
a numerical example is provided to illustrate the numerical behavior of our
algorithms. In Section 6, we present a summary for the work in this paper.

2 Preliminaries

Let M be a finite-dimensional Riemannian manifold, 7}, M be the tangent space
of M at p, where p € M, and the tangent bundle T'M := UpeM T,M. Since
M is a Riemannian manifold, Riemannian metric (-,-), : T,M x T,M — R,
can be equipped for any p € M. Moreover, || - ||, is the norm corresponding to
the Riemannian metric (-, -), on T, M, where the subscript p can be omitted if
there is no confusion.

The length of a piecewise smooth curve w : [a,b] — M joining w (a) = p to
w (b) = q, where p,q € M, is defined as follow

L(w)= / s @)l de,

where ' (t) stands for the tangent vector. The Riemannian distance d(p, ¢) is
the minimum length of all such curves joining p to q.

Let V be the LeviCivita connection associated with Riemannian manifold
M, w be a smooth curve and E be a smooth vector field along w. If V(o E = 0,
then the vector field E is called parallel. If w’ is parallel to itself, then w is
said to be geodesic. The graph of a geodesic to a closed bounded interval is
called a geodesic segment. If w is a minimal geodesic joining p to ¢, then the
length of geodesic joining p to ¢ in M is equal to d(p, q).

The parallel transport P, ) w@) @ To@M — T,wM on the tangent
bundle TM along w : [a,b] — M is defined by

Pw,w(b),w(a) (U) =V (W (b)) ,VCL7 be IR7 CS Tw(a)Ma

where V' is the unique vector field such that V)V =0, V(w(a)) = v.

If any geodesics of a Riemannian manifold M are well defined for all ¢ € R,
then M is said to be complete. HopfRinow’s theorem [28] asserts that (M, d) is
a complete metric space and any two points in M can be joined by a minimal
geodesic if M is complete. A simply connected complete Riemannian manifold
with nonpositive sectional curvature is called Hadamard manifold.

Let M be a complete Riemannian manifold. The exponential vector field
exp, : TgM — M is defined as exp,(v) = w, (1,q), where v € T;M, w(-) =
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wy (+,q) is the geodesic starting from ¢ with velocity v, i.e., w(0) = 0 and
w'(0) = v. For each real number ¢, exp,(tv) = w,(t,q) and exp,(0) =
wy (0,q) = q hold. Furthermore, exp, is differentiable on T, M for any ¢ € M.

Definition 2.1 [28] Let K be a subset of Hadamard manifold M. If for any
p,q € K, the geodesic segment w joining p to q is contained in K, where w :
la,b] = K satisfies p = w(a), ¢ = w(b), that is, w((1—t)a+1tb) € K, t € [0, 1],
then the subset K is called geodesic convex.

Definition 2.2 [29] For a given nonempty closed geodesic convexr subset K
of Hadamard manifold M, the metric projection g from M onto K is defined

by
mx(r) ={y € K :d(z,y) <d(x,z2),Vz € K},Vx € M.

Definition 2.3 [19] Suppose that K is a nonempty closed geodesic convex
subset of Hadamard manifold M, a mapping S : K — K 1is said to be con-
tractive if there exists a constant k € (0,1) such that

d(Sxz,Sy) < kd(z,y), Vx,y € K.
If k =1, then S is called nonexpansive.

Definition 2.4 [19,30] Let M be a Hadamard manifold, A be a vector field
from M into TM satisfying A(x) € T,M, x € M and U be a mapping from
M into M, then

1. A is said to be pesudomonotone if

(A(z),exp,'y) > 0= (A(y),exp, ' ) <0, Vo,y € M;

2. A is said to be L-Lipschitz continuous with L > 0 if

3. U is said to be \-demicontractive with X\ € [0,1) if Fix(U) # @ and the
following inequality holds

d*(Uz, 2) < d*(z, 2) + A\d*(x,Uz),Vz € Fiz(U),z € M.

Lemma 2.5 [29] Let K be a nonempty closed geodesic convex subset of
Hadamard manifold M. For anyx € M, z = mx(x) if and only if (exp; ' z,exp, ' y) <
0, forally € K.
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Lemma 2.6 [31] The following statements are equivalent:
1. z is a solution of variational inequality problem (1.1);
2. for all p > 0,2 = mg(exp, (—pA(x)));

3. r(z,\) =0, wherer(x, \) is defined by r(x, \) := exp, ! [mx (exp, (—AA(x)))].

Lemma 2.7 [32] Let A (p1,p2,ps) be a geodesic triangle in Hadamard mani-
fold M. Then there exists a comparison triangle /\ (py, Pz, p3) for 2 (p1, pa, p3),
such that d(p;,piv1) = ||Pi — Ditill, the indices i taken modulo 3, and it is
unique up to the isometry of R2.

Lemma 2.8 [28] Let A (p1, p2,p3) be a geodesic triangle in Hadamard mani-
fold M and a be the angle of I\ (p1,pa, p3) at the vertex py.Then the following
results hold:

1. d? (p1,p2) + d* (p2,p3) — 2 (exp, ! p1,expy, ! ps) < d? (ps, p1);
2. d? (p1,p2) < (exp, ! ps, exp, ! pa) + (exp, ! ps, exp, ! p1)
3. <exp;11 D3, exp;ll p2> = d(p2, p1)d(p1, p3) cos a.

Lemma 2.9 [28] Let A (p1,P2,D3) be the comparison triangle of a geodesic
triangle A\ (p1,p2, ps) in Hadamard manifold M. The following conclusions
hold :

1. Let ay, ag, ag be the angles of A\ (p1, pa, p3) at the vertices py, pa, p3, 01, 0z, O3
be the angles of A\ (p1, P2, P3) at the vertices pr, ps, p3. Then ay < aq, as <
as and oz < as;

2. Let p be a point on the geodesic segment joining py to ps and p its com-
parison point in the interval [p1,pz]. Moreover, if d(p1,p) = ||p1 — D||

and d (p,p) = ||[p2 = pll, then d(ps,p) < ||ps — Pl

Lemma 2.10 [33] Let M be a Hadamard manifold, T, M be a tangent space
of M atye M. If v € M and v € T,M, then

<v, - eXp;1 x> = <v, P, exp, y> = <P:c,yU, exp, ' y> .

Lemma 2.11 [21] Let M be a Hadamard manifold and x, x5, x5 € M, then
the following inequality holds:

-1 -1
|exp,! x5 — Puyay expy, @3] < d(1, 22).
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Lemma 2.12 [19] Let M be a Hadamard manifold, w : [0,1] — M be a
geodesic joining x to y, then

d(w (tl) y W (t2)) = |tl - t2|d(£ﬂ,y) ) tha o € [Oa 1] )

where d(-,-) is Riemannian distance.
In addition, for any x,y,z,u,w € M and t € [0,1] , the following inequal-
ities hold:

1. d(exp, texps y,2) < (1 - 1)d(e,2) +1d (3, 2)
2 @ (exp, texps y, 2) < (1— 1) &2 (2, 2) + 1 (5.2) — t(1— 1) (z,):
3. d(exp, texp,ty,exp, texp,lw) < (1 —t)d(x,u) + td (y,w).

Lemma 2.13 29/ Suppose that K is a nonempty closed geodesic convez sub-
set of Hadamard manifold M and S is a mapping from K into K. Then these
statements are equivalent:

1. S s firmly nonexrpansive;

2. For any x,y € K,
<exp§(lm) S(y), expg(lx) x> + <eXp§(ly) S(z), expg(ly) y> <0;
3. For any xz,y € K and t € [0,1],

d(S(x), S(y)) < d(exp, texp, " S(x),exp, texp,’ S(y)).

Remark 2.14 [t is well known that the metric projection for a monempty
closed geodesic convex subset of Hadamard manifold is firmly nonexrpansive

mapping.

Lemma 2.15 [34] Let {p,} be a nonnegative sequence, {q,} be a sequence of
real numbers and {0, } be a sequence in [0,1] such that = 0, = co. Suppose
that

P < (1 —00) pp + 0ngn, Y > 1.

Iflim supy,_, o, @n,, < 0 for every subsequence {pn, } of {pn} satisfyingliminfy_ .o (pp,., —
Pny.) > 0, then lim, o p, = 0.

Lemma 2.16 [33] Let M be a Hadamard manifold, p,q € M and {x,}, {yn} C
M satisfying x, — p, y, — q, then the following conclusions hold.
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-1 -1 -1 -1 -1 -1
1. exp, z — exp, z , eXp, T, — €Xp, p and exp, T, —»exp, p, Vz €
M.

)

2. If{w,} is a sequence in T, M and w, — w, then w € T,M ;

3. If the sequences {w,} and {v,} are two sequences inT, M, and {w,} —
we T,M, {v,} = veTl,M, then (w,,v,) = (w,v) .

Lemma 2.17 [19] Let M be a Hadamard manifold, if U is a A\-demicontractive
mapping from M into M, where X € (0,1), mapping W : M — M defined by

W(x) = exp,(1 — pexp, ' Ux, v € M, 0 <A< pu<1,

then Wis demiclosed at zero, that is, for any bounded sequence {x,} in M such
that

lim z, = p and lim d(z,, Wz,) =0,

n—oo n—oo

then Wp = p.

Lemma 2.18 [35] Let M be a Riemannian manifold with constant curvature.
For given x € M and 2’ € T, M, then the set {y € M : {exp,ty,a’) <0} is
geodesic convet.

3 Main results

In this section, before we introduce our inertial extragradient algorithms to
solve (1.2) on Hadamard manifolds, we need to make the following assump-
tions:

(A1) M is a finite dimensional Hadamard manifold;

(A2) The solution set of (1.2) is nonempty, that is, Q := Fix(U)NVI(M,A)N
VI(M,B) # @,

(A3) A and B are two pesudomonotone and L-Lipschitz continuous vector
fields from M into T'M;

(A4) U is a A-demicontractive mapping from M into M, where A € (0, 1);
(Ab) f is a p-contraction mapping from M into M, where p € [0, 1);

(A6) {e,} and {w,} are two positive sequences such that lim, . o, = 0,
Yo oy =00 and €, = o(ay,);

(A7) {6,} € (0,1) and {8,} C (a,1 — X), where a > 0.
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Now, we introduce our first algorithm.

Algorithm 1: The viscosity-type inertial subgradient extragradient al-
gorithm
Initialization: Take 6 > 0,e; > 0,k > 0,77 > 0,0 € (0,1). Let xg, 27 be
arbitrarily chosen two points in M.

Step 1. Input the iterates x, 1 and =, , (n > 1). Set
Wy = exp,, (—0, exp, ! ¥,_1), where

€
min{ ——— 05, if d(z,, xn 0,

0, otherwise.

Step 2. Compute y,, satisfying

<TnPymwnA(wn) — exp;n1 wmexp;nl :c> >0, Vo € M. (3.2)
Step 3. Compute z, satisfying

</~ianmwnB(cun) — exp;n1 Wn, exp;n1 :c> >0, Vo € M. (3.3)
Step 4. Compute u,, satisfying

<TnPumynA(yn) — exp;} wn,eXp;n1 y> >0, Yy € T, (3.4)
where the half-space T,, is defined by

T, :={a e M| {exp,a, exp, wy — 1Py, 0, Alwn)) <0} (3.5)

Step 5. Compute v,, satisfying
(#nPo, 2 B(2n) — expy,| wp,expyty) >0, Yy € F,
where the half-space F}, is defined by

F, = {b eM | <€xpz_73b’ exp;nlwn - Klann,wnB(wn)> < 0} )

Step 6. Compute s, = exp, 0, exp;"1 Up.
Step 7. Compute 41 = exp; ay, expt_n1 f(x,), where
tn = exp,, Bpexp;! Us,, and update

min { gehesn o 7 L it d(A(y), Alwn)) £ 0,

Ths otherwise.

min { el e L, if d(B(yn), Blwn)) £ 0,

K, otherwise.

(3.7)

Rn4+1 =

Set n:=n+ 1 and go to Step 1.
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Remark 3.1 By (3.1) and (A6), it is obvious that 0,d(z,, Tp-1) < €,,Vn > 1,
50,

.0 . €
lim —d(z,, 7, 1) < lim — = 0.
n—o0 iy, n—00 Yy,

Due to Lemma 2.18, the half-spaces T,, and F,, are geodesic convex, so the
Algorithm 1 is well defined.

