International Mathematical Forum, Vol. 19, 2024, no. 1, 41 - 49 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2024.914420

About Bertrand Curves and Type-1 Bishop Frame in Three-Dimensional Weyl Space W_3

Nil Kofoglu

Beykent University
Faculty of Engineering and Architecture
Department of Software Engineering
Ayazaga-Maslak, 34398, Istanbul, Turkey

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2024 Hikari Ltd.

Abstract

In this paper, we have defined Bertrand curves in three-dimensional Weyl space. Then we have given the relations between the Bishop vector fields of Bertrand curve pair. Finally, while (C, \overline{C}) is Bertrand curve pair, we have obtained the equalities depending on \overline{K}_1 and \overline{K}_2 .

Mathematics Subject Classification: 53B25, 53A25

Keywords: Weyl space, type-1, Bishop frame, Bertrand curve

1 Introduction

A manifold with a conformal metric g_{ij} and a symmetric connection ∇_k satisfying the compatibility condition

$$\nabla_k g_{ij} - 2T_k g_{ij} = 0 \tag{1}$$

is called a Weyl space which will be denoted by $W(g_{ij}, T_k)$. The vector field T_k is named the complementary vector field. Under a normalization of the metric tensor g_{ij} in the form

$$\tilde{g}_{ij} = \lambda^2 g_{ij} \tag{2}$$

the complementary vector field T_k is transformed by the law

$$\tilde{T}_k = T_k + \partial_k \ln \lambda \tag{3}$$

where λ is a scalar function [9]. If under the transformation (2), the quantity A is called a satellite of g_{ij} with weight $\{p\}$.

The prolonged derivative and prolonged covariant derivative of A are defined as

$$\dot{\partial}_k = \partial_k A - pT_k A \tag{4}$$

and

$$\dot{\nabla}_k A = \nabla_k A - p T_k A \tag{5}$$

respectively [4], [10]. The v_r^i (i, r = 1, 2, 3) be the contravariant components of the vector field v_r in $W_3(g_{ij}, T_k)$. Suppose that the vector field v_r are normalized by the conditions $g_{ij}v_r^iv_r^j = 1$ (j, r = 1, 2, 3).

The prolonged covariant derivative of the vector field v is given by [14]

$$\dot{\nabla}_k \, v^i_r = T^s_k \, v^i_s \, (s = 1, 2, 3). \tag{6}$$

The quantities

$$\frac{q}{\tau} = T_k^q v^k (q = 1, 2, 3; r \neq s)$$
(7)

and

$$\overset{r}{\underset{s}{\text{Z}}} = \overset{r}{\underset{s}{\text{Z}}} \overset{r}{\underset{s}{\text{Z}}} v^{k} \tag{8}$$

are called the Chebyshev curvature of the first kind and geodesic curvature of the net (v_1, v_2, v_3) , respectively [14].

The vector fields

$$a_{rs}^{i} = \frac{q}{\tau} v_{q}^{i}, c_{s}^{i} = \overset{r}{\underset{s}{\overset{}{\sim}}} v_{q}^{i} (i, q, r, s = 1, 2, 3)$$

$$(9)$$

are called the Chebyshev vector fields of the first kind and geodesic vector fields of the net (v_1, v_2, v_3) , respectively [14].

Since the net (v_1, v_2, v_3) is an orthogonal net, we have [14]

$$T_k^r = 0, T_k^p + T_k^r = 0 \ (r \neq p).$$
 (10)

Bertrand curves have been determined by J. Bertrand [1] in 1850. Later, Bertrand curves have been studied by L.R. Pears [13] in 1935, by J.K. Wittemore [16] in 1940 and J.F. Burke [2] in 1960, respectively. Besides the properties of these curves provided in various studies [5], they have been handled in different spaces such as Riemann-Otsuki space [17], Galilean space [11], three-dimensional sphere [7], three-dimensional space forms [3], Euclidean 3-space [8] and Minkowski space-time[15].

