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Abstract

In this paper, we have defined Bertrand curves in three-dimensional
Weyl space. Then we have given the relations between the Bishop vector
fields of Bertrand curve pair. Finally, while (C,C') is Bertrand curve

pair, we have obtained the equalities depending on K and Ks.
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1 Introduction

A manifold with a conformal metric g;; and a symmetric connection V;, satis-
fying the compatibility condition
Vigij — 2Txgi; = 0 (1)

is called a Weyl space which will be denoted by W (g;;,T)). The vector field T}
is named the complementary vector field. Under a normalization of the metric
tensor g;; in the form

Gij = Ngij (2)

the complementary vector field T} is transformed by the law
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Tk = Tk + 8kln)\ (3)

where A is a scalar function [9]. If under the transformation (2), the quantity
A is called a satellite of g;; with weight {p}.

The prolonged derivative and prolonged covariant derivative of A are defined
as

e = OpA — pTi A (4)

and

Vid =V, A—pTA (5)

respectively [4], [10]. The v* (i, = 1,2,3) be the contravariant components of
the vector field v in W3(g;;, T)). Suppose that the vector field v are normalized

by the conditions g;;v'v! =1 (j,r = 1,2, 3).

The prolonged covariant derivative of the vector field v is given by [14]

vkngkg(s:m,g) (6)
The quantities
F=Tiot (g=1,2,37#5) (7)
and
b= T, vt ®)

are called the Chebyshev curvature of the first kind and geodesic curvature of
the net (vq, v, v3), respectively [14].
The vector fields

v (i,q,7,8 =1,2,3) (9)

IS

»w Q0=

a'=T1v, c =
T q s

<

s

are called the Chebyshev vector fields of the first kind and geodesic vector
fields of the net (vy, vg,v3), respectively [14].
Since the net (vq,v9,v3) is an orthogonal net, we have [14]

r P r
T, =0,T,+ T, =0(r #p). (10)
T r p
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Bertrand curves have been determined by J. Bertrand [1] in 1850. Later,
Bertrand curves have been studied by L.R. Pears [13] in 1935, by J.K. Witte-
more [16] in 1940 and J.F. Burke [2] in 1960, respectively. Besides the proper-
ties of these curves provided in various studies [5], they have been handled in
different spaces such as Riemann-Otsuki space [17], Galilean space [11], three-
dimensional sphere [7], three-dimensional space forms [3], Euclidean 3-space
[8] and Minkowski space-time[15].

2 Preliminaries

Let C' : ' = 2'(s) be a curve in three-dimensional Weyl space W3 (s is the arc
length parameter of C'). Let {1{, v, g} be Frenet frame and {111, n, 721} be Bishop

frame of the curve C such that K, Ky are the first and second curvatures and
ki, ko are the Bishop curvatures of C. The Frenet and Bishop formulas [6] of
C are

lekz v, 11}2' _K, gi’
VIV = - K Ko (11)
Qljk v, gz K, gi’

and

v Vi vt =k ' + k0
1 1 1 2

—c

k i __ i
Vk?——k:ul}, (12)

—c

FVent = — ky o'
2 1

Since 12)1 is orthogonal to v, v* can be written as 12)1 = a?{ti + b?;i (6] where

2
a = g 12)’ n’ = cost, b = g;; gZ 7213 = cos(3 —0) = sin and 0 = K(g,?) In

addition, since 13)’ = €jk 111j 121’“ (k =1,2,3), the following equality is satisfied:

v’ =1, v/ (cosOn® + sinfn®),
3 1 1 2
o o (13)
v' =n" cost —n' sinf.
32 1
Therefore
7 10 0 7
Ul =10 cosd sinb] |1 (14)
v 0 —sinf cost nt
3 2
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is valid.
From (11), 11)k Vi zlﬂ = K 12}Z Multiplying this equality by g;; 12)j and taking

summation on ¢ and j, we get [6]

K, :11;’“ (Vk v )gzj gj,
P .
Ky =T, v" v g;; v, (15)
1 1 »p 2
K =gij C v,
or
2

where g;; 1211 gj =1, gij g“ 12)j =0 and Tzk = 0.

Theorem 2.1 [If Ky = 0, then the geodesic vector field ?’ of the net (v, va, v3)

15 orthogonal to v

From (11), 11)’“ Vi g’ = —Ky 1211 Multiplying this relation by g;; 121j and summing

on i and j, we obtain [6]

— Ky =1l)k (Vk gi)gij gj7

P . .
— Ky =T, v o gij V7, (17)
3 1 p 2
——q. a1
K 9ij 4"V
or
2
. o 3
oyt — il = =
where 9i5 V'Y 0, 9ij Y'Y and T;k 0.

Theorem 2.2 [f Ky = 0, then the Chebyshev vector field of the first kind
3a1i of the net (vy,vq,v3) is orthogonal to v,

Using 1{"“‘ Vi g’ = —-Ky 1212 and [13] and then multiplying obtained equation by
Gij 12)j, we have Ky = 111’“ Vi 0 (0 = 6(s) where g TQLZ 12)j = sind, gi; 7}’ ’lZ}j =
cost and g;; 11)’ 121j = 0. Multiplying 11)k v 11)’ =k Tll’ + ko ZLZ = K; 1212 by gij Tllj
we get
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(Y{k Vk Qlil)g” 71Lj = k’l = K1 cost (19)
and multiplying 11)’“ v 11)’ =k 7{# + ko 7;1 =K, 12)’ by gij 72# we have

(zl}k Vi g)i)gij gj = ky = K sinf. (20)
From (19) and (20), we obtain k% + k3 =

Theorem 2.3 Ifk; = 0, then the geodesic vector field f’ of the net (v, va, v3)

18 orthogonal to n;.

