International Mathematical Forum, Vol. 19, 2024, no. 2, 51 - 56 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2024.914421

Strongly Pure Ideals

Khudher J. Khider

Ministry of Education, General Directorate of Nineveh Education Bashiqa Education Department Bashiqa Preparatory School for Girls, Mosul, Iraq

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2024 Hikari Ltd.

Abstract

Let R be a ring then the ideal I known as right (left) strongly pure ideal if , for every $x \in I$ there exist a prime element $p \in I$ such that x = x. p(x = p, x). And several properties of this class of ideals are discussed . Finally we presented another definition that is , Let R be a ring then I is called right (left) strongly pure ideal of prime elements if , for every prime element $p_i \in I$ there exist a prime element $p \in I$ such that $p_i = p_i$. $p(p_i = p, p_i)$, with some important results.

Keywords: right (left) strongly pure ideal, right (left) strongly pure ideal of prime elements

1. Introduction

In this article, R be a ring with identity. We write \cap , U, \oplus for the Intersection, Union and Direct sum, respectively. A ring R is cycle ring iff R can be written as $R = \{a\} = \{a^n : n \in Z\}$ [5].

Generalization of pure ideal have been discussed in many papers (see [1], [2], [3], [4]), . In ([1] defined right (left) strongly pure ideals (for short SP-Ideal). The nice structure of SP-Ideal draws our attention to study some properties of this kind of ideals and to define right (left) SP-Ideal of prime elements.

As usual, $I \in R$ is called idempotent if $I^2 = I$ [6]. A non-empty set $I \in R$ is ideal if, for every $x \in I$, $y \in R$ implies that $x, y \in I$ \land $y, x \in I$).

52 Khudher J. Khider

2. SP-Ideals

Definition 2.1: An ideal $I \in R$ is called right (left) pure ideal if, for every $x \in I$ there exist $y \in I$ such that $x = x \cdot y(x = y \cdot x) \cdot [1]$, [4]

Definition 2.2: Let R be a ring then I is called right (left) SP-Ideal if, for every $x \in I$ there exist a prime element $p \in I$ such that x = x. p(x =p. x).

Note: Every right (left) SP-Ideal is right (left) pure ideal, but the converse is not true.

Example: In the rings \mathcal{Z}_6 an ideal $I = \{0, 2, 4\}$ is right (left) pure ideal but it is not right (left) SP-Ideal because there is no a prime element $p \in I$ such that $x = x \cdot p(x = p \cdot x)$.

Note: Not every right SP-Ideal is left SP-Ideal, and never the converse.

Example: In the rings $R = \left\{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix}, a, b, d \in z_2 \right\}$ an ideals $I = \frac{1}{2}$ $\begin{cases} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \end{cases}$ and $J = \begin{cases} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \}$ So I is left SP-Ideal but it is not right SP-Ideal because there is no a

prime element $p \in I$ such that $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \cdot P$.

And J is right SP-Ideal but it is not left SP-Ideal because there is no a prime element $p \in J$ such that $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = P \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

Lemma 2.3: Let I be a SP-Ideal of R . Then $J.I = J \cap I$, for every ideal J of R. [1]

Lemma 2.4: every idempotent ideal generated by prime element is SP-Ideal. And every SP-Ideal is idempotent ideal. [1]

Theorem 2.5: If $R = Z_n$, I = (p), J = (k), I and J are two deferent SP-Ideals in R then either I = R or J = R . where p, k are two prime elements.

Proof: Let $I \neq R$, since I and J are two deferent SP-Ideals in R, then $p, k \in I \land p, k \in J$, so we have three cases either k = 1 implies that I = I(k) = R. Or k (contradiction with

J is SP-Ideal) . Or $p < k \Longrightarrow p \cdot p < n \Longrightarrow p \cdot p \neq p$ (contradiction with I is SP-Ideal) . Therefore J = R . By the same method we can proof that I = R if $J \neq R$.

Note: (This suggest in general is not true) let I, J ideals in R = Z_n and I SP-Ideal in R then $I \cap J$ SP-Ideal in R. See the next example

Example: Let $I = (3) = \{0,3\}$, $J = \{0\}$ such that I, J ideals in Z_6 , and I SP-Ideal in Z_6 . But $I \cap J = \{0\}$ is not SP-Ideal in Z_6 .

Theorem 2.6: If I and J are SP-Ideals in $R=Z_n$ then $I\cap J$, $I\cup J$ and $I\oplus J$ are SP-Ideals in $R=Z_n$.

Proof: by **Theorem 2.5** then either I = R or J = R

- **1** $I \cap J$ equal to either I or J, so $I \cap J$ is SP-Ideal.
- **2** $I \cup J$ equal to R, so $I \cup J$ is SP-Ideal.
- **3** I \oplus J equal to R, so I \oplus J is SP-Ideal.

but the converse is not true see the next examples:

Examples:

- (1) $I = (3) = \{0,3\}$, $J = \{0,2,3\} \Longrightarrow I \cap J = \{0,3\}$. Then $I \cap J$ SP-Ideal in Z_6 . But J is not ideal in J in Z_6 .
- (2) I = (5) = {0,5,10,15}, J = (10) = {0,10}in Z_{20} . Then I \cup J = {0,5,10,15} is SP-Ideal in Z_{20} . But J is not SP-Ideal in Z_{20} , because there is no prime element P \in Jsuch that $10=10\cdot p$.
- (3) $I = (2) = \{0,2,4\}$, $J = (3) = \{0,3\}$ in Z_6 . Then $I \oplus J = Z_6$ is SP-Ideal in Z_6 . But I is not SP-Ideal in Z_6 .