2 Preliminaries

Let $C: x^i = x^i(s)$ be a curve in three-dimensional Weyl space W_3 (s is the arc length parameter of C). Let $\{v, v, v\}$ be Frenet frame and $\{v, n, n\}$ be Bishop frame of the curve C such that K_1, K_2 are the first and second curvatures and k_1, k_2 are the Bishop curvatures of C. The Frenet and Bishop formulas [6] of C are

$$v_1^k \dot{\nabla}_k v_1^i = K_1 v_2^i,
 v_1^k \dot{\nabla}_k v_2^i = -K_1 v_1^i + K_2 v_3^i
 v_1^k \dot{\nabla}_k v_3^i = -K_2 v_2^i,$$
(11)

and

$$v_{1}^{k} \dot{\nabla}_{k} v_{1}^{i} = k_{1} v_{1}^{i} + k_{2} v_{2}^{i},
 v_{1}^{k} \dot{\nabla}_{k} v_{1}^{i} = -k_{1} v_{1}^{i},
 v_{1}^{k} \dot{\nabla}_{k} v_{2}^{i} = -k_{2} v_{1}^{i}.$$
(12)

Since v^i is orthogonal to v, v^i can be written as $v^i = an^i + bn^i$ [6] where $a = g_{ij} v^i n^j = \cos\theta$, $b = g_{ij} v^i n^j = \cos(\frac{\pi}{2} - \theta) = \sin\theta$ and $\theta = \angle(v, n)$. In addition, since $v^i = \varepsilon_{ijk} v^j v^k$ (k = 1, 2, 3), the following equality is satisfied:

$$v^{i} = \varepsilon_{ijk} v^{j} (\cos\theta n^{k} + \sin\theta n^{k}),$$

$$v^{i} = n^{i} \cos\theta - n^{i} \sin\theta.$$
(13)

Therefore

$$\begin{pmatrix} v^{i} \\ 1 \\ v^{i} \\ 2 \\ v^{i} \\ 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} v^{i} \\ 1 \\ n^{i} \\ 1 \\ n^{i} \\ 2 \end{pmatrix}$$
(14)

is valid.

From (11), $v_1^k \nabla_k v_1^i = K_1 v_2^i$. Multiplying this equality by $g_{ij} v_2^j$ and taking summation on i and j, we get [6]

$$K_{1} = v_{1}^{k} \left(\dot{\nabla}_{k} v_{1}^{i} \right) g_{ij} v_{2}^{j},$$

$$K_{1} = T_{k}^{p} v_{1}^{k} v_{1}^{i} g_{ij} v_{2}^{j},$$

$$K_{1} = g_{ij} c_{1}^{i} v_{2}^{j},$$

$$(15)$$

or

where $g_{ij} v_{2}^{i} v_{2}^{j} = 1$, $g_{ij} v_{3}^{i} v_{2}^{j} = 0$ and $T_{k}^{1} = 0$.

Theorem 2.1 If $K_1 = 0$, then the geodesic vector field c_1^i of the net (v_1, v_2, v_3) is orthogonal to v_2 .

From (11), $v_1^k \dot{\nabla}_k v_1^i = -K_2 v_1^i$. Multiplying this relation by $g_{ij} v_2^j$ and summing on i and j, we obtain [6]

$$-K_{2} = v_{1}^{k} \left(\dot{\nabla}_{k} v_{3}^{i} \right) g_{ij} v_{2}^{j},$$

$$-K_{2} = T_{k}^{p} v_{3}^{k} v_{p}^{i} g_{ij} v_{2}^{j},$$

$$K_{2} = -g_{ij} a_{31}^{i} v_{2}^{j},$$
(17)

or

$$K_2 = -\frac{2}{7} \tag{18}$$

where $g_{ij} \ v_1^i \ v_2^j = 0$, $g_{ij} \ v_2^i \ v_2^j = 1$ and $T_k^3 = 0$.

Theorem 2.2 If $K_2 = 0$, then the Chebyshev vector field of the first kind a^i of the net (v_1, v_2, v_3) is orthogonal to v.

Using $v_1^k \dot{\nabla}_k v_3^i = -K_2 v_1^i$ and [13] and then multiplying obtained equation by $g_{ij} v_2^j$, we have $K_2 = v_1^k \dot{\nabla}_k \theta (\theta = \theta(s))$ where $g_{ij} v_2^i v_2^j = \sin\theta$, $g_{ij} v_1^i v_2^j = \cos\theta$ and $g_{ij} v_1^i v_2^i = 0$. Multiplying $v_1^k \dot{\nabla}_k v_1^i = k_1 v_1^i + k_2 v_2^i = k_1 v_1^i$ by $g_{ij} v_1^j$ we get

$$\left(v_1^k \dot{\nabla}_k v_1^i\right) g_{ij} n_1^j = k_1 = K_1 \cos\theta \tag{19}$$

and multiplying $v^k \overset{\rightarrow}{\nabla}_k v^i = k_1 \vec{n}^i + k_2 \vec{n}^i = K_1 \vec{v}^i$ by $g_{ij} \vec{n}^j$ we have

$$\left(v_1^k \stackrel{\bullet}{\nabla}_k v_1^i\right) g_{ij} n_2^j = k_2 = K_1 \sin\theta. \tag{20}$$

From (19) and (20), we obtain $k_1^2 + k_2^2 = K_1^2$.

Theorem 2.3 If $k_1 = 0$, then the geodesic vector field c_1^i of the net (v_1, v_2, v_3) is orthogonal to n_1 .

Theorem 2.4 If $k_2 = 0$, then the geodesic vector field c^i of the net (v_1, v_2, v_3) is orthogonal to n_2 .

3 Bertrand Curves in W_3

Let $\overline{C}: \overline{x}^i = \overline{x}^i(\overline{s})$ be other curve in W_3 (\overline{s} is the arc length parameter of \overline{C}). Let us denote Frenet and Bishop components of \overline{C} by $\{\overline{v}, \overline{v}, \overline{v}, \overline{K}_1, \overline{K}_2\}$ and $\{\overline{v}, \overline{n}, \overline{n}, \overline{k}_1, \overline{k}_2\}$, respectively.

Definition 3.1 If the principal normal vector fields of the curves C and \overline{C} are linear dependent, the curve pair (C, \overline{C}) is called Bertrand curve pair.

If the curve pair (C, \overline{C}) is Bertrand curve pair the following equality is satisfied:

$$C(s) = \overline{C}(\overline{s}) + \lambda(\overline{s}) \, \overline{v}^{i}(\overline{s}). \tag{21}$$

Taking prolonged covariant derivative of (21) in the direction of \overline{v} we have

$$\overline{v}^{k} \, \overline{\nabla}_{k} \, C = \left(v^{k} \, \overline{\nabla}_{k} \, C\right) f(s) = v^{i} \, f(s) = \\
= \overline{v}^{i} + \left(\overline{v}^{k} \, \overline{\nabla}_{k} \, \lambda\right) \overline{v}^{i} + \lambda \left(-\overline{K}_{1} \overline{v}^{i} + \overline{K}_{2} \overline{v}^{i}\right) \tag{22}$$

and multiplying (22) by $g_{ij} \overline{v}^{j}$, we find

$$f(s) g_{ij} v_1^i \overline{v}^j = f(s) g_{ij} v_1^i v_2^j = \overline{v}^k \overline{\nabla}_k \lambda$$
 (23)

or

$$0 = \overline{v}^k \, \overline{\nabla}_k \, \lambda \tag{24}$$

where $g_{ij} \ v_1^i \ v_2^j = 0$, $g_{ij} \ \overline{v}^i \ \overline{v}^j = 1$, $g_{ij} \ \overline{v}^i \ \overline{v}^j = 0$ and $g_{ij} \ \overline{v}^i \ \overline{v}^j = 0$.

From (24), we get λ is prolonged covariant constant [12]. On the other hand $f(s) = \pm \sqrt{(1 - \lambda \overline{K}_1)^2 + \lambda^2 \overline{K}_2^2}$.

Let the angle α be between the tangent vector fields v_1 and \overline{v}_1 of Bertrand curve pair (C, \overline{C}) . Since (C, \overline{C}) is Bertrand curve pair and $v_1 \perp v_2, v_2 \perp \overline{v}_1$ is obtained. Then v_1 can be written $v_1^i = a \, \overline{v}^i + b \, \overline{v}^i$ where $v_2^i = a \, \overline{v}^i + b \, \overline{v}^i$ where $v_1^i = a \, \overline{v}^i + b \, \overline{v}^i$ and $v_2^i = a \, \overline{v}^i + b \, \overline{v}^i$ and $v_3^i = a \, \overline{v}^i + b \, \overline{v}^i$ where $v_3^i = a \, \overline{v}^i + b \, \overline{v}^i$ and $v_3^i = a \, \overline{v}^i + b \, \overline{v}^i$ and $v_3^i = a \, \overline{v}^i + b \, \overline{v}^i$ and $v_3^i = a \, \overline{v}^i + b \, \overline{v}^i + b \, \overline{v}^i$ and $v_3^i = a \, \overline{v}^i + b \, \overline{v}^i +$

$$v_{3}^{i} = \varepsilon_{ijk} v_{1}^{j} v_{2}^{k} = \varepsilon_{ijk} (\overline{v}_{1}^{j} \cos\alpha + \overline{v}_{3}^{j} \sin\alpha) \overline{v}_{2}^{k}$$
 (25)

$$v_{3}^{i} = \overline{v}^{i} \cos \alpha - \overline{v}^{i} \sin \alpha. \tag{26}$$

From here, the following equality can be written as:

$$\begin{pmatrix} v^{i} \\ v^{i} \\ v^{i} \\ v^{i} \\ v^{i} \\ sin \alpha \end{pmatrix} = \begin{pmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{pmatrix} \begin{pmatrix} \overline{v}^{i} \\ \frac{1}{\overline{v}^{i}} \\ \frac{2}{\overline{v}^{i}} \\ \frac{2}{\overline{v}^{i}} \\ \frac{3}{3} \end{pmatrix}.$$
(27)

Theorem 3.2 If (C, \overline{C}) is a Bertrand curve pair, then there are the following relations between Bishop vector fields of C and \overline{C} :

$$\overline{v}^{i} = v^{i} \cos \alpha + n^{i} \sin \alpha \sin \theta - n^{i} \sin \alpha \cos \theta \tag{28}$$

$$\overline{n}^{i} = (-\sin\overline{\theta}\sin\alpha)v_{1}^{i} + (\cos\overline{\theta}\cos\theta + \sin\overline{\theta}\sin\theta\cos\alpha)n_{1}^{i} + (\sin\theta\cos\overline{\theta} - \sin\overline{\theta}\cos\theta\cos\alpha)n_{2}^{i} + (\cos\theta\cos\theta\cos\alpha)n_{2}^{i}$$
(29)

$$\overline{n}^{i} = (\cos\overline{\theta} \sin\alpha)v_{1}^{i} + (\sin\overline{\theta} \cos\theta - \cos\overline{\theta} \sin\theta \cos\alpha)n_{1}^{i} + (\sin\overline{\theta} \sin\theta + \cos\overline{\theta} \cos\theta \cos\alpha)n_{2}^{i}.$$
(30)

Proof. If (C, \overline{C}) is Bertrand curve pair, from (14) and (27), we have

$$\begin{pmatrix}
\overline{v}^{i} \\
\overline{n}^{i} \\
\overline{n}^{i} \\
\overline{n}^{i} \\
2
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos\overline{\theta} & \sin\overline{\theta} \\
0 & \sin\overline{\theta} & \cos\overline{\theta}
\end{pmatrix} \begin{pmatrix}
\cos\alpha & 0 - \sin\alpha \\
0 & 1 & 0 \\
\sin\alpha & 0 & \cos\alpha
\end{pmatrix} \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos\theta & \sin\theta \\
0 & -\sin\theta & \cos\theta
\end{pmatrix} \begin{pmatrix}
\overline{v}^{i} \\
\overline{n}^{i} \\
\overline{n}^{i} \\
\overline{n}^{i} \\
2
\end{pmatrix} (31)$$

where $\overline{\theta} = \measuredangle \left(\overline{v}_2^i, \overline{n}_1^i \right)$.

Theorem 3.3 If (C, \overline{C}) is Bertrand curve pair, the equality $\cos \alpha f(s) = 1 - \lambda \overline{K}_1$ is satisfied.