Lemma 3.2 Let the sequences {1,,} and {k,} be generated by (3.6) and (3.7),
respectively, then the sequences {7} and {k,} are nonincreasing sequences and
lim,_,o 7, = 7 > min {Tl, %}, lim,, o0 Ky, = K > min {I{l, %}

Proof It is obvious that {7,} is nondecreasing from (3.6). In addition, since
A is L-Lipschitz continuous, we have

d(wnv yn) H
M a(Awn), Al) — L

if d(A(wn), A(yn)) # 0,
which together with (3.6) implies that

T, = Mmin {7‘1, %} .
So there exists T > 0 such that lim,_,o 7, = T > min {7‘1, %} . Simalarly, we
can show that there exists k > 0 such that lim,,_,o K, = K > min {/@1, %} . The
proof is completed.
Lemma 3.3 Let the sequences {w,}, {yn}, {un}, {zn} and {v,} be gener-

ated by Algorithm 1 and the assumptions (Al — AT) hold, then the following
mequalities hold:

Tn Tn
dQ(unvp) S d2(wn7p) - (1 ey ) d2(yn7wn) - (]- y ) dQ(u’ruyn)a

Tn+1 Tn+1
(3.8)
2 2 Kn 2 Kn 2
d*(vn, p) < d*(wp,p) — <1—u >d (2n,wn) — (l—u )d (Un, 2Zn),
Kn+1 Rn+41
(3.9)

where p € ().

Proof [t follows from Lemma 2.16, Lemma 2.18 and the definition of T,, that
T, is closed geodesic conver and T,, C M. Let A(uy,wy,,p) and AN(w,, Wn, Yn)
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be two geodesic triangles. By Lemma 2.7, there exist comparison triangles
AUy, W, p) and AUy, Wy, Yn) Such that

d(tn, wn) = [y — Wall, d(un,p) = ||t =D, dwn,p) = |wn — Dl
A(uns Yn) = [[Tn = Full, d(wns yn) = |0n — Tall -
This implies that,
d*(un,p) = [ — II°
=@ — Tl + 17 — BII° + 2 (@ — Tn. U0 — D)
=@ — Tull* + 17 — @nll* + & — BII* + 2 (Tn — @, &5 — B) + 2 (W — T, U — D)
= = Tall* + 17 — @nll* + & — BII* + 2 (Tn — @n, @ — Tn) + 2 (Un — @n> U — )
+ 2 (Un — Yn, Y — Un) + 2 (Un — Yn, Up, — D)
=@n = BlI* = @ — Tl = 10n — @al® + 2 (@ — Vs Tmi — D) + 2 (Un — @, U — D)
=@ =Bl = 1@ = all® = [9n — @nll® + 2 (W — @ U — B) + 2 (@5 — T s — D)
+ 2 (Un — Wny Un — D)
=|wn—pll2—llun—anIQ—IIyn—wnllz+2<%—%,%—p>+2<yn—wmzén—1)m>-
3.10

Let v and 7 be the angles at the vertices u,, and u,, respectively. It follows
from Lemma 2.8 and Lemma 2.9 that v <75 and

(U — W, U = D) = | — @al| [ — Bl cosy
=d (U, wy)d(uy,, p)cosy
<d(Up,wy)d(u,, p)cosy
= <exp;n1 Wh, exp;n1 p> ) (3.11)

Similarly, we have
(G — W, T — W) < (XD, Wy €XPy Un) - (3.12)

Substituting (3.11) and (3.12) into (3.10), we have

d*(tn, p) < d*(wn,p) — d*(Un, Yn) — d*(Yn, wn) + 2 {expy,  wn, exp, ' p) + 2 (exp, ' wy, expy M Uy )
(3.13)

According to (3.4) and (3.13), we obtain

d*(tn, p) <d*(Wn, ) = d*(tn, Yn) — d*(Yn, wWn) + 2 (XD, wn, expy up) (3.14)
+ 2 (T Py AYn), expy, !l ) -
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Since p € ), we have <A(p), ea:p;lyn> > 0. By the pseudomonotonicilty of
A, we know that
(A(yn), exp,'p) <O0.
Further, since 7, > 0 and (3.14), we have
d? (un,p) <d? (wn,p) — d? (Uun,yn) — d? (Yn,wn) +2 <expy_n1 Wn, expy_n1 un> +2 <TnPun,ynA(yn)7 eXP;i P>
= 2(A(yn) expy, P)
§d2(wn,p) —d? (Un,yn) — dz(yn, wn) +2 <exp;nl Wns exp;: un> (3.15)
+2 <7'nA(yn)7 Py, un exp;i p— exp;n1 p> .

From (3.5), (3.6), (3.15) and Lemma 2.11, we obtain

& (1t p) <A (n, p) = & (tns Yn) = & Yy ) + 2 (X, W o3P, ! )

— 2 (1 A(yn), exp;n1 p— Py, xp,’ D)

<& (wn,p) = & (1Y) = & (Y 0) + 2 {exp, ) wn, 3D, )
+2 <TnPyn7wnA(wn) — ThA(yn), expy_n1 p— Py exp;n1 p>
— 2(TPy, w, Alwn), exp,! p — Py, u, €XD,. D)

Sdz(wmp) - d2(un7 Yn) — d2<yn7 wy) + 2 <eXp;n1 Wn, esz?nl u”>
+ 2170 Py o0 A(wn) = TaA(yn) || [lexpy, p = Py, exDy,, p|
-2 <TnPyn,wnA<Wn)7 eXp;n1 Un>

<d*(wn,p) — d* (U, Yn) — d* (Y, wn) + 270 d(A(wn), A(Yn))d(Yns )
+ 2 <exp;n1 Wy, = TnLy, w, Alwn), eprt;nl u">

< () = (1, Yn) = & (g ) + 2w, Yo )d (g, 1)
n+1
T’I’L
S (e p) = &, ) = (s ) + (P on, ) + o )
Tnl Tn
<d*(wn,p) — (1 = ) (tny y) — (1 — ) (Y, W)
Tn+1 Tn+1

The proof of (3.9) is similar to the proof of (3.8). So we omit the proof of
(3.9). The proof is completed.

Theorem 3.4 Assume that the assumptions (Al) — (A7) hold. Then the se-
quence {x,} generated by Algorithm 1 converges to q € Q, where ¢ = wo(f(q)).