Note: (This suggest in general is not true) let I, J ideals in $R=Z_n$ and $I \oplus J$ SP-Ideal in $R=Z_n$ either I or J SP-Ideal in R: See the next example

Example: Let $I=(3)=\{0,3,6,9\}$, $J=(4)=\{0,4,8\}$ in Z_{12} , then $I \oplus J=Z_{12}$ is SP-Ideal in Z_{12} . But I is not SP-Ideal in Z_{12} . And J is not SP-Ideal in Z_{12} .

Corollary 2.7: let I , J ideals in R = Z_n and I \oplus J SP-Ideal in R = Z_n either I or J SP-Ideal in R if I \subseteq J or J \subseteq I .

Proof: Let $j \subseteq J$ implies that $j \in I \oplus J$, since $I \oplus J$ SP-Ideal in $R = Z_n$, so there exist a prime element $p \in I \oplus J$, so j = j, p, since $I \subseteq J$ so $p \in I \oplus J = J$ so J is SP-Ideal in R. by the same way can we proof I is SP-Ideal in R.

54 Khudher J. Khider

3 – SP-Ideals of prime element

Definition 3.1: Let I any ideal of R we said I is right (left) SP-Ideal of prime element on a ring R if for every $P_i \in I$ such that P_i is prime element, there exist a prime element $p \in I$ such that $P_i = P_i \cdot P$ ($P_i = P \cdot P_i$)

Proposition 3.2: Every SP-Ideal is SP-Ideal of prime element.

Proof: let I=(p) SP-Ideal in $R=z_n$. So either I=R implies that for every prime element $P_i \in I$ there exist $1 \in I$ such that $P_i=P_i \cdot 1$, therefore I SP-Ideal of prime element in R. Or $I \subseteq R \implies I=(p)=\{0,p,2p,...\}$ Implies that $p=p\cdot p$ (because I SP-Ideal in R), so I is SP-Ideal of prime element in R.

But the converse is not true (See the next Example and the next Proposition)

Example: Let $J = \{0,4,8\}$ in Z_{12} , then J is SP-Ideal of prime element in Z_{12} . But J is not SP-Ideal in Z_{12} .

Proposition 3.3: The SP-Ideal of prime element I in $R = z_n$ is SP-Ideal If there exist a prime element $p \in I$.

Proof: let $P_i \in I$ then there exist $p \in I$, such that $P_i = P_i \cdot p$ Either $I = z_n$, so I SP-Ideal in z_n Or $I \subseteq R \Longrightarrow I = (p) = \{0, p, 2p, \cdots\}$ $\Longrightarrow P = P \cdot P \Longrightarrow 2P = 2P \cdot P$. If we continuo in this way we get I is SP-Ideal.

Proposition 3.4: Let I SP-Ideal of prime element in $R=z_n$. Then $J\cdot I=J\cap I$, for all J ideal in $R=z_n$

Proof: by Implies that ISP-Ideal in R . By Implies that $J \cdot I = J \cap I$

Proposition 3.5: Idempotent ideal generated by prime element is SP-Ideal of prime element.

Proof: By **Lemma 2.4** every idempotent ideal generated by prime element is SP-Ideal . By **Proposition 3.2** implies every idempotent ideal generated by prime element is SP-Ideal of prime element

Proposition 3.6: Every SP-Ideal of prime element is idempotent ideal If there exist a prime element $p \in I$.

Proof: By **Proposition 3.3** the SP-Ideal of prime element I in $R = z_n$ is SP-Ideal If there exist a prime element $p \in I$. By **Lemma 2.4** every SP-Ideal of prime element is idempotent ideal.

Note: Not every left SP-Ideal of prime element in R, is right SP-Ideal of prime element in R, and the converse is true: see example

$$\begin{aligned} \textbf{Example: Let} \quad R &= \left\{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix}, a, b, d \in z_2 \right\} \\ I &= \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \right\} \\ J &= \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \right\} \end{aligned}$$

Then I is left SP-Ideal of prime element in R , but it is not right SP-Ideal of prime element in R , because the prime element $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \in I$ but there is no prime element $p \in I$, such that $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \cdot P$. And J is right SP-Ideal of prime element in R but it is not left SP-Ideal of prime element in R , because the prime element $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \in J$ but there is no prime element $p \in J$ such that $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = P \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$

Theorem 3.7: Let $\ I$, $\ J$ are SP-Ideals of prime element in $\ R = Z_n$ such that $\ I$, $\ J$ contains prime elements

- (1) I \cap J is SP-Ideal of prