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Abstract

In this paper, a kind of convex feasibility problem on pesudomono-

tone variational inequality problem and fixed point problem of demicon-

traction mapping in Hadamard manifold is considered. For solving the

kind of convex feasibility problem, two inertial viscosity-type extragra-

dient algorithms are proposed and two strong convergence theorems are

established when some conditions are satisfied. Moreover, a convex min-

imization problem is solved by the main results of this paper. Finally,

the convergence of the two algorithms are demonstrated by numerical

experiments.
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1 Introduction

Let {Ci}Ni=1 be some nonempty closed convex sets of a space H with inner

product 〈·, ·〉 and norm ‖·‖. Convex feasibility problem (in short, CFP) is to

find a common element of {Ci}Ni=1, that is, to find x∗ ∈ C1 ∩ C2 ∩ · · · ∩ CN.

CFPs arise from various problems of nonlinear analysis fields. In fact,

many common solution problems are CFPs, the details can be found in [1–9].

In terms of application, CFP is a universal problem appeared in diverse ap-

plication areas, such as radiation therapy treatment planning, image recovery,

crystallography, and so on [10–13].

In recent years, many important problems in nonlinear analysis field on

the spaces with linear structure have been extended to Hadamard manifolds,

which is a space without linear structure. Since some nonconvex problems and

constrained problems in the spaces with linear structure may be transformed

into convex problems and unconstrained problems in the spaces without linear

structure.

In 2012, Bento et al. [14] introduced subgradient type algorithm to solve

CFP in Riemannian manifolds. In order to solve the CFP presented by Bento

et al. in [14], Wang et al. [15] proposed cyclic subgradient projection algorithm

and solved partially the open problem proposed in [14]. Further, Wang et

al. [16] modified the subgradient algorithm presented by [14] in 2015 to solve

CFP without Slater condition assumption in Riemannian manifolds.

On the other hand, some scholars focus on many nonliner problems on

Hadamard manifolds, such as optimization problem, variational inequality

problem, inclusion problem, fixed point problem, and so on. In 2019, Al-

Homidan et al. [17] proposed Halpern-type and Mann-type algorithms to find

a common point of the fixed point set of a nonexpansive mapping and the solu-

tion set of the maximal monotone variational inclusion problem on Hadamard

manifolds. In 2021, Filali et al. [18] proposed a kind of viscosity type method

to find a common point of solution set of monotone variational inclusion prob-

lem and fixed point set of a nonexpansive mapping on Hadamard manifolds.

In 2021, Chang et al. [19] introduced proximal point method to find a common

element of the common fixed point set of a quasi-pseudocontractive mapping

and a demicontraction mapping and the zero point set of monotone inclusion

problem on Hadamard manifolds. In the same year, Chang et al. [20] solved
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a finite family of quasi-variational inclusion problems on Hadamard manifolds

by shrinking projection method. In 2022, using inertial technique, Khamma-

hawong et al. [21] proposed two kinds of inertial type algorithms to solve the

common solution problems of monotone variational inequality problems and

fixed point problems of nonexpansive mapping on Hadamard manifolds.

In fact, the CFP on Hadamard manifold is to solve a common element of

some nonempty closed geodesic convex sets, that is, to find a point x ∈ M ,

such that x ∈ K1 ∩K2 ∩ · · · ∩KN, where {Ki}Ni=1 are some nonempty closed

geodesic convex subsets of Hadamard manifold M .

Let K be a nonempty closed geodesic convex subset of M and exp : TM →
M be an exponential vector field, where TM is the tangent bundle of M .

The variational inequality problem on Hadamard manifolds was introduced by

Nmeth [22], which is to find q ∈ K, such that〈
A(q), exp−1

q y
〉
≥ 0, ∀y ∈ K, (1.1)

where A : K → TM is a vector field, denote the solution set of (1.1) by

V I(A,K). In addition, the fixed point set of mapping F : K → K is denoted

by Fix(F ).

For solving variational inequality problems on Hadamard manifolds, many

scholars proposed various algorithms, the details can be found in [23–25]. In

2021, Chen et al. [26] proposed two kind of Tsengs extragradient algorithms to

sovle variational inequality problem on Hadamard manifolds. For avoiding the

computation cost of Lipschitzian constant, Ma et al. in 2023 [27] proposed vis-

cosity type subgradient extragradient algorithm with Armijo-like linear search

technique to solve variational inequality problem on Hadamard manifolds.

Inspired by the work above, we focus our attention on a kind of convex

feasibility problem, that is, find a point x ∈M such that

x ∈ Fix(U) ∩ V I(M,A) ∩ V I(M,B), (1.2)

where M is a Hadamard manifold, V I(M,A) and V I(M,B) are solution sets of

variational inequality problems with respect to pesudomonotone vector fields A

and B, respectively, Fix(U) is the fixed point set of demicontractive mapping

U . We introduce two inertial extragradient algorithms whose step sizes do not

depend on the Lipschitzian constant of the vector fields to solve (1.2). Finally,

we establish two convergence theorems for (1.2).

The rest of the paper is organized as follows: In Section 2, we provide

some useful lemmas and definitions on Riemannian manifolds. In Section 3,

we present the details of our two algorithms and prove the convergence of our
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algorithms. In Section 4, we use the main results obtained in section 3 to

solve a convex minimization problem on Hadamard manifolds. In Section 5,

a numerical example is provided to illustrate the numerical behavior of our

algorithms. In Section 6, we present a summary for the work in this paper.

2 Preliminaries

Let M be a finite-dimensional Riemannian manifold, TpM be the tangent space

of M at p, where p ∈ M , and the tangent bundle TM :=
⋃
p∈M TpM . Since

M is a Riemannian manifold, Riemannian metric 〈·, ·〉p : TpM × TpM → R,

can be equipped for any p ∈M . Moreover, ‖ · ‖p is the norm corresponding to

the Riemannian metric 〈·, ·〉p on TpM , where the subscript p can be omitted if

there is no confusion.

The length of a piecewise smooth curve ω : [a, b]→M joining ω (a) = p to

ω (b) = q, where p, q ∈M , is defined as follow

L (ω) :=

∫ a

b

‖ω′ (t)‖ dt,

where ω′ (t) stands for the tangent vector. The Riemannian distance d(p, q) is

the minimum length of all such curves joining p to q.

Let ∇ be the LeviCivita connection associated with Riemannian manifold

M , ω be a smooth curve and E be a smooth vector field along ω. If∇ω′(s)E = 0,

then the vector field E is called parallel. If ω′ is parallel to itself, then ω is

said to be geodesic. The graph of a geodesic to a closed bounded interval is

called a geodesic segment. If ω is a minimal geodesic joining p to q, then the

length of geodesic joining p to q in M is equal to d(p, q).

The parallel transport Pω,ω(b),ω(a) : Tω(a)M −→ Tω(b)M on the tangent

bundle TM along ω : [a, b]→M is defined by

Pω,ω(b),ω(a) (v) = V (ω (b)) ,∀a, b ∈ R, v ∈ Tω(a)M,

where V is the unique vector field such that ∇ω′(t)V = 0, V (ω(a)) = v.

If any geodesics of a Riemannian manifold M are well defined for all t ∈ R,

then M is said to be complete. HopfRinow’s theorem [28] asserts that (M,d) is

a complete metric space and any two points in M can be joined by a minimal

geodesic if M is complete. A simply connected complete Riemannian manifold

with nonpositive sectional curvature is called Hadamard manifold.

Let M be a complete Riemannian manifold. The exponential vector field

expq : TqM −→ M is defined as expq(v) = ωv (1, q), where v ∈ TqM , ω (·) =
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ωv (·, q) is the geodesic starting from q with velocity v, i.e., ω (0) = 0 and

ω′ (0) = v. For each real number t, expq (tv) = ωv (t, q) and expq (0) =

ωv (0, q) = q hold. Furthermore, expq is differentiable on TqM for any q ∈M .

Definition 2.1 [28] Let K be a subset of Hadamard manifold M . If for any

p, q ∈ K, the geodesic segment ω joining p to q is contained in K, where ω :

[a, b]→ K satisfies p = ω(a), q = ω(b), that is, ω((1− t)a+ tb) ∈ K, t ∈ [0, 1],

then the subset K is called geodesic convex.