Proof It is well kown that 2 is closed geodesic conver and the mapping o (f) :
M — M 1is contractive. Therefore there exists a unique point ¢ € M such
that ¢ = mq(f(q)) by the Banach contraction principle. Further we have

<equ_1 f(q),e)q:);1 z> <0, Vz € Q.
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Next, we divide the proof into four parts.
Clatm 1. The sequence {x,} is bounded.
From Lemma 2.12 and Definition 2.4, we have

d*(tn, @) <Pnd*(Usn, q) + (1 = Bu)d*(sn, q) = Bu(1 = Bn)d*(Usn, 50)

S/Bndz(sna Q) + Bn)\d2(5na Usn) + (1 - ,Bn)d2(5n7 Q) - IBn(l - Bn)dQ(USna Sn)
=d?(8p,q) + BN — 1+ Bn)d%(Usp, s,). (3.16)

According to (3.16) and Lemma 2.12, we obtain

@ (tn, q) <d*(s0,q) + Bu(X = 1+ B)d*(Usy, 51)
<6 d* (Un, @) + (1 = 8,)d* (tn, @) — 0 (1 — 6,)d* (v, Uy, (3.17)

+ Ba(A = 1+ Bo)d*(Usy, 85).
By Lemma 3.3, (3.17), 6, C (0,1) and B, C (a,1 — X), we have

d*(tn,q) <bn {dQ(wmp) - (1 — )dQ(ymwn) - (1 — >d2(umyn)]

Tn+1 Tn+1

+(1-8,) [dQ(wn,p)— (1—,L fin >d2(zn,wn)— (1—u fin >d2(vn,zn)}

Rn+1 Rn41
— (1 = 6,)d%(Vn, upn) + Bu( X — 14 B)d*(Usn, 5p) (3.18)
<6, [dQ(wmp) - <1 — )dQ(ymwn) — (1 — )dg(un,yn)]
Tn+1 Tn+1

+(1-d,) [d2(wn7p) - (1 — ) 4% (2n, wh) — (1 - ﬂ’*”> d2(vn,zn)} .

Kn+1 RKn+1
(3.19)

By Lemma 3.2, we have lim,, (1 — p="2=) =1 — p > 0 and lim,,_, (1 —

Tn+1

fin) = 1 — p > 0, which implies that there exists ny € N such that (1 —

Mﬁn«kl

u==) >0 and (1 — p2=) > 0, for all n > ny. It follows from (3.19) that

Tn+1 KRn41

d(tn, q) < d(wn,q), Yn > ni. (3.20)
For geodesic triangle \(xp, xn—1,q), it follows from Lemma 2.7 that there
exists a corresponding comparison triangle ATy, Tn—1,q) such that
d<xn7 xnfl) = Hx_n - xnle 7d(xn717 q) = Hxnfl - GH 7d(xn? q) = Hx_n - GH .
Further, from Lemma 2.9, we have
d(wn, q) < ||wn =7l
< lwn =zl + [|zn — 1
= [[=On exp} wna || + [lexpg 2|

Sd(xn7 Q) + end(xrm xnfl)

On
=d(xn,q) + ana—d(xn, Tp_1). (3.21)

n
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In view of Remark 3.1, we have lim,,_,. Z—Zd(:vn,xn_l) = 0. Thus, there
exists a constant My > 0 such that

O
a—d(xn,xn_l) < M;,Vn > 1. (3.22)

Combining (3.20), (3.21) and (3.22), we have

For geodesic triangles A(f(x,), f(z),q) and A(f(xy,), s, q), there exist cor-
responding comparison triangles A(f(x,), f(x),q) and A(f (%), tn, q) such that

A(f (), (@) = || FGwn) = T@)|| 4 (@), ) = [ F@) @) = ||7@) ~7

A(f (@), ta) Hf 20) =T |, d(tnq) = [T =7

)

Let T, = Oénf(l‘n) + (1 — ap)t, be the comparison point of T,y1. From
Lemma 2.9 and (3.23), we have

d(2nt1,9) < [ Tns1 — 7|
= [|an ) + (1 - 0 g
<an || F@a) = F@)|| + an | Fla) =] + (1 = ) B - 7]

=and(f(xn), f(@)) + and(f(q),q) + (1 — an)d(tn, q)

Sanpd(zn, ) + and(f(q),q) + (1 — an)d(wn, q)

Lppd(zn, q) + and(f(q),q) + (1 — an)d(xn, q) + (1 — ay) e, My
q)

<[l —an(l=p)ld(zn,q) + an(l - p)d(f( 9),9) + M

L—p
<max {d(xn, q)7 d<f(q1))_Q)p‘|‘ Ml }
<... < max {d(%,q), d(f(ql),iz): M, } T

which implies that the sequence {x,} is bounded. So, the sequences {w,},

{f(xn)}, {un}, {zn}, {un} and {v,} are also bounded.

Clarm 2.
) P on) + (1 T ) d2<un,yn>}
7_n—i-l

(1 = an), Kl u
(1= an)(1—6,) {<1 - NH’ZL) (2, w00 + (1 - “QL) & (v, zn)}

+ (1 = ap)0n(1 = 8,)d* (Vny Un) + (1 — ) Bp(1 — X — B,)d*(Usy, 5,)
< dQ("Ena q) — d2(xn+17 q) + O‘ndQ(f<xn)a q) + oMo,

Tn

Tn+1
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where My > 0 is a constant, such that My > sup {2Md(z,, q) + a, M?}.
According to (3.23), we have

d*(wn, q) <(d(2n, q) + anM;)?
=d*(zp, q) + 20, Myd (2, q) + a2 M?
=d*(x,,q) + o, (2Mid(2p, q) + y M?)
(@n, @) + oMy (3.24)

<d*(z,

where My > 0 be a constant, such that My > sup {2Myd(x,, q) + a, M7}
It follows from Lemma 2.12, (3.18) and (3.21) that

dQ(anrla q) §and2(f(:17n), q)+(1— O‘n)d2(tm q)
<ond*(f(xn),q) + (1 — an)d®(wn, p) — (1 — ) n(1 = 6,)d% (v, up)

~ =t | (1= 1) i) + (107 ) anen)|

— (1= an)(1—6,) [(Tilu"“") 2 (2, wn) + (1 - ”n:il) d2(vn, zn)]

Rn+1
— (1= ap)Bn(1 == Bn)d (Usn, Sn)
<and®(f(2n),q) + d*(wn, p) — (1 — )8 (1 — 6,)d? (Vn, un)

— (1 —an)d, Kl — ) A (yn, wn) + (1 - uJL) dz(“m%l)]

— (1= apn)(1—6,) [(Tu fon > d?(2n, wn) + (1 - MH:L) d2(vn,zn)]

Rn+1
— (1 = ) Bn(1 = A = By)d*(Usp, s1)
<and®(f(xn), q) + d*(zn, q) + an My — (1 — )6 (1 — 6,)d? (v, U

==t [ (1= 0 ) o) + (1= 07 ) an)|
(1 an)(1— &) {(1 ol > A2 (2, wn) + (1 — ) d2(vn,zn)]

Rn+1 Rn+1

— (1 — ) Bl = X = B)d*(Usy, s,).

By an easy deformation, we can obtain the result desired.
Claim 3.

2
d2($n+1,(]) S(l - p)an |:1 —

+ (1 - (1 - p)an)dQ(xn7Q>7 n Z nq,

_ _ 3M6,
P <equ ! f(q), CXPy ! xn+1> + ( d(n, xn—1>:|

1—pay,

where M := sup,,cy {d(2n,q), 0pd(zy, ,-1)} > 0.
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By (3.21), we obtain

dQ(Wna q) <[0nd(2p, Tns1) + d(n, Q)]2
=d*(Tn, q) + 20,d(Tn, Q)d(Tp, Tp1) + 02d* (T, 1)
Sd?(znv Q) + (Qd(:E?w q) + end(mna $n71))9nd($n, xnfl)
<d*(zn,q) + 3MO,d(z,, Tp_1). (3.25)
where M = sup, ey {d(2n, q), Ond(zy, Tp—1)} > 0.

For geodesic triangles A(f(zy), f(q), @), A(f(2n), tn, @) and N(@ns1, f(q),9),
there exist corresponding comparison triangles A(f(x,), f(q),7), N (Tni1, f(q), Q)

and A(f(:cn) tn,q) satisfying
d(f(zn), f(q)) = Hf zn) — f(q) H d(f(zn) Hf Tn —IIH d(f(xn),tn) Hf(l"n —th

a(f(q),q) = Hf - QH , d(tn,q) = ||tn - qH yd(Tnt1, f(q)) = Hxn+1 - Q)H yd(Tnt1,9) = Hx”H-l —qll.
Let Tni1 = anf(xn) + (1 — ), be the comparison point of x,11, then
&* (2011, q) < |Twiz —al°

= |lanf(2n) + (1 —an)t, — q ’

= | (FCa) = 7)) + (1 = ) A @ -a)
<l (Fla) = (@) + (1 - )@ (@)~ 7.7 - a)

2 _
~ T + (= an) [ - aH + 20, (F(@) ~ @71 — 7).
(3.26)
Let ~v and 7 be the angles at the vertices q and q, respectively, It follows
from Lemma 2.8 and Lemma 2.9 that v <7 and
(7@ - 2,71 ~7) = |[7(@) ~ 4| |77 — 7l cos7
=d(f(q), @)d(xn+1, q)cosy
<d(f(q), ¢)d(2n11, q)cosy
= <equ f(q), exp;1 xn+1> ) (3.27)
It follows from (3.20), (3.25), (3.26) and (3.27) that

dz(xn+1a q) éandz(f(l'n), f(q)) + (1 - an)d2(tnv q) + 2ay, <6qu_1 f(Q)v equ_l xn+1>
Sande(xnv q)+(1- O‘n)dQ(wnv q) + 20 <eXp(;1 f(a), eXp;1 xn+1>
Sande(xna Q) + (1 - an)dQ('rnv Q) + 3M6nd(xna xn—l) + 2a, <equ_1 f(Q)a equ_l xn+1>

2 _ _ 3M0,
=(1-p)ay = <equ ! f(q),exp, ! xn+1> +

(L=p)om
+ (1= (1= p)on)d*(2n, q).

<o, || f(x

d(-T’ru xnfl)
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Claim 4. The sequence {x,} converges to ¢ = mqf(q) € .

To obtain the result desired, we firstly show that

limsup,_, <exp;1 f(q), exp,’ Tnyy, ) < 0 for every subsequence {d(zy,,q)}
of {d(zn,q)} satisfying

lim inf(d(xn,,,,q) — d(xn,,q)) > 0. (3.28)

k—o0

By Claim 2, Assumption (A6) and (3.28), we have

<1 - ) & (Y ) + <1 “Tnk> dz(u"“ynk)]

Tnp+1 Tng+1

+ (1= an)(1—6,,) [(1 - M’””"k) A2 (2n, , Wiy ) + (1 - u") d2(vnk,znk)}

Rny+1 Kng+1

lim sup {(1 — . )0,

k—o0

+ (1 - ank)(snk(l - 6nk>d2<vnk’unk) + (1 - ank)ﬁnk(l —A- /Bnk)dz(Usnk7Snk)}
S h]Ign Sup {d2(xnkaQ) - d2(xnk+1a Q) + Oznkdz(f(xnk), q) + ankMQ}
—00

= — liminf {d2($nk+1, Q) - d2(x7lk7q)} S 07
k—o0

which implies that

lim d(wn,, Yn,) = 0, klim d(Un,, Yn,,) =0, lim d(sp,,Usy,,) =0,
—00

k—o0 k—ro0
lim d(wn,, zn,) =0, lim d(v,,,2,,) =0, lim d(u,,,v,,) = 0. (3.29)
k—o00 k—o0 k—00

By (3.29) and Lemma 2.12, we may get limg_,o0 d(Sp, , wn, ) = 0.

Since wy, = exp, (—b,exp,! z,_1), then exp,! w, = —0, exp,! x,_1. Fur-
ther, we have

—1
d(wny, Ty, ) = Hexpxnk Wn,,

:an

~1
eXPy,  Tm

—ay, T
Nk

O
=, —d(Tpy, Tn,_,) = 0, (as k — 00). (3.30)

Nk

-1
eXp,,  In,

This together with limy_,oo d(wn, , Sn,) = 0 yields that

lim d(zy,, $n,) = 0. (3.31)

k—o0
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Since t, = exp, [ GXp;nl Us,, then exp;n1 t, = B, exp;n1 Us,, we can see
that

= 6nk

<(1-=2X Hexps_nlk Usp,

d(tn, s Sn,) = Hexp;}k [ exps_nlk Usp, = (1 =XN)d(Usn,, Sn,,)-

In view of (3.29), we get

lim d(t,,, Sy, ) = 0. (3.32)
k—o00
For geodesic triangles A(tn,, Tn,, Sn,) and A(f(zn,), tn,, Tn, ), there ex-
ist corresponding comparison triangles 2\t , Ty, Sny) and A(f(xn,), tay s Toy)
such that

d(tnkvxnk) - ||E_ xnk” 7d(tnk78nk> - HE_%

At S () = [[For = T+ d@as flwn)) = |

7d(‘rnk78nk) - Hx_nk_%n )

Let Ty, = o, f () + (1 — ), be the comparison point of .. By
Lemma 2.9, (3.31) and (3.32), we can get that

d(xnk+17xnk> < HxnkJrl - m”

SOénk f(xnk)_x_nk +(1_ank) Hm_x_nkH

St [ o) =] + [ = 5l + 5 = 7

—~

=t A (@0,): ) + Aty $ny) + A5y 0,) = 0, (as k = 00).
Since the sequence {x,, } is bounded, so there exists a subsequence {xnkj}

of {xn,} such that lim Tn,, — 2. Hence, we have
j—oo

lim sup <equ_1 f(q), equ_l aznk> lim <equ_1 f(q), exp;1 xnkj>

k—o0 Jj—roo

= (exp, " f(q), exp, " z) . (3.33)

Since xn, — z, s0 from (3.30), (3.31), (3.32) and (3.29), we know that
Wiy > 2, Yn, —> 2, Zn, — 2 and s, — z, respectively. Further, from (3.2),
(33?) and Lemma 2.16,Jwe have (A(z),exp;'x) > 0 and (B(z),exp;'y) > 0
for any x,y € M. This implies that z € VI(M,A)NVI(M,B). From (3.31),
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(3.32) and Lemma 2.17, we get that z € Fiz(U). So, we have that z € (.
Since z € Q and q = o f(q), it follows from (3.33) and Lemma 2.5 that

lizn sup <eXp(;1 f(q),exp;1 xnk> = <exp;1 f(q),exp;1 z> <0. (3.34)
—00

which, together with limy o d(2p,,,,Tn,) =0, (8.33) and (5.34) yields,

lim sup (exp, ' f(q), exp, " T 11)

k—o0

<limsup <equ_1 f(q), eXp;nl]c xnk+1> + lim sup <equ_1 f(q), exp;1 Ty )
k—o0 k—o00

= <exp;1 f(q),equ_1 z> <0. (3.35)

From Lemma 3.2, Lemma 2.16, (3.35) and Claim 3, we have
Pyl < OpQn + (1 - Un)pm Vn > 1,
where

Pn = dz(gjmq)’ On = (1 - p)am

_ _ 3M6,
<equ ' f(Q)v equ ! mn+1> + ( d([En, xn—l)-

L—p
Then it follows from Lemma 2.15 that {x,} converges to q. The proof of
Theorem 3.1 is completed.

Next, we introduce our Algorithm 2 to solve (1.2) on Hadamard manifolds.
The Algorithm 2 is as follows:

Motivated by the proof of Lemma 3.3 of Khammahawong et al. [21], we
get a similar conclusion under more general assumptions.

Lemma 3.5 Assume that Assumptions (A1-A7) holds, and the sequences {u,}
and {v,} are generated by Algorithm 2. Then

2

TTL
d*(tp,p) < d*(wn,p) — (1 — MZTQ—)dQ(wn,yn), Vp € Q, (3.38)
n+1
2
(v, p) < d*(wn, p) — (1= =5 )l (wn, ), Vp € O, (3.39)
n+1
and
Tn
d(tn, Yn) < (0 )A(Wn,s Yn), (3.40)
Tn+1
d(vn, z) < (1 fin Yd(Wny 21)- (3.41)

’{n—s—l
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Algorithm 2: The viscosity-type inertial Tseng’s extragradient algo-
rithm
Initialization: Take 0 > 0,73 > 0,k > 0, € (0,1). Let zg, 21 € M be
arbitrarily choose.

Step 1. Input the iterates z,,_1 and z,, (n > 1). Set
wy = exp, —0, exp;n1 Zn_1, where 0, is defined in (3.1).
Step 2. Compute y, satisfying
<TnPymwnA(wn) — exp;n1 Wn, exp;nl p> >0, Vo € M. (3.36)

Step 3. Compute z, satisfying
</<onPmenB(wn) — exp;n1 W, exp;n1 p> >0, Yoz € M.

Step 4. Compute u,, satisfying

Un = exXpy, Tn( Py, w, Alwn) — Ayn)). (3.37)
Step 5. Compute v,, satisfying

Up = exp, Fkn( P, 0, B(wn) — B(2,)).

Step 6. Compute s, = exp,,, 0, €xp; Up.
Step 7. Compute 7,41 = exp, a,exp; ' f(z,),

where t,, = exp, [, exp;! Us,, update 7,11 by (3.6) and update k1 by
(3.7).
Set n:=n+ 1 and go to Step 1.
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Proof For geodesic triangles /\(uy, Yn,p) and N(yYn,wn, D), there exist com-
parison triangles \(Up, Yn,p) and N\(Ypn, W, ) such that

d(wn,p) = llwn =Dl , d(wn, yn) = llon — Fnl| -

This implies that

d*(un, p) = [un — P>
=@ — Tall® + [[7n — P + 2 (Wn — Yn, Yn — P
=@ — Fnll® + [7n — @nll + |[@n — Bl + 2 (@ — Un, Un — P) + 2 (U — @n, @ — D)
=@ — Tall® + [9n — @nll® + l[@n — B + 2 (@ — T U — D) + 2 (T — @y @n — Yn)
+ 2 (Yn — Wn, Un — D)
=@ =Bl + @ — Fnll> = [1Un — @nll> = 2 (Un — Un,Un — D) +2(Un —@n,Un — D). (3.42)

Let v and 7 be the angles at the vertices y, and ¥,, respectively, It follows
from Lemma 2.8 and Lemma 2.9 that v <75 and

(U — Wn U — D) = U — @al| 170 — Pl cos¥
=d(yn, wn)d(yn, p)cosy
<d(Yn, wn)d(yn, p)cosy
= <expy_n1 Wn, eXp;n1 p). (3.43)

Similarily, we have
(U = W, Un = P) < (exDy, tn,exp, D). (3.44)

Since up = expy, Tn(Py, w, Alwn) — A(yn)), then exp,lu, = 7,(Py, w, Alwn) —
A(yy,)). Substituting (3.43) and (3.44) into (3.42), we obtain

d*(tn,p) <d*(wn,p) — d*(Yn,wn) + Trd*(A(wn), A(Yn)) — 270 ( Py, w, Alwn) — Ayn), exp, ' p)

(3.45)
+2 <expy_n1 Whn, exp;n1 p> .
From (3.36), we get
<exp;n1 Wn, expy_n1 p> < <TnPyn,wnA(wn), eXp;n1 p> ) (3.46)

According to (3.45) and (3.46), we may obtain

@ (1) SA(@nP) = & (Y, ) + 720" (A(wn). Ayn)) = 27 (Py, o, Aleon) — Alya). capy, 'p)
+ 275 ( Py, o Alwn), expy ! p)
=d*(wn,p) — d*(Yn,wn) + T d? (A(wn), A(yn)) + 270 (A(yn). expy, | p) -
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Since A is a pesudomonotone vector field, from (3.4), we have

dQ(ump) SdQ(wnap) - d2(ymwn> + ng2<A(wn)a A(yn))

2
)
Sdz(wmp> - d2(ym wn) + TEL?—HCF(ym Wn)

2
T’I'L

SdQ(wn,p) - (1 - :uz 2 )dQ(ymwn)'
n+1

Further, from definition of u, and (5.6), we obtian

) d(wn, yn)-

Tn+1

A(tn, yn) = ||expy, wnl| = [7(Py, wn Alwn) — Alyn)) || < (u

Using the similar proofs of (3.38) and (3.40), we may easily get (3.39) and
(3.41), respectively. The proof is completed.

Theorem 3.6 Suppose that Assumptions (A1)—(AT) hold. Then the sequence
{z,} generated by Algorithm 2 converges to q € ), where q = mo(f(q))-

Proof We also divide the proof into four parts.
Claim 1. The sequence {x,} is bounded.
It follows from Lemma 3.5 and (3.17) that

d2(tn7Q) §5nd2(vn7Q) + (1 - ‘Sn)d2(um‘J) - 571(1 - 6n)d2(vmun) + ﬁn()‘ -1+ /Bn)d2(U5n:3n)

i K2
<on |d*(wn,p) — (1 — p® ="=)d*(Wn, yn) | + (1= 6n) |d*(wn,p) — (1 — p® —"—)d* (wn, 2n)
7—n+1 Hn+1

— 60 (1 — 8,)d?(vn,un) + Brn(A — 14 Bn)d?(Usn, sn). (3.47)

In view of Lemma3.2, there exists ny € N such that 1 — uQQ—g > 0 and
+1

Tn

1- MQ% > 0 for any n > ny. Since 6, € (0,1) and B, € (a,1 — \), we have

d(tn,q) < d(wn,q), Yn >mn (3.48)

Using the similar proof of the Claim 1 in the Theorem 3.4, we may show
that the sequences {x,} is bounded. Further, the sequences {w,}, {f(zn)},
{yn}, {2}, {un} and {v,} are also bounded.

Claim 2.
72 K2

(1= ) | (1= 12 ) ()| + (1= ) (1= 8,) | (1= p2 2 ) (0, 20)
n+1 Rn+1

+ (1 = )0 (1 — 8,)d* (v, up) + (1 — @) Bu(1 — X — B,)d*(Usy, s,)
< dz(xnv q) — d2(xn+17 q) + and2(f(xn)a q) + anMs,
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where My > 0 is a constant, such that My > sup {2Md(z,, q) + a, M?}.
In view of Lemma 2.12, (3.24) and (3.47), we get

d2(xn+1a q) Sand2<f<xn)a q)+ (1 — an)dQ( ns Q)
SandQ(f(xn): Q) (1 - an)dQ(Wm Q) (1 - O‘n)én(l - 5n)d2(vm un)

- (= (0= )

n+1

- (=)= 0 [ e, )

4+ (1 = ) BaX = 1+ B,)d*(Usy, 5,)
<and*(f(zn),q) + d*(2n, q) + anMs — (1 — ap)n (1 — 6,)d* (Vn, Uy,
= (1= 8 (1= 5 )

Hn-l—l
2

—(1—a,)d, {(1 - u2§—”+1)d2(wm yn)}

+ (1 = an)BaX — 1+ B,)d*(Usy, ).

So, we may conclude Claim 2.
Claim 3.

3M6,
(1= p)an

2
P (1) <(1— p)a [1 2 Ay, 70)

+ (1= (1= p)an)d*(za, q), Yn =,

0 <exp;1 f<q>7 eXp;1 xn+1> +

where M = sup, ey {d(zn, q), Ond(xp, T—1)} > 0.

The proof is similar to the proof of Claim & of Theorem 3.4. So we omit it
here.
Claim 4. The sequence {x,} converges to ¢ = mq(f(q)) € Q.

The proof is also similar to the proof of Claim /4 in the Theorem 3.4, we
omit it here. The proof is completed.

4 Application

In this section, we use our main results to find a solution of constrained convex
minimization problems on Hadamard manifolds. Let M be a Hadamard man-
ifold and g : M — R be a differentiable function. The directional derivative of
g at ¢ in direction v € T, M is defined by Bento et al. in [36] as follows:

. g(exp, tv) — Q(Q)‘

t—0t t

g (q;v) =
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For any v € T, M, the gradient of g at ¢ € M is defined by (gradg(q),v) :=
9'(q;v).
Lemma 4.1 [37] Let g : M — R be a differentiable function, where M is a
Riemannian manifold. Then, gradg is a monotone vector field if and only if
g is geodesic conver.

Assume that g : M — R is a twice differentiable function, then the Hessian
of g at ¢ € M [38], denoted by Hessg, is defined by

Hessg(q) := V,(gradg(q)), Yv € T, M,

where V stands for the Riemannian connection of M.

Lemma 4.2 [39] Let g be a differentiable function from Hadamard manifold
M into R. Then, gradg is a I'-Lipschitz continuous vector field if Hessg is
bounded.

Here, we consider the following constrained convex minimization problem:

min g(z), (4.1)

where K is a subset of Hadamard manifold M and ¢ : K — R is a differ-

entiable geodesic convex function. The minimizer set of (4.1) is denoted by

S(g), in other words, S(g) := {x € K : g(z) < g(y),Yy € K}. In [22], it has

been shown that the solutions of (4.1) are equivalent to the solutions of the
variational inequality problem VI(gradg, K), that is,

z* € S(g) <= (gradg(z*),exp,ly) >0, Vy € K. (4.2)

It follows from Lemma 4.1 and Lemma 4.2 that gradg is a I'-Lipschitzian
monotone vector field when g is a twice continuously differentiable and geodesic
convex function, and Hessg is bounded. Therefore, replacing A and B in
Algorithm 1 with gradg and I, respectively, where I is identity vector field,
we can directly get Theorem 4.3 from our Theorem 3.4.