Proof. If (C, \overline{C}) is Bertrand curve pair, we have $C(s) = \overline{C}(\overline{s}) + \lambda \overline{v}^i(\overline{s})$ where λ is prolonged covariant constant. Taking prolonged covariant derivative of this equality in the direction of \overline{v}^k , we get

$$\overline{v}^{k} \overline{\nabla}_{k} C = (v^{k} \overline{\nabla}_{k} C) f(s) = \overline{v}^{k} \overline{\nabla}_{k} \overline{C} + \lambda \overline{v}^{k} \overline{\nabla}_{k} \overline{v}^{i}
v_{1}^{i} f(s) = \overline{v}^{i} + \lambda \left(-\overline{K}_{1} \overline{v}^{i} + \overline{K}_{2} \overline{v}^{i} \right)
= (1 - \lambda \overline{K}_{1}) \overline{v}^{i} + \lambda \overline{K}_{2} \left(-\sin \overline{\theta} \overline{n}^{i} + \cos \overline{\theta} \overline{n}^{i} \right).$$
(32)

Multiplying (32) by $g_{ij} \, \overline{v}^j$, we have $\cos \alpha f(s) = 1 - \lambda \overline{K}_1$ where $g_{ij} \, v^i \, \overline{v}^j = \cos \alpha \left(\alpha = \measuredangle \left(v_1^i, \overline{v}^i\right)\right)$, $g_{ij} \, \overline{n}^i \, \overline{v}^j = g_{ij} \, \overline{n}^i \, \overline{v}^j = 0$. Proof 2.

$$v_{1}^{i} f(s) = \overline{v}_{1}^{i} + \lambda \frac{p}{T_{k}} \overline{v}_{1}^{k} \overline{v}_{p}^{i}$$

$$= \overline{v}_{1}^{i} + \lambda \left(\overline{T}_{k} \overline{v}_{1}^{k} \overline{v}_{1}^{i} + \overline{T}_{k} \overline{v}_{1}^{k} \overline{v}_{3}^{i}\right)$$

$$= \overline{v}_{1}^{i} + \lambda \left(-\overline{T}_{k} \overline{v}_{1}^{k} \overline{v}_{1}^{i} + \overline{T}_{k} \overline{v}_{1}^{k} \overline{v}_{3}^{i}\right)$$

$$= \overline{v}_{1}^{i} + \lambda \left(-\overline{Z}_{k} \overline{v}_{1}^{i} - \overline{Z}_{k} \overline{v}_{1}^{i}\right).$$

$$(33)$$

$$= \overline{v}_{1}^{i} + \lambda \left(-\overline{Z}_{k} \overline{v}_{1}^{i} - \overline{Z}_{k} \overline{v}_{1}^{i}\right).$$

$$g_{ij} \underset{1}{v^{i}} \overline{v}^{j} f(s) = g_{ij} \overline{v}^{i} \overline{v}^{j} - \lambda \frac{2}{1} g_{ij} \overline{v}^{i} \overline{v}^{j}$$

$$\cos \alpha f(s) = 1 - \lambda \frac{2}{1} = 1 - \overline{K}_{1}.$$

$$(34)$$

is obtained where $g_{ij} \ \overline{v}^i \ \overline{v}^j = 1$ and $g_{ij} \ \overline{v}^i \ \overline{v}^j = 0$

Theorem 3.4 If (C, \overline{C}) is Bertrand curve pair, $\sin \alpha f(s) = \lambda \overline{K}_2$ is valid. Proof. Multiplying (32) by $g_{ij} \overline{\eta}^j$ and using Theorem 3.2, we obtain

$$g_{ij} \underset{1}{v^{i}} \overline{n}^{j} f(s) = -\lambda \overline{K}_{2} sin\overline{\theta}$$

$$-sin\overline{\theta} sin\alpha f(s) = -\lambda \overline{K}_{2} sin\overline{\theta}$$

$$sin\alpha f(s) = \lambda \overline{K}_{2}.$$
(35)