Definition 2.2 [29] For a given nonempty closed geodesic convex subset K

of Hadamard manifold M , the metric projection πK from M onto K is defined

by

πK(x) = {y ∈ K : d(x, y) ≤ d(x, z),∀z ∈ K} ,∀x ∈M.

Definition 2.3 [19] Suppose that K is a nonempty closed geodesic convex

subset of Hadamard manifold M , a mapping S : K −→ K is said to be con-

tractive if there exists a constant k ∈ (0, 1) such that

d (Sx, Sy) ≤ kd (x, y) , ∀x, y ∈ K.

If k = 1, then S is called nonexpansive.

Definition 2.4 [19, 30] Let M be a Hadamard manifold, A be a vector field

from M into TM satisfying A(x) ∈ TxM, x ∈ M and U be a mapping from

M into M , then

1. A is said to be pesudomonotone if〈
A(x), exp−1

x y
〉
≥ 0⇒

〈
A(y), exp−1

y x
〉
≤ 0, ∀x, y ∈M ;

2. A is said to be L-Lipschitz continuous with L > 0 if

‖Px,yA(y)− A(x)‖ ≤ Ld(x, y), ∀x, y ∈M ;

3. U is said to be λ-demicontractive with λ ∈ [0, 1) if Fix(U) 6= ∅ and the

following inequality holds

d2(Ux, z) ≤ d2(x, z) + λd2(x, Ux),∀z ∈ Fix(U), x ∈M.

Lemma 2.5 [29] Let K be a nonempty closed geodesic convex subset of

Hadamard manifold M . For any x ∈M , z = πK(x) if and only if 〈exp−1
z x, exp−1

z y〉 ≤
0, for all y ∈ K.
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Lemma 2.6 [31] The following statements are equivalent:

1. x is a solution of variational inequality problem (1.1);

2. for all µ > 0, x = πK(expx(−µA(x)));

3. r(x, λ) = 0, where r(x, λ) is defined by r(x, λ) := exp−1
x [πK(expx(−λA(x)))].

Lemma 2.7 [32] Let 4 (p1, p2, p3) be a geodesic triangle in Hadamard mani-

fold M . Then there exists a comparison triangle 4 (p1, p2, p3) for 4 (p1, p2, p3),

such that d (pi, pi+1) = ‖pi − pi+1‖, the indices i taken modulo 3, and it is

unique up to the isometry of R2.

Lemma 2.8 [28] Let 4 (p1, p2, p3) be a geodesic triangle in Hadamard mani-

fold M and α be the angle of 4 (p1, p2, p3) at the vertex p1.Then the following

results hold:

1. d2 (p1, p2) + d2 (p2, p3)− 2
〈
exp−1

p2
p1, exp−1

p2
p3

〉
≤ d2 (p3, p1) ;

2. d2 (p1, p2) ≤
〈
exp−1

p1
p3, exp−1

p1
p2

〉
+
〈
exp−1

p2
p3, exp−1

p2
p1

〉
;

3.
〈
exp−1

p1
p3, exp−1

p1
p2

〉
= d(p2, p1)d(p1, p3) cosα.

Lemma 2.9 [28] Let 4 (p1, p2, p3) be the comparison triangle of a geodesic

triangle 4 (p1, p2, p3) in Hadamard manifold M . The following conclusions

hold :

1. Let α1, α2, α3 be the angles of4 (p1, p2, p3) at the vertices p1, p2, p3, α1, α2, α3

be the angles of4 (p1, p2, p3) at the vertices p1, p2, p3. Then α1 ≤ α1, α2 ≤
α2 and α3 ≤ α3;

2. Let p be a point on the geodesic segment joining p1 to p2 and p its com-

parison point in the interval [p1, p2]. Moreover, if d (p1, p) = ‖p1 − p‖
and d (p2, p) = ‖p2 − p‖, then d (p3, p) ≤ ‖p3 − p‖.

Lemma 2.10 [33] Let M be a Hadamard manifold, TyM be a tangent space

of M at y ∈M . If x ∈M and v ∈ TyM, then〈
v,− exp−1

y x
〉

=
〈
v, Py,x exp−1

x y
〉

=
〈
Px,yv, exp−1

x y
〉
.

Lemma 2.11 [21] Let M be a Hadamard manifold and x1, x2, x3 ∈ M , then

the following inequality holds:∥∥exp−1
x1
x3 − Px1,x2 exp−1

x2
x3

∥∥ ≤ d(x1, x2).
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Lemma 2.12 [19] Let M be a Hadamard manifold, ω : [0, 1] → M be a

geodesic joining x to y, then

d (ω (t1) , ω (t2)) = |t1 − t2|d (x, y) , ∀t1, t2 ∈ [0, 1] ,

where d(·, ·) is Riemannian distance.

In addition, for any x, y, z, u, w ∈ M and t ∈ [0, 1] , the following inequal-

ities hold:

1. d (expx t exp−1
x y, z) ≤ (1− t) d (x, z) + td (y, z) ;

2. d2 (expx t exp−1
x y, z) ≤ (1− t) d2 (x, z) + td2 (y, z)− t (1− t) d2 (x, y) ;

3. d (expx t exp−1
x y, expu t exp−1

u w) ≤ (1− t) d (x, u) + td (y, w) .

Lemma 2.13 [29] Suppose that K is a nonempty closed geodesic convex sub-

set of Hadamard manifold M and S is a mapping from K into K. Then these

statements are equivalent:

1. S is firmly nonexpansive;

2. For any x, y ∈ K,〈
exp−1

S(x) S(y), exp−1
S(x) x

〉
+
〈

exp−1
S(y) S(x), exp−1

S(y) y
〉
≤ 0;

3. For any x, y ∈ K and t ∈ [0, 1],

d(S(x), S(y)) ≤ d(expx t exp−1
x S(x), expy t exp−1

y S(y)).

Remark 2.14 It is well known that the metric projection for a nonempty

closed geodesic convex subset of Hadamard manifold is firmly nonexpansive

mapping.

Lemma 2.15 [34] Let {pn} be a nonnegative sequence, {qn} be a sequence of

real numbers and {σn} be a sequence in [0, 1] such that
∑∞

n=1σn =∞. Suppose

that

pn+1 ≤ (1− σn) pn + σnqn, ∀n ≥ 1.

If lim supk→∞ qnk
≤ 0 for every subsequence {pnk

} of {pn} satisfying lim infk→∞(pnk+1
−

pnk
) ≥ 0, then limn→∞ pn = 0.

Lemma 2.16 [33] Let M be a Hadamard manifold, p, q ∈M and {xn} , {yn} ⊂
M satisfying xn → p, yn → q, then the following conclusions hold.
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1. exp−1
xn z → exp−1

p z , exp−1
z xn → exp−1

z p and exp−1
yn xn → exp−1

q p, ∀z ∈
M ;

2. If {wn} is a sequence in TxnM and wn → w, then w ∈ TpM ;

3. If the sequences {wn} and {vn} are two sequences in TxnM , and {wn} →
w ∈ TpM, {vn} → v ∈ TpM, then 〈wn, vn〉 → 〈w, v〉 .

Lemma 2.17 [19] Let M be a Hadamard manifold, if U is a λ-demicontractive

mapping from M into M , where λ ∈ (0, 1), mapping W : M →M defined by

W (x) := expx(1− µ)exp−1
x Ux, x ∈M, 0 < λ ≤ µ < 1,

then W is demiclosed at zero, that is, for any bounded sequence {xn} in M such

that

lim
n→∞

xn = p and lim
n→∞

d (xn,Wxn) = 0,

then Wp = p.

Lemma 2.18 [35] Let M be a Riemannian manifold with constant curvature.

For given x ∈ M and x′ ∈ TxM , then the set {y ∈M : 〈exp−1
x y, x′〉 ≤ 0} is

geodesic convex.