Theorem 4.3 Let g : M — R be a twice continuously differentiable and
geodesic convex function, and Hessg be bounded, U : M — M be a A-
demicontractive mapping. Given xg € M, 1 € M, calculate x,, by

)
_ —1
Wy, = exp,, (=0, exp, T,_1),

P, w.gradg(w,) — % exp;n1 W, exp;n1p> >0, Vo € M,
P, y.9radg(yn) — = expy ! w,,exp! q> >0, Vy €T, (4.3)
tn = exp, [nexp;! Uz,

( Tn+1 = €XPy, Qn eXP;} f(xn),
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where the half-space T}, := {a e M| <exp;n1 Wy, — Tn Py, w, gradg(wy,), expy > < 0}
{0}, {an}, {Bn} are defined in (3.1), (A6), (A7), respectively, and step size
T, is updated by following rule:

. d n,Wn .
ity i dlgrady(). gradg(en)) # 0

Tns otherwise.

If Fiz(U) N S(g9) # @, then the iterative sequence {x,} generated by (4.3)
converges to a point of Fixz(U) N S(g).

Moreover, replacing A and B in Algorithm 2 with gradg and I, respectively,
we can directly get Theorem 4.4 from our Theorem 3.6, where [ is identity
vector field and {4, } = 0.

Theorem 4.4 Let g : M — R be a twice continuously differentiable and
geodesic convex function, and Hessg be bounded, U : M — M be a A-
demicontractive mapping. Given xg € M, 1 € M, calculate x,, by

(= exp,, (—h exp5 2ar),

<Pyn7wngmdg(wn) — - exp, ! Wy, expy ! p> >0, Vo e M,

Zn = exp,, Tn(Py, w,gradg(w,) — gradg(yn)), (4.4)
tn = exp, [nexp;! Uz,

( Tnt1 = exp,, apexp; f(ay),

where {0, }, {an}, {Bn} are defined in (3.1), (A6), (A7), respectively, and step
size T, is updated by following rule:

. d n,Wn .
- min {d(gradg(;f),graglg(wn)) , Tn} , if d(gradg(y,), gradg(w,)) # 0,

T otherwise.

If Fiz(U)NS(g) # &, then the iterative sequence {z,} generated by (4.4)
converges to a point of Fixz(U) N S(g).

5 Numerical examples

In this section we provide a numerical example to illustrate the numerical
behavior of Algorithms 1 and 2 on Hadamard manifolds and compare our al-
gorithms with the Halpern-type algorithm [17] named by Algorithms 3. All
the programs are performed in Matlab R2016a and computed on Intel(R)
Core(TM) i7-7700HQ CPU 2.80 GHz with RAM 16GB.
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Exzample Let M := R = {z € R: z > 0}, the Riemannian metric (-, -) de-
fined by (a, b) := z—lzab, where a,b € T, M. Obviously, the tangent space T, M is
R for any x € M. So, the parallel transport P, , : T,M — T, M is the identity

vector field, the Riemannian distance d(-,-) is defined by d(z,y) := ‘lng

for x,y € M, then M is a Hadamard manifold and the unique geodesic
X : R = Mis x(t) := ze®®, where v = x'(0) € T,M. Moreover, the
exponential mapping is exp, tv = ze(*"/*) and the inverse of exponential map-
ping is exp; 'y = xln ¥,

Let K :=[1,400). Given the contraction mapping f(z) = \/z, the demi-
contractive mapping U(z) = /z and the monotone vector field A(z) = zInz,
where x € M.

Since d*(U(z),1) = |In ¥z, d®(z,1) = |Inz|*, where 8 > 0, we have
d*(U(z),1) < d*(z,1) + Bd?(x,U(x)), then assumptions (A3)-(A5) hold and
the unique solution of (1.2) is 1, the detail in [21]. Suppose the vector field B is
an identity vector field and the parameter 6,, = 0, n > 1. We choose the initial

1 1

pointx0:5,en:m,u:O.E),Bn:#,an:n—ﬂandﬁlzﬁzl.

Then the numerical results are reported in Figure 1 and Table 1 as follows:

Initial point py=5

T T T T T T T T T T T T
= Algorithm 1 = Algorithm 2
45 Algorithm 2| 4 45 Algorithm 3|

Initial point py=5

1.5—\ o ] 1.57\‘

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
iteration iteration

(a) Iterative process of Algorithms 1 and 3 in(b) Iterative process of Algorithms 2 and 3 in
Example Example

Figure 1: Iterative process of process
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Iter. no. Algorithm1 Algorithm?2 Algorithm3
0 5 5 5
5 1.31058462618559 | 1.32684171792157 | 1.43798265238294
13 1.00005003645558 | 1.00005011782881 | 1.21783907664200
17 1.00000000005475 | 1.00000000005484 | 1.17228751666004
21 1 1 1.14226302469760

Table 1: Computation results of Example

From Table 1 and Figure 1, it is easy to see that Algorithm 1 and 2 converge
faster than Algorithm 3. Moreover, we record the calculation time of each
algorithm with some different initial points in Table 2.

Initial point | Algorithm1 | Algorithm2 | Algorithm3
5 0.021s 0.021s 0.137s
10 0.026s 0.026s 0.141s
100 0.026s 0.029s 0.142s
1000 0.026s 0.022s 0.150s
10000 0.026s 0.030s 0.144s
100000 0.028s 0.030s 0.156s

Table 2: The calculation time of each algorithms

Obviously, Algorithm 1 and Algorithm 2 use less calculation time than
Algorithm 3.

6 Conclusion

This paper focuses on investigating the common solution problem of two pe-
sudomonotone variational inequality problems and fixed point problem of -
demicontractive mapping on Hadamard manifold, which is more general prob-
lem than that one in [21]. Two convergence theorems are established and the
main results presented in this paper are utilized to solve convex minimization
problem. Meanwhile, a numerical example is given to show the effectiveness
of our algorithms by comparing with the algorithm presented in [17].
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