Proof 2. Multiplying (33) by $g_{ij} \overline{v}_{3}^{j}$ and using (27), we get

$$g_{ij} \underset{1}{v^{i}} \overline{v}^{j} f(s) = \lambda \left(-\frac{2}{\overline{\tau}} \right) = \lambda \overline{K}_{2}$$
 (36)

and

$$\begin{pmatrix} \cos\alpha & 0 & -\sin\alpha \\ 0 & 1 & 0 \\ \sin\alpha & 0 & \cos\alpha \end{pmatrix} \begin{pmatrix} v^i \\ 1 \\ v^i \\ 2 \\ v^i \\ 3 \end{pmatrix} = \begin{pmatrix} \overline{v}^i \\ 1 \\ \overline{v}^i \\ 2 \\ \overline{v}^i \\ 3 \end{pmatrix}$$
(37)

and

$$g_{ij} v^{i} \left(\sin \alpha v^{j} + \cos \alpha v^{j} \right) f(s) = \lambda \overline{K}_{2}$$

$$\sin \alpha f(s) = \lambda \overline{K}_{2}$$
(38)

where $g_{ij} \ \overline{v}^i \ \overline{v}^j = 0$, $g_{ij} \ \overline{v}^i \ \overline{v}^j = 1$, $g_{ij} \ v^i \ v^j = 1$ and $g_{ij} \ v^i \ v^j = 0$.

References

- [1] J. Bertrand, La theories de courbes a double courbure, *Journal de Mathematiques Pures et Appliques*, **15** (1850), 332-350.
- J.F. Burke, Bertrand curves associated with a pair of curves, Mathematics Magazine, 34 (1960), 60-62.
 https://doi.org/10.1080/0025570x.1960.11975181
- [3] J.H. Choi, T.H. Kong, Y.H. Kim, Bertrand curves in 3-dimensional space forms, *Applied Mathematics and Computation*, **219** (2012), no. 3, 1040-1046. https://doi.org/10.1016/j.amc.2012.07.008
- [4] V. Hlavaty, Les courbes de la Variete W_n , Memorial des Sciences Mathematiques, 1934.
- [5] S. Izumiya and N. Takeuchi, Generic properties of helices and Bertrand curves, Journal of Geometry, 74 (2002), 97-109. https://doi.org/10.1007/pl00012543
- [6] N. Kofoğlu, Slant helices according to type-1 Bishop frame in Weyl space, *International Mathematical Forum*, **15** (2020), 163-171. https://doi.org/10.12988/imf.2020.91262
- [7] P. Lucas and J.A. Ortega-Yagues, Bertrand curves in three dimensional sphere, *Journal of Geometry and Physics*, **62** (2012), 1903-1914. https://doi.org/10.1016/j.geomphys.2012.04.007

- [8] M. Masal and A.Z. Azak, Bertrand curves and Bishop frame in the 3dimensional Euclidean space, Sakarya University Journal of Science, 21 (2017), 1140-1145.
- [9] A. Norden, Affinely connected space, GRMFL, 1976.
- [10] A. Norden and S. Yafarov, Theory of non-geodesic vector fields in twodimensional affinely connected spaces, *Izv. Vuzov Math*, **12** (1974), 29-34.
- [11] A.O. Ogrenmis, H. Oztekin and M. Ergut, Bertrand curves in Galilean space and their characterizations, *Kragujevac Journal of Mathematics*, **32** (2009), 139-147.
- [12] A. Ozdeger, On sectional curvatures of a Weyl manifold, *Proc. Japan Acad.*, **82** (2006), 123-125. https://doi.org/10.3792/pjaa.82.123
- [13] L.R. Pears, Bertrand curves in Riemannian space, Journal of the London Mathematical Society, s1-10 (1935), 180-183. https://doi.org/10.1112/jlms/s1-10.2.180
- [14] B. Tsareva and G. Zlatanov, On the geometry of the nets in the n-dimensional space of Weyl, *Journal of Geometry*, 38 (1990), 182-197. https://doi.org/10.1007/bf01222903
- [15] A. Ucum, O. Kecilioglu and K. Ilarslan, Generalized Bertrand curves with spacelike (1,3)-normal plane in Minkowski space-time, *Turkish Journal of Mathematics*, 40 (2016), 487-505. https://doi.org/10.3906/mat-1503-12
- [16] J.K. Whittemore, Bertrand curves and helices, *Duke Mathematical Journal*, **6** (1940), 235-245. https://doi.org/10.1215/s0012-7094-40-00618-4
- [17] M.Y. Yilmaz and M. Bektas, Generlized properties of Bertrand curves in Riemannian-Otsuki space, Nonlinear Analysis: Theory of Methods & Applications, 69 (2008), 3225-3231. https://doi.org/10.1016/j.na.2007.10.003

Received: March 9, 2024; March 22, 2024