3 Main results

In this section, before we introduce our inertial extragradient algorithms to

solve (1.2) on Hadamard manifolds, we need to make the following assump-

tions:

(A1) M is a finite dimensional Hadamard manifold;

(A2) The solution set of (1.2) is nonempty, that is, Ω := Fix(U)∩V I(M,A)∩
V I(M,B) 6= ∅;

(A3) A and B are two pesudomonotone and L-Lipschitz continuous vector

fields from M into TM ;

(A4) U is a λ-demicontractive mapping from M into M , where λ ∈ (0, 1);

(A5) f is a ρ-contraction mapping from M into M , where ρ ∈ [0, 1);

(A6) {εn} and {αn} are two positive sequences such that limn→∞ αn = 0 ,∑∞
n=1 αn =∞ and εn = ◦(αn);

(A7) {δn} ⊂ (0, 1) and {βn} ⊂ (a, 1− λ), where a > 0.
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Now, we introduce our first algorithm.

Algorithm 1: The viscosity-type inertial subgradient extragradient al-

gorithm

Initialization: Take θ > 0, ε1 > 0, κ1 > 0, τ1 > 0, µ ∈ (0, 1). Let x0, x1 be

arbitrarily chosen two points in M .

Step 1. Input the iterates xn−1 and xn , (n ≥ 1). Set

ωn = expxn(−θn exp−1
xn xn−1), where

θn =

 min

{
εn

d(xn, xn−1)
, θ

}
, if d(xn, xn−1) 6= 0,

θ, otherwise.

(3.1)

Step 2. Compute yn satisfying〈
τnPyn,ωnA(ωn)− exp−1

yn ωn, exp−1
yn x

〉
≥ 0, ∀x ∈M. (3.2)

Step 3. Compute zn satisfying〈
κnPzn,ωnB(ωn)− exp−1

zn ωn, exp−1
zn x

〉
≥ 0, ∀x ∈M. (3.3)

Step 4. Compute un satisfying〈
τnPun,ynA(yn)− exp−1

un ωn, exp−1
un y

〉
≥ 0, ∀y ∈ Tn, (3.4)

where the half-space Tn is defined by

Tn :=
{
a ∈M |

〈
exp−1

yn a, exp
−1
yn ωn − τnPyn,ωnA(ωn)

〉
≤ 0
}
. (3.5)

Step 5. Compute vn satisfying〈
κnPvn,znB(zn)− exp−1

vn ωn, exp−1
vn y

〉
≥ 0, ∀y ∈ Fn,

where the half-space Fn is defined by

Fn :=
{
b ∈M |

〈
exp−1

zn b, exp
−1
zn ωn − κnPzn,ωnB(ωn)

〉
≤ 0
}
.

Step 6. Compute sn = expun δn exp−1
un vn.

Step 7. Compute xn+1 = exptn αn exp−1
tn f(xn), where

tn = expsn βn exp−1
sn Usn, and update

τn+1 =

min
{

µd(yn,ωn)
d(A(yn),A(ωn))

, τn

}
, if d(A(yn), A(ωn)) 6= 0,

τn, otherwise.
(3.6)

κn+1 =

min
{

µd(yn,ωn)
d(B(yn),B(ωn))

, κn

}
, if d(B(yn), B(ωn)) 6= 0,

κn, otherwise.
(3.7)

Set n := n+ 1 and go to Step 1.



18 Jiazheng Bao, Zhaoli Ma, Qing Ge and Jiali He

Remark 3.1 By (3.1) and (A6), it is obvious that θnd(xn, xn−1) ≤ εn,∀n ≥ 1,

so,

lim
n→∞

θn
αn
d(xn, xn−1) ≤ lim

n→∞

εn
αn

= 0.

Due to Lemma 2.18, the half-spaces Tn and Fn are geodesic convex, so the

Algorithm 1 is well defined.

Lemma 3.2 Let the sequences {τn} and {κn} be generated by (3.6) and (3.7),

respectively, then the sequences {τn} and {κn} are nonincreasing sequences and

limn→∞ τn = τ ≥ min
{
τ1,

µ
L

}
, limn→∞ κn = κ ≥ min

{
κ1,

µ
L

}
.

Proof It is obvious that {τn} is nondecreasing from (3.6). In addition, since

A is L-Lipschitz continuous, we have

µ
d(ωn, yn)

d(A(ωn), A(yn))
≥ µ

L
, if d(A(ωn), A(yn)) 6= 0,

which together with (3.6) implies that

τn ≥ min
{
τ1,

µ

L

}
.

So there exists τ > 0 such that limn→∞ τn = τ ≥ min
{
τ1,

µ
L

}
. Similarly, we

can show that there exists κ > 0 such that limn→∞ κn = κ ≥ min
{
κ1,

µ
L

}
. The

proof is completed.

Lemma 3.3 Let the sequences {ωn}, {yn}, {un}, {zn} and {vn} be gener-

ated by Algorithm 1 and the assumptions (A1 − A7) hold, then the following

inequalities hold:

d2(un, p) ≤ d2(ωn, p)−
(

1− µ τn
τn+1

)
d2(yn, ωn)−

(
1− µ τn

τn+1

)
d2(un, yn),

(3.8)

d2(vn, p) ≤ d2(ωn, p)−
(

1− µ κn
κn+1

)
d2(zn, ωn)−

(
1− µ κn

κn+1

)
d2(vn, zn),

(3.9)

where p ∈ Ω.

Proof It follows from Lemma 2.16, Lemma 2.18 and the definition of Tn that

Tn is closed geodesic convex and Tn ⊂ M . Let 4(un, ωn, p) and 4(un, ωn, yn)
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be two geodesic triangles. By Lemma 2.7, there exist comparison triangles

4(un, ωn, p) and 4(un, ωn, yn) such that

d(un, ωn) = ‖un − ωn‖ , d(un, p) = ‖un − p‖ , d(ωn, p) = ‖ωn − p‖ ,
d(un, yn) = ‖un − yn‖ , d(ωn, yn) = ‖ωn − yn‖ .

This implies that,

d2(un, p) = ‖un − p‖2

= ‖un − yn‖2 + ‖yn − p‖2 + 2 〈un − yn, yn − p〉

= ‖un − yn‖2 + ‖yn − ωn‖2 + ‖ωn − p‖2 + 2 〈yn − ωn, ωn − p〉+ 2 〈un − yn, yn − p〉

= ‖un − yn‖2 + ‖yn − ωn‖2 + ‖ωn − p‖2 + 2 〈yn − ωn, ωn − yn〉+ 2 〈yn − ωn, yn − p〉
+ 2 〈un − yn, yn − un〉+ 2 〈un − yn, un − p〉

= ‖ωn − p‖2 − ‖un − yn‖2 − ‖yn − ωn‖2 + 2 〈un − yn, un − p〉+ 2 〈yn − ωn, yn − p〉

= ‖ωn − p‖2 − ‖un − yn‖2 − ‖yn − ωn‖2 + 2 〈un − ωn, un − p〉+ 2 〈ωn − yn, un − p〉
+ 2 〈yn − ωn, yn − p〉

= ‖ωn − p‖2 − ‖un − yn‖2 − ‖yn − ωn‖2 + 2 〈un − ωn, un − p〉+ 2 〈yn − ωn, yn − un〉 .
(3.10)

Let γ and γ be the angles at the vertices un and un, respectively. It follows

from Lemma 2.8 and Lemma 2.9 that γ ≤ γ and

〈un − ωn, un − p〉 = ‖un − ωn‖ ‖un − p‖ cosγ
=d(un, ωn)d(un, p)cosγ

≤d(un, ωn)d(un, p)cosγ

=
〈
exp−1

un ωn, exp−1
un p

〉
. (3.11)

Similarly, we have

〈yn − ωn, yn − un〉 ≤
〈
exp−1

yn ωn, exp−1
yn un

〉
. (3.12)

Substituting (3.11) and (3.12) into (3.10), we have

d2(un, p) ≤ d2(ωn, p)− d2(un, yn)− d2(yn, ωn) + 2
〈
exp−1un

ωn, exp−1un
p
〉

+ 2
〈
exp−1yn

ωn, exp−1yn
un
〉
.

(3.13)

According to (3.4) and (3.13), we obtain

d2(un, p) ≤d2(ωn, p)− d2(un, yn)− d2(yn, ωn) + 2
〈
exp−1

yn ωn, exp−1
yn un

〉
(3.14)

+ 2
〈
τnPun,ynA(yn), exp−1

un p
〉
.
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Since p ∈ Ω, we have
〈
A(p), exp−1

p yn
〉
≥ 0. By the pseudomonotonicity of

A, we know that 〈
A(yn), exp−1

yn p
〉
≤ 0.