Theorem 2.4 [fky, = 0, then the geodesic vector field fl of the net (vq, vy, v3)

15 orthogonal to ns.

3 Bertrand Curves in Wj

Let C : 7 = 7'(5) be other curve in W3 (3 is the arc length parameter of C).
Let us denote Frenet and Bishop components of C' by {’U v, U Ky, Ky} and

{?7 ?7 g, k1, ko), respectively.

Definition 3.1 If the principal normal vector fields of the curves C' and C
are linear dependent, the curve pair (C,C') is called Bertrand curve pair.

If the curve pair (C, C) is Bertrand curve pair the following equality is satisfied:

C(s) =C(5) + A3) T'(5). (21)

Taking prolonged covariant derivative of (21) in the direction of v we have

?kka:(gkka)f< ):?lf( s) =
, L= (22)
:11)+(111 Vi )12)+)\( 1v +K2v)
and multiplying (22) by g;; gj, we find
i = i kT
F(s) g 0" 0 = f(s) gi v' v/ = 0" VA (23)
or
0=7"Vi A (24)
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From (24), we get A is prolonged covariant constant [12]. On the other hand

f(s) = £4/(1 = XK, )2 + MK,
Let the angle o be between the tangent vector fields v and ? of Bertrand

curve pair (C,C). Since (C,C) is Bertrand curve pair and v L v, v il g is

obtained. Then v can be written v* = a 0" + b 7" where a = ¢;; V'V = cosa
1 1 1 3 11

and b= g;; v' v = sina.
gl = ek 11ﬂ 12)’“ = &jk (?J cosa + gj sina)gk (25)

13)Z = gz cosa — ' sina. (26)
1

From here, the following equality can be written as:

V! . U
1 cosae 0 sina 1
i —i
v = 0 1 0 vl (27)
vt —sinae 0 cosa 7
3 3

Theorem 3.2 If (C,C) is a Bertrand curve paar, then there are the follow-
ing relations between Bishop vector fields of C' and C':

=1

v = 111’ cosa + 73,’ sino sinf) — 7211 sina cost (28)

?i =(—sinf sina)llli + (cosfl cosf + sind sind cosa)?lli—l-

P | (29)
+ (sinb cosh — sinf cost cosa)v;Z
7' =(cosf sina)v' + (sind cost) — cosd sinf) cosa)n'+
2 S B | 1 (30)
+ (sind sinf + cosb coso cosa)gz.
Proof. If (C,C) is Bertrand curve pair, from (14) and (27), we have
? Lo 0 cosa 0 —sina 1 0 0 ?
?1 = | 0 cosf sinb 01 0 0 cosf sind ? (31)
7K 0 sinf cosf sina 0 coso 0 —sinf cosb I
2 2

where § = A(g,ﬁl)

1
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Theorem 3.3 If (C, O) is Bertrand curve pair, the equality coso.f(s)
1 — AKy is satisfied.

Proof. If (C,C) is Bertrand curve pair, we have C(s) =

C(s )—1—/\1)( ) where A

15 prolonged covariant constant. Taking prolonged covariant demvatzve of this
equality in the direction of ?k, we get

kT (ko kT A kT i
v VkO—(?lj VkC)f(s)—zl) VkC'—i-/\zl) Vklz)

V) =T M- KT+ R T) (32)
:(1 — )\71)? + )\Fg( — sinf ﬁi + cos@ﬁi).
Multiplying (32) by ¢;; v _j, we have cosaf(s) = 1 — AK| where 9i ¥ v] =
cosa(azé(?i,?)) gwn v =i 0 U]—O
Proof 2.
. . _p .
v f(s) =0' + AT 0" o'
1 1 2 1 p
.
_v—kA@}y T AT T g)
(33)
= —k —i = —k —i
=7 +)\(_71k1f v +7;k11) g)
2 2
=0+ A(—20 -7 7)
11 313
.y .y 2 .y
9ij V'V f(s) =gi; TV — N8 gy V'V
11 1 1771 1 (34)

1
2
cosa f(s )—1—)\?:1—?1.

: : G = T =
is obtained where g;; vy = 1 and g;; vy = 0

Theorem 3.4 If (C,C) is Bertrand curve pair, sinaf(s) = AK, is valid.
Proof. Multiplying (32) by gi; ﬁj and using Theorem 3.2, we obtain

9i v ' f(s) = — MK ysinf
—sinf sina f(s) = — MK 3sinf (35)
sina f(s) =AKs.
Proof 2. Multiplying (33) by g, vﬂ and using (27), we get
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2

and
. vt K
cosae 0 —sina 1 1
0 1 0 ?21 = 121 (37)
sinae 0 cosa v 7
3 3
and

oot (g J J K
9ij ¥ (smoml) + cosay ) f(s) =AK,

sina f(s) =AK, (38)

where g;; ?lgj =0, g g’gﬂ =1, gy zlﬂ zljj =1 and g;; 1111 gj = 0.
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