Further, since τn > 0 and (3.14), we have

d2(un, p) ≤d2(ωn, p)− d2(un, yn)− d2(yn, ωn) + 2
〈
exp−1

yn
ωn, exp−1

yn
un
〉

+ 2
〈
τnPun,ynA(yn), exp−1

un
p
〉

− 2
〈
τnA(yn), exp−1

yn
p
〉

≤d2(ωn, p)− d2(un, yn)− d2(yn, ωn) + 2
〈
exp−1

yn
ωn, exp−1

yn
un
〉

(3.15)

+ 2
〈
τnA(yn), Pyn,un exp−1

un
p− exp−1

yn
p
〉
.

From (3.5), (3.6), (3.15) and Lemma 2.11, we obtain

d2(un, p) ≤d2(ωn, p)− d2(un, yn)− d2(yn, ωn) + 2
〈
exp−1

yn ωn, exp−1
yn un

〉
− 2

〈
τnA(yn), exp−1

yn p− Pyn,un exp−1
un p

〉
≤d2(ωn, p)− d2(un, yn)− d2(yn, ωn) + 2

〈
exp−1

yn ωn, exp−1
yn un

〉
+ 2

〈
τnPyn,ωnA(ωn)− τnA(yn), exp−1

yn p− Pyn,un exp−1
un p

〉
− 2

〈
τnPyn,ωnA(ωn), exp−1

yn p− Pyn,un exp−1
un p

〉
≤d2(ωn, p)− d2(un, yn)− d2(yn, ωn) + 2

〈
exp−1

yn ωn, exp−1
yn un

〉
+ 2 ‖τnPyn,ωnA(ωn)− τnA(yn)‖

∥∥exp−1
yn p− Pyn,un exp−1

un p
∥∥

− 2
〈
τnPyn,ωnA(ωn), exp−1

yn un
〉

≤d2(ωn, p)− d2(un, yn)− d2(yn, ωn) + 2τnd(A(ωn), A(yn))d(yn, un)

+ 2
〈
exp−1

yn ωn − τnPyn,ωnA(ωn), exp−1
yn un

〉
≤d2(ωn, p)− d2(un, yn)− d2(yn, ωn) + 2

τnµ

τn+1

d(ωn, yn)d(yn, un)

≤d2(ωn, p)− d2(un, yn)− d2(yn, ωn) +
τnµ

τn+1

(d2(ωn, yn) + d2(yn, un))

≤d2(ωn, p)− (1− τnµ

τn+1

)d2(un, yn)− (1− τnµ

τn+1

)d2(yn, ωn).

The proof of (3.9) is similar to the proof of (3.8). So we omit the proof of

(3.9). The proof is completed.

Theorem 3.4 Assume that the assumptions (A1) − (A7) hold. Then the se-

quence {xn} generated by Algorithm 1 converges to q ∈ Ω, where q = πΩ(f(q)).

Proof It is well kown that Ω is closed geodesic convex and the mapping πΩ(f) :

M −→ M is contractive. Therefore there exists a unique point q ∈ M such

that q = πΩ(f(q)) by the Banach contraction principle. Further we have〈
exp−1

q f(q), exp−1
q z

〉
≤ 0, ∀z ∈ Ω.
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Next, we divide the proof into four parts.
Claim 1. The sequence {xn} is bounded.

From Lemma 2.12 and Definition 2.4, we have

d2(tn, q) ≤βnd2(Usn, q) + (1− βn)d2(sn, q)− βn(1− βn)d2(Usn, sn)

≤βnd2(sn, q) + βnλd
2(sn, Usn) + (1− βn)d2(sn, q)− βn(1− βn)d2(Usn, sn)

=d2(sn, q) + βn(λ− 1 + βn)d2(Usn, sn). (3.16)

According to (3.16) and Lemma 2.12, we obtain

d2(tn, q) ≤d2(sn, q) + βn(λ− 1 + βn)d2(Usn, sn)

≤δnd2(vn, q) + (1− δn)d2(un, q)− δn(1− δn)d2(vn, un) (3.17)

+ βn(λ− 1 + βn)d2(Usn, sn).

By Lemma 3.3, (3.17), δn ⊂ (0, 1) and βn ⊂ (a, 1− λ), we have

d2(tn, q) ≤δn
[
d2(ωn, p)−

(
1− µ τn

τn+1

)
d2(yn, ωn)−

(
1− µ τn

τn+1

)
d2(un, yn)

]
+ (1− δn)

[
d2(ωn, p)−

(
1− µ κn

κn+1

)
d2(zn, ωn)−

(
1− µ κn

κn+1

)
d2(vn, zn)

]
− δn(1− δn)d2(vn, un) + βn(λ− 1 + βn)d2(Usn, sn) (3.18)

≤δn
[
d2(ωn, p)−

(
1− µ τn

τn+1

)
d2(yn, ωn)−

(
1− µ τn

τn+1

)
d2(un, yn)

]
+ (1− δn)

[
d2(ωn, p)−

(
1− µ κn

κn+1

)
d2(zn, ωn)−

(
1− µ κn

κn+1

)
d2(vn, zn)

]
.

(3.19)

By Lemma 3.2, we have limn→∞(1− µ τn
τn+1

) = 1− µ > 0 and limn→∞(1−
µ κn
κn+1

) = 1 − µ > 0, which implies that there exists n1 ∈ N such that (1 −
µ τn
τn+1

) > 0 and (1− µ κn
κn+1

) > 0, for all n ≥ n1. It follows from (3.19) that

d(tn, q) ≤ d(ωn, q), ∀n ≥ n1. (3.20)

For geodesic triangle 4(xn, xn−1, q), it follows from Lemma 2.7 that there

exists a corresponding comparison triangle 4(xn, xn−1, q) such that

d(xn, xn−1) = ‖xn − xn−1‖ , d(xn−1, q) = ‖xn−1 − q‖ , d(xn, q) = ‖xn − q‖ .

Further, from Lemma 2.9, we have

d(ωn, q) ≤‖ωn − q‖
≤‖ωn − xn‖+ ‖xn − q‖
=
∥∥−θn exp−1

xn xn−1

∥∥+
∥∥exp−1

q xn
∥∥

≤d(xn, q) + θnd(xn, xn−1)

=d(xn, q) + αn
θn
αn
d(xn, xn−1). (3.21)
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In view of Remark 3.1, we have limn→∞
θn
αn
d(xn, xn−1) = 0. Thus, there

exists a constant M1 > 0 such that

θn
αn
d(xn, xn−1) ≤M1,∀n ≥ 1. (3.22)

Combining (3.20), (3.21) and (3.22), we have

d(tn, q) ≤ d(ωn, q) ≤ d(xn, q) + αnM1, ∀n ≥ n1. (3.23)

For geodesic triangles 4(f(xn), f(x), q) and 4(f(xn), tn, q), there exist cor-

responding comparison triangles4(f(xn), f(x), q) and4(f(xn), tn, q) such that

d(f(xn), f(q)) =
∥∥∥f(xn)− f(q)

∥∥∥ , d(f(q), q) =
∥∥∥f(q)− q

∥∥∥ , d(f(xn), q) =
∥∥∥f(xn)− q

∥∥∥ ,
d(f(xn), tn) =

∥∥∥f(xn)− tn
∥∥∥ , d(tn, q) =

∥∥tn − q∥∥ .
Let xn+1 = αnf(xn) + (1 − αn)tn be the comparison point of xn+1. From

Lemma 2.9 and (3.23), we have

d(xn+1, q) ≤‖xn+1 − q‖

=
∥∥∥αnf(xn) + (1− αn)tn − q

∥∥∥
≤αn

∥∥∥f(xn)− f(q)
∥∥∥+ αn

∥∥∥f(q)− q
∥∥∥+ (1− αn)

∥∥tn − q∥∥
=αnd(f(xn), f(q)) + αnd(f(q), q) + (1− αn)d(tn, q)

≤αnρd(xn, q) + αnd(f(q), q) + (1− αn)d(ωn, q)

≤αnρd(xn, q) + αnd(f(q), q) + (1− αn)d(xn, q) + (1− αn)αnM1

≤ [1− αn(1− ρ)] d(xn, q) + αn(1− ρ)
d(f(q), q) +M1

1− ρ

≤max

{
d(xn, q),

d(f(q), q) +M1

1− ρ

}
≤ · · · ≤ max

{
d(xn1 , q),

d(f(q), q) +M1

1− ρ

}
, ∀n ≥ n1,

which implies that the sequence {xn} is bounded. So, the sequences {ωn},
{f(xn)}, {yn}, {zn}, {un} and {vn} are also bounded.

Claim 2.

(1− αn)δn

[(
1− µ τn

τn+1

)
d2(yn, ωn) +

(
1− µ τn

τn+1

)
d2(un, yn)

]
+ (1− αn)(1− δn)

[(
1− µ κn

κn+1

)
d2(zn, ωn) +

(
1− µ κn

κn+1

)
d2(vn, zn)

]
+ (1− αn)δn(1− δn)d2(vn, un) + (1− αn)βn(1− λ− βn)d2(Usn, sn)

≤ d2(xn, q)− d2(xn+1, q) + αnd
2(f(xn), q) + αnM2,
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where M2 > 0 is a constant, such that M2 ≥ sup {2M1d(xn, q) + αnM
2
1}.

According to (3.23), we have

d2(ωn, q) ≤(d(xn, q) + αnM1)2

=d2(xn, q) + 2αnM1d(xn, q) + α2
nM

2
1

=d2(xn, q) + αn(2M1d(xn, q) + αnM
2
1 )

≤d2(xn, q) + αnM2 (3.24)

where M2 > 0 be a constant, such that M2 ≥ sup {2M1d(xn, q) + αnM
2
1}.

It follows from Lemma 2.12, (3.18) and (3.21) that

d2(xn+1, q) ≤αnd2(f(xn), q) + (1− αn)d2(tn, q)

≤αnd2(f(xn), q) + (1− αn)d2(ωn, p)− (1− αn)δn(1− δn)d2(vn, un)

− (1− αn)δn

[(
1− µ τn

τn+1

)
d2(yn, ωn) +

(
1− µ τn

τn+1

)
d2(un, yn)

]
− (1− αn)(1− δn)

[(
1− µ κn

κn+1

)
d2(zn, ωn) +

(
1− µ κn

κn+1

)
d2(vn, zn)

]
− (1− αn)βn(1− λ− βn)d2(Usn, sn)

≤αnd2(f(xn), q) + d2(ωn, p)− (1− αn)δn(1− δn)d2(vn, un)

− (1− αn)δn

[(
1− µ τn

τn+1

)
d2(yn, ωn) +

(
1− µ τn

τn+1

)
d2(un, yn)

]
− (1− αn)(1− δn)

[(
1− µ κn

κn+1

)
d2(zn, ωn) +

(
1− µ κn

κn+1

)
d2(vn, zn)

]
− (1− αn)βn(1− λ− βn)d2(Usn, sn)

≤αnd2(f(xn), q) + d2(xn, q) + αnM2 − (1− αn)δn(1− δn)d2(vn, un)

− (1− αn)δn

[(
1− µ τn

τn+1

)
d2(yn, ωn) +

(
1− µ τn

τn+1

)
d2(un, yn)

]
− (1− αn)(1− δn)

[(
1− µ κn

κn+1

)
d2(zn, ωn) +

(
1− µ κn

κn+1

)
d2(vn, zn)

]
− (1− αn)βn(1− λ− βn)d2(Usn, sn).

By an easy deformation, we can obtain the result desired.

Claim 3.

d2(xn+1, q) ≤(1− ρ)αn

[
2

1− ρ
〈
exp−1

q f(q), exp−1
q xn+1

〉
+

3Mθn
(1− ρ)αn

d(xn, xn−1)

]
+ (1− (1− ρ)αn)d2(xn, q), ∀n ≥ n1,

where M := supn∈N {d(xn, q), θnd(xn, xn−1)} > 0.
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By (3.21), we obtain

d2(ωn, q) ≤ [θnd(xn, xn+1) + d(xn, q)]
2

=d2(xn, q) + 2θnd(xn, q)d(xn, xn−1) + θ2
nd

2(xn, xn−1)

≤d2(xn, q) + (2d(xn, q) + θnd(xn, xn−1))θnd(xn, xn−1)

≤d2(xn, q) + 3Mθnd(xn, xn−1). (3.25)

where M := supn∈N {d(xn, q), θnd(xn, xn−1)} > 0.
For geodesic triangles4(f(xn), f(q), q), 4(f(xn), tn, q) and4(xn+1, f(q), q),

there exist corresponding comparison triangles4(f(xn), f(q), q), 4(xn+1, f(q), q)

and 4(f(xn), tn, q) satisfying

d(f(xn), f(q)) =
∥∥∥f(xn)− f(q)

∥∥∥ , d(f(xn), q) =
∥∥∥f(xn)− q

∥∥∥ , d(f(xn), tn) =
∥∥∥f(xn)− tn

∥∥∥ ,
d(f(q), q) =

∥∥∥f(q)− q
∥∥∥ , d(tn, q) =

∥∥tn − q∥∥ , d(xn+1, f(q)) =
∥∥∥xn+1 − f(q)

∥∥∥ , d(xn+1, q) = ‖xn+1 − q‖ .

Let xn+1 = αnf(xn) + (1− αn)tn be the comparison point of xn+1, then

d2(xn+1, q) ≤‖xn+1 − q‖2

=
∥∥∥αnf(xn) + (1− αn)tn − q

∥∥∥2

=
∥∥∥αn(f(xn)− f(q)) + (1− αn)(tn − q) + αn(f(q)− q)

∥∥∥2

≤
∥∥∥αn(f(xn)− f(q)) + (1− αn)(tn − q)

∥∥∥2

+ 2αn

〈
f(q)− q, xn+1 − q

〉
≤αn

∥∥∥f(xn)− f(q)
∥∥∥2

+ (1− αn)
∥∥tn − q∥∥2

+ 2αn

〈
f(q)− q, xn+1 − q

〉
.

(3.26)

Let γ and γ be the angles at the vertices q and q, respectively, It follows

from Lemma 2.8 and Lemma 2.9 that γ ≤ γ and〈
f(q)− q, xn+1 − q

〉
=
∥∥∥f(q)− q

∥∥∥ ‖xn+1 − q‖ cosγ

=d(f(q), q)d(xn+1, q)cosγ

≤d(f(q), q)d(xn+1, q)cosγ

=
〈
exp−1

q f(q), exp−1
q xn+1

〉
. (3.27)

It follows from (3.20), (3.25), (3.26) and (3.27) that

d2(xn+1, q) ≤αnd
2(f(xn), f(q)) + (1− αn)d2(tn, q) + 2αn

〈
exp−1q f(q), exp−1q xn+1

〉
≤αnρd

2(xn, q) + (1− αn)d2(ωn, q) + 2αn

〈
exp−1q f(q), exp−1q xn+1

〉
≤αnρd

2(xn, q) + (1− αn)d2(xn, q) + 3Mθnd(xn, xn−1) + 2αn

〈
exp−1q f(q), exp−1q xn+1

〉
=(1− ρ)αn

[
2

1− ρ
〈
exp−1q f(q), exp−1q xn+1

〉
+

3Mθn
(1− ρ)αn

d(xn, xn−1)

]
+ (1− (1− ρ)αn)d2(xn, q).
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Claim 4. The sequence {xn} converges to q = πΩf(q) ∈ Ω.

To obtain the result desired, we firstly show that

lim supx→∞
〈
exp−1

q f(q), exp−1
q xnk+1

〉
≤ 0 for every subsequence {d(xnk

, q)}
of {d(xn, q)} satisfying

lim inf
k→∞

(d(xnk+1
, q)− d(xnk

, q)) ≥ 0. (3.28)

By Claim 2, Assumption (A6) and (3.28), we have

lim sup
k→∞

{
(1− αnk

)δnk

[(
1− µ τnk

τnk+1

)
d2(ynk

, ωnk
) +

(
1− µ τnk

τnk+1

)
d2(unk

, ynk
)

]
+ (1− αnk

)(1− δnk
)

[(
1− µ κnk

κnk+1

)
d2(znk

, ωnk
) +

(
1− µ κnk

κnk+1

)
d2(vnk

, znk
)

]
+ (1− αnk

)δnk
(1− δnk

)d2(vnk
, unk

) + (1− αnk
)βnk

(1− λ− βnk
)d2(Usnk

, snk
)

}
≤ lim sup

k→∞

{
d2(xnk

, q)− d2(xnk+1, q) + αnk
d2(f(xnk

), q) + αnk
M2

}
= − lim inf

k→∞

{
d2(xnk+1, q)− d2(xnk

, q)
}
≤ 0,

which implies that

lim
k→∞

d(ωnk
, ynk

) = 0, lim
k→∞

d(unk
, ynk

) = 0 , lim
k→∞

d(snk
, Usnk

) = 0,

lim
k→∞

d(ωnk
, znk

) = 0, lim
k→∞

d(vnk
, znk

) = 0 , lim
k→∞

d(unk
, vnk

) = 0. (3.29)

By (3.29) and Lemma 2.12, we may get limk→∞ d(snk
, ωnk

) = 0.

Since ωn = expxn(−θn exp−1
xn xn−1), then exp−1

xn ωn = −θn exp−1
xn xn−1. Fur-

ther, we have

d(ωnk
, xnk

) =
∥∥∥exp−1

xnk
ωnk

∥∥∥
=θnk

∥∥∥exp−1
xnk−1

xnk

∥∥∥
=αnk

θnk

αnk

∥∥∥exp−1
xnk−1

xnk

∥∥∥
=αnk

θnk

αnk

d(xnk
, xnk−1

)→ 0, (as k →∞). (3.30)

This together with limk→∞ d(ωnk
, snk

) = 0 yields that

lim
k→∞

d(xnk
, snk

) = 0. (3.31)
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Since tn = expsn βn exp−1
sn Usn, then exp−1

sn tn = βn exp−1
sn Usn, we can see

that

d(tnk
, snk

) =
∥∥∥exp−1snk

tnk

∥∥∥ = βnk

∥∥∥exp−1snk
Usnk

∥∥∥ ≤ (1− λ)
∥∥∥exp−1snk

Usnk

∥∥∥ = (1− λ)d(Usnk
, snk

).

In view of (3.29), we get

lim
k→∞

d(tnk
, snk

) = 0. (3.32)

For geodesic triangles 4(tnk
, xnk

, snk
) and 4(f(xnk

), tnk
, xnk

), there ex-

ist corresponding comparison triangles 4(tnk
, xnk

, snk
) and 4(f(xnk

), tnk
, xnk

)

such that

d(tnk
, xnk

) =
∥∥tnk
− xnk

∥∥ , d(tnk
, snk

) =
∥∥tnk
− snk

∥∥ , d(xnk
, snk

) = ‖xnk
− snk

‖ ,

d(tnk
, f(xnk

)) =
∥∥∥tnk
− f(xnk

)
∥∥∥ , d(xnk

, f(xnk
)) =

∥∥∥xnk
− f(xnk

)
∥∥∥ .

Let xnk+1
= αnk

f(xnk
) + (1− αnk

)tnk
be the comparison point of xnk+1

. By

Lemma 2.9, (3.31) and (3.32), we can get that

d(xnk+1
, xnk

) ≤
∥∥xnk+1

− xnk

∥∥
=
∥∥∥αnk

f(xnk
) + (1− αnk

)tnk
− xnk

∥∥∥
≤αnk

∥∥∥f(xnk
)− xnk

∥∥∥+ (1− αnk
)
∥∥tnk
− xnk

∥∥
≤αnk

∥∥∥f(xnk
)− xnk

∥∥∥+
∥∥tnk
− xnk

∥∥
≤αnk

∥∥∥f(xnk
)− xnk

∥∥∥+
∥∥tnk
− snk

∥∥+ ‖snk
− xnk

‖

=αnk
d(f(xnk

), xnk
) + d(tnk

, snk
) + d(snk

, xnk
)→ 0, (as k →∞).

Since the sequence {xnk
} is bounded, so there exists a subsequence

{
xnkj

}
of {xnk

} such that lim
j→∞

xnkj
→ z. Hence, we have

lim sup
k→∞

〈
exp−1

q f(q), exp−1
q xnk

〉
= lim

j→∞

〈
exp−1

q f(q), exp−1
q xnkj

〉
=
〈
exp−1

q f(q), exp−1
q z

〉
. (3.33)

Since xnkj
→ z, so from (3.30), (3.31), (3.32) and (3.29), we know that

ωnkj
→ z, ynkj

→ z, znkj
→ z and snkj

→ z, respectively. Further, from (3.2),

(3.3) and Lemma 2.16, we have 〈A(z), exp−1
z x〉 ≥ 0 and 〈B(z), exp−1

z y〉 ≥ 0

for any x, y ∈M . This implies that z ∈ V I(M,A) ∩ V I(M,B). From (3.31),
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(3.32) and Lemma 2.17, we get that z ∈ Fix(U). So, we have that z ∈ Ω.

Since z ∈ Ω and q = πΩf(q), it follows from (3.33) and Lemma 2.5 that

lim sup
k→∞

〈
exp−1

q f(q), exp−1
q xnk

〉
=
〈
exp−1

q f(q), exp−1
q z

〉
≤ 0. (3.34)

which, together with limk→∞ d(xnk+1
, xnk

) = 0, (3.33) and (3.34) yields,

lim sup
k→∞

〈
exp−1

q f(q), exp−1
q xnk+1

〉
≤ lim sup

k→∞

〈
exp−1

q f(q), exp−1
xnk

xnk+1

〉
+ lim sup

k→∞

〈
exp−1

q f(q), exp−1
q xnk

〉
=
〈
exp−1

q f(q), exp−1
q z

〉
≤ 0. (3.35)

From Lemma 3.2, Lemma 2.16, (3.35) and Claim 3, we have

pn+1 ≤ σnqn + (1− σn) pn, ∀n ≥ 1,

where

pn = d2(xn, q), σn = (1− ρ)αn,

qn =
2

1− ρ
〈
exp−1

q f(q), exp−1
q xn+1

〉
+

3Mθn
(1− ρ)αn

d(xn, xn−1).

Then it follows from Lemma 2.15 that {xn} converges to q. The proof of

Theorem 3.1 is completed.

Next, we introduce our Algorithm 2 to solve (1.2) on Hadamard manifolds.

The Algorithm 2 is as follows:

Motivated by the proof of Lemma 3.3 of Khammahawong et al. [21], we

get a similar conclusion under more general assumptions.

Lemma 3.5 Assume that Assumptions (A1-A7) holds, and the sequences {un}
and {vn} are generated by Algorithm 2. Then

d2(un, p) ≤ d2(ωn, p)− (1− µ2 τ 2
n

τ 2
n+1

)d2(ωn, yn), ∀p ∈ Ω, (3.38)

d2(vn, p) ≤ d2(ωn, p)− (1− µ2 κ2
n

κ2
n+1

)d2(ωn, zn), ∀p ∈ Ω, (3.39)

and

d(un, yn) ≤ (µ
τn
τn+1

)d(ωn, yn), (3.40)

d(vn, zn) ≤ (µ
κn
κn+1

)d(ωn, zn). (3.41)
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Algorithm 2: The viscosity-type inertial Tseng’s extragradient algo-

rithm
Initialization: Take θ > 0, τ1 > 0, κ1 > 0, µ ∈ (0, 1). Let x0, x1 ∈M be

arbitrarily choose.

Step 1. Input the iterates xn−1 and xn, (n > 1). Set

ωn = expxn −θn exp−1
xn xn−1, where θn is defined in (3.1).

Step 2. Compute yn satisfying〈
τnPyn,ωnA(ωn)− exp−1

yn ωn, exp−1
yn p

〉
≥ 0, ∀x ∈M. (3.36)

Step 3. Compute zn satisfying〈
κnPzn,ωnB(ωn)− exp−1

zn ωn, exp−1
zn p

〉
≥ 0, ∀x ∈M.

Step 4. Compute un satisfying

un = expyn τn(Pyn,ωnA(ωn)− A(yn)). (3.37)

Step 5. Compute vn satisfying

vn = expzn κn(Pzn,ωnB(ωn)−B(zn)).

Step 6. Compute sn = expun δn exp−1
un vn.

Step 7. Compute xn+1 = exptn αn exp−1
tn f(xn),

where tn = expsn βn exp−1
sn Usn, update τn+1 by (3.6) and update κn+1 by

(3.7).

Set n := n+ 1 and go to Step 1.
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Proof For geodesic triangles 4(un, yn, p) and 4(yn, ωn, p), there exist com-

parison triangles 4(un, yn, p) and 4(yn, ωn, p) such that

d(un, yn) = ‖un − yn‖ , d(un, p) = ‖un − p‖ , d(yn, p) = ‖yn − p‖ ,
d(ωn, p) = ‖ωn − p‖ , d(ωn, yn) = ‖ωn − yn‖ .

This implies that

d2(un, p) = ‖un − p‖2

= ‖un − yn‖2 + ‖yn − p‖2 + 2 〈un − yn, yn − p〉

= ‖un − yn‖2 + ‖yn − ωn‖2 + ‖ωn − p‖2 + 2 〈un − yn, yn − p〉+ 2 〈yn − ωn, ωn − p〉

= ‖un − yn‖2 + ‖yn − ωn‖2 + ‖ωn − p‖2 + 2 〈un − yn, yn − p〉+ 2 〈yn − ωn, ωn − yn〉
+ 2 〈yn − ωn, yn − p〉

= ‖ωn − p‖2 + ‖un − yn‖2 − ‖yn − ωn‖2 − 2 〈yn − un, yn − p〉+ 2 〈yn − ωn, yn − p〉 . (3.42)

Let γ and γ be the angles at the vertices yn and yn, respectively, It follows

from Lemma 2.8 and Lemma 2.9 that γ ≤ γ and

〈yn − ωn, yn − p〉 = ‖yn − ωn‖ ‖yn − p‖ cosγ
=d(yn, ωn)d(yn, p)cosγ

≤d(yn, ωn)d(yn, p)cosγ

=
〈
exp−1

yn ωn, exp−1
yn p

〉
. (3.43)

Similarily, we have

〈yn − un, yn − p〉 ≤
〈
exp−1

yn un, exp−1
yn p

〉
. (3.44)

Since un = expynτn(Pyn,ωnA(ωn) − A(yn)), then exp−1
yn un = τn(Pyn,ωnA(ωn) −

A(yn)). Substituting (3.43) and (3.44) into (3.42), we obtain

d2(un, p) ≤d2(ωn, p)− d2(yn, ωn) + τ2nd
2(A(ωn), A(yn))− 2τn

〈
Pyn,ωn

A(ωn)−A(yn), exp−1yn
p
〉

(3.45)

+ 2
〈
exp−1yn

ωn, exp−1yn
p
〉
.

From (3.36), we get〈
exp−1

yn ωn, exp−1
yn p

〉
≤
〈
τnPyn,ωnA(ωn), exp−1

yn p
〉
. (3.46)

According to (3.45) and (3.46), we may obtain

d2(un, p) ≤d2(ωn, p)− d2(yn, ωn) + τ2nd
2(A(ωn), A(yn))− 2τn

〈
Pyn,ωn

A(ωn)−A(yn), exp−1yn
p
〉

+ 2τn
〈
Pyn,ωnA(ωn), exp−1yn

p
〉

=d2(ωn, p)− d2(yn, ωn) + τ2nd
2(A(ωn), A(yn)) + 2τn

〈
A(yn), exp−1yn

p
〉
.
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Since A is a pesudomonotone vector field, from (3.4), we have

d2(un, p) ≤d2(ωn, p)− d2(yn, ωn) + τ 2
nd

2(A(ωn), A(yn))

≤d2(ωn, p)− d2(yn, ωn) + τ 2
n

µ2

τ 2
n+1

d2(yn, ωn)

≤d2(ωn, p)− (1− µ2 τ 2
n

τ 2
n+1

)d2(yn, ωn).

Further, from definition of un and (3.6), we obtian

d(un, yn) =
∥∥exp−1

yn un
∥∥ = ‖τn(Pyn,ωnA(ωn)− A(yn))‖ ≤ (µ

τn
τn+1

)d(ωn, yn).

Using the similar proofs of (3.38) and (3.40), we may easily get (3.39) and

(3.41), respectively. The proof is completed.

Theorem 3.6 Suppose that Assumptions (A1)−(A7) hold. Then the sequence

{xn} generated by Algorithm 2 converges to q ∈ Ω, where q = πΩ(f(q)).

Proof We also divide the proof into four parts.
Claim 1. The sequence {xn} is bounded.

It follows from Lemma 3.5 and (3.17) that

d2(tn, q) ≤δnd2(vn, q) + (1− δn)d2(un, q)− δn(1− δn)d2(vn, un) + βn(λ− 1 + βn)d2(Usn, sn)

≤δn

[
d2(ωn, p)− (1− µ2

τ2n
τ2n+1

)d2(ωn, yn)

]
+ (1− δn)

[
d2(ωn, p)− (1− µ2

κ2n
κ2n+1

)d2(ωn, zn)

]
− δn(1− δn)d2(vn, un) + βn(λ− 1 + βn)d2(Usn, sn). (3.47)

In view of Lemma3.2, there exists n1 ∈ N such that 1 − µ2 τ2n
τ2n+1

> 0 and

1− µ2 τ2n
τ2n+1

> 0 for any n ≥ n1. Since δn ∈ (0, 1) and βn ∈ (a, 1− λ), we have

d(tn, q) ≤ d(ωn, q), ∀n ≥ n1 (3.48)

Using the similar proof of the Claim 1 in the Theorem 3.4, we may show

that the sequences {xn} is bounded. Further, the sequences {ωn}, {f(xn)},
{yn}, {zn}, {un} and {vn} are also bounded.

Claim 2.

(1− αn)δn

[
(1− µ2 τ 2

n

τ 2
n+1

)d2(ωn, yn)

]
+ (1− αn)(1− δn)

[
(1− µ2 κ2

n

κ2
n+1

)d2(ωn, zn)

]
+ (1− αn)δn(1− δn)d2(vn, un) + (1− αn)βn(1− λ− βn)d2(Usn, sn)

≤ d2(xn, q)− d2(xn+1, q) + αnd
2(f(xn), q) + αnM2,
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where M2 > 0 is a constant, such that M2 ≥ sup {2M1d(xn, q) + αnM
2
1}.

In view of Lemma 2.12, (3.24) and (3.47), we get

d2(xn+1, q) ≤αnd2(f(xn), q) + (1− αn)d2(tn, q)

≤αnd2(f(xn), q) + (1− αn)d2(ωn, q)− (1− αn)δn(1− δn)d2(vn, un)

− (1− αn)δn

[
(1− µ2 τ 2

n

τ 2
n+1

)d2(ωn, yn)

]
− (1− αn)(1− δn)

[
(1− µ2 κ2

n

κ2
n+1

)d2(ωn, zn)

]
+ (1− αn)βn(λ− 1 + βn)d2(Usn, sn)

≤αnd2(f(xn), q) + d2(xn, q) + αnM2 − (1− αn)δn(1− δn)d2(vn, un)

− (1− αn)(1− δn)

[
(1− µ2 κ2

n

κ2
n+1

)d2(ωn, zn)

]
− (1− αn)δn

[
(1− µ2 τ 2

n

τ 2
n+1

)d2(ωn, yn)

]
+ (1− αn)βn(λ− 1 + βn)d2(Usn, sn).

So, we may conclude Claim 2.

Claim 3.

d2(xn+1, q) ≤(1− ρ)αn

[
2

1− ρ
〈
exp−1

q f(q), exp−1
q xn+1

〉
+

3Mθn
(1− ρ)αn

d(xn, xn−1)

]
+ (1− (1− ρ)αn)d2(xn, q), ∀n ≥ n1,

where M := supn∈N {d(xn, q), θnd(xn, xn−1)} > 0.

The proof is similar to the proof of Claim 3 of Theorem 3.4. So we omit it

here.

Claim 4. The sequence {xn} converges to q = πΩ(f(q)) ∈ Ω.

The proof is also similar to the proof of Claim 4 in the Theorem 3.4, we

omit it here. The proof is completed.

4 Application

In this section, we use our main results to find a solution of constrained convex

minimization problems on Hadamard manifolds. Let M be a Hadamard man-

ifold and g : M → R be a differentiable function. The directional derivative of

g at q in direction v ∈ TqM is defined by Bento et al. in [36] as follows:

g′(q; v) := lim
t→0+

g(expq tv)− g(q)

t
.



32 Jiazheng Bao, Zhaoli Ma, Qing Ge and Jiali He

For any v ∈ TqM , the gradient of g at q ∈M is defined by 〈gradg(q), v〉 :=

g′(q; v).

Lemma 4.1 [37] Let g : M → R be a differentiable function, where M is a

Riemannian manifold. Then, gradg is a monotone vector field if and only if

g is geodesic convex.

Assume that g : M → R is a twice differentiable function, then the Hessian

of g at q ∈M [38], denoted by Hessg, is defined by

Hessg(q) := ∇v(gradg(q)), ∀v ∈ TqM,

where ∇ stands for the Riemannian connection of M .

Lemma 4.2 [39] Let g be a differentiable function from Hadamard manifold

M into R. Then, gradg is a Γ-Lipschitz continuous vector field if Hessg is

bounded.

Here, we consider the following constrained convex minimization problem:

min
x∈K

g(x), (4.1)

where K is a subset of Hadamard manifold M and g : K → R is a differ-

entiable geodesic convex function. The minimizer set of (4.1) is denoted by

S(g), in other words, S(g) := {x ∈ K : g(x) ≤ g(y),∀y ∈ K}. In [22], it has

been shown that the solutions of (4.1) are equivalent to the solutions of the

variational inequality problem V I(gradg,K), that is,

x∗ ∈ S(g)⇐⇒
〈
gradg(x∗), exp−1

x∗ y
〉
≥ 0, ∀y ∈ K. (4.2)

It follows from Lemma 4.1 and Lemma 4.2 that gradg is a Γ-Lipschitzian

monotone vector field when g is a twice continuously differentiable and geodesic

convex function, and Hessg is bounded. Therefore, replacing A and B in

Algorithm 1 with gradg and I, respectively, where I is identity vector field,

we can directly get Theorem 4.3 from our Theorem 3.4.

Theorem 4.3 Let g : M → R be a twice continuously differentiable and

geodesic convex function, and Hessg be bounded, U : M −→ M be a λ-

demicontractive mapping. Given x0 ∈M, x1 ∈M , calculate xn by

ωn = expxn(−θn exp−1
xn xn−1),〈

Pyn,ωngradg(ωn)− 1
τn

exp−1
yn ωn, exp−1

yn p
〉
≥ 0, ∀x ∈M,〈

Pzn,yngradg(yn)− 1
τn

exp−1
zn ωn, exp−1

zn q
〉
≥ 0, ∀y ∈ Tn,

tn = expzn βn exp−1
zn Uzn,

xn+1 = exptn αn exp−1
tn f(xn),

(4.3)
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where the half-space Tn :=
{
a ∈M |

〈
exp−1

yn ωn − τnPyn,ωngradg(ωn), exp−1
yn x

〉
≤ 0
}

,

{θn}, {αn}, {βn} are defined in (3.1), (A6), (A7), respectively, and step size

τn is updated by following rule:

τn+1 =

min
{

µd(yn,ωn)
d(gradg(yn),gradg(ωn))

, τn

}
, if d(gradg(yn), gradg(ωn)) 6= 0,

τn, otherwise.

If Fix(U) ∩ S(g) 6= ∅, then the iterative sequence {xn} generated by (4.3)

converges to a point of Fix(U) ∩ S(g).

Moreover, replacing A and B in Algorithm 2 with gradg and I, respectively,

we can directly get Theorem 4.4 from our Theorem 3.6, where I is identity

vector field and {δn} = 0.

Theorem 4.4 Let g : M → R be a twice continuously differentiable and

geodesic convex function, and Hessg be bounded, U : M −→ M be a λ-

demicontractive mapping. Given x0 ∈M, x1 ∈M , calculate xn by

ωn = expxn(−θn exp−1
xn xn−1),〈

Pyn,ωngradg(ωn)− 1
τn

exp−1
yn ωn, exp−1

yn p
〉
≥ 0, ∀x ∈M,

zn = expyn τn(Pyn,ωngradg(ωn)− gradg(yn)),

tn = expzn βn exp−1
zn Uzn,

xn+1 = exptn αn exp−1
tn f(xn),

(4.4)

where {θn}, {αn}, {βn} are defined in (3.1), (A6), (A7), respectively, and step

size τn is updated by following rule:

τn+1 =

min
{

µd(yn,ωn)
d(gradg(yn),gradg(ωn))

, τn

}
, if d(gradg(yn), gradg(ωn)) 6= 0,

τn, otherwise.

If Fix(U) ∩ S(g) 6= ∅, then the iterative sequence {xn} generated by (4.4)

converges to a point of Fix(U) ∩ S(g).

5 Numerical examples

In this section we provide a numerical example to illustrate the numerical

behavior of Algorithms 1 and 2 on Hadamard manifolds and compare our al-

gorithms with the Halpern-type algorithm [17] named by Algorithms 3. All

the programs are performed in Matlab R2016a and computed on Intel(R)

Core(TM) i7-7700HQ CPU 2.80 GHz with RAM 16GB.
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Example Let M := R++ = {x ∈ R : x > 0}, the Riemannian metric 〈·, ·〉 de-

fined by 〈a, b〉 := 1
x2
ab, where a, b ∈ TxM . Obviously, the tangent space TxM is

R for any x ∈M . So, the parallel transport Py,x : TyM → TxM is the identity

vector field, the Riemannian distance d(·, ·) is defined by d(x, y) :=
∣∣∣ln x

y

∣∣∣,
for x, y ∈ M , then M is a Hadamard manifold and the unique geodesic

χ : R → M is χ(t) := xe(vt/x), where v = χ
′
(0) ∈ TxM . Moreover, the

exponential mapping is expx tv = xe(vt/x) and the inverse of exponential map-

ping is exp−1
x y = x ln y

x
.

Let K := [1,+∞). Given the contraction mapping f(x) =
√
x, the demi-

contractive mapping U(x) = 3
√
x and the monotone vector field A(x) = x lnx,

where x ∈M .

Since d2(U(x), 1) = |ln 3
√
x|2, d2(x, 1) = |lnx|2, where β > 0, we have

d2(U(x), 1) ≤ d2(x, 1) + βd2(x, U(x)), then assumptions (A3)-(A5) hold and

the unique solution of (1.2) is 1, the detail in [21]. Suppose the vector field B is

an identity vector field and the parameter δn = 0, n ≥ 1. We choose the initial

point x0 = 5, εn = 1
(n+1)2

, µ = 0.5, βn = n
2n+1

, αn = 1
n+1

and θ1 = τ1 = 1.

Then the numerical results are reported in Figure 1 and Table 1 as follows:
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Algorithm 2

(a) Iterative process of Algorithms 1 and 3 in

Example
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(b) Iterative process of Algorithms 2 and 3 in

Example

Figure 1: Iterative process of process
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Iter. no. Algorithm1 Algorithm2 Algorithm3

0 5 5 5

5 1.31058462618559 1.32684171792157 1.43798265238294

13 1.00005003645558 1.00005011782881 1.21783907664200

17 1.00000000005475 1.00000000005484 1.17228751666004

21 1 1 1.14226302469760

Table 1: Computation results of Example

From Table 1 and Figure 1, it is easy to see that Algorithm 1 and 2 converge

faster than Algorithm 3. Moreover, we record the calculation time of each

algorithm with some different initial points in Table 2.

Initial point Algorithm1 Algorithm2 Algorithm3

5 0.021s 0.021s 0.137s

10 0.026s 0.026s 0.141s

100 0.026s 0.029s 0.142s

1000 0.026s 0.022s 0.150s

10000 0.026s 0.030s 0.144s

100000 0.028s 0.030s 0.156s

Table 2: The calculation time of each algorithms

Obviously, Algorithm 1 and Algorithm 2 use less calculation time than

Algorithm 3.

6 Conclusion

This paper focuses on investigating the common solution problem of two pe-

sudomonotone variational inequality problems and fixed point problem of λ-

demicontractive mapping on Hadamard manifold, which is more general prob-

lem than that one in [21]. Two convergence theorems are established and the

main results presented in this paper are utilized to solve convex minimization

problem. Meanwhile, a numerical example is given to show the effectiveness

of our algorithms by comparing with the algorithm presented in [17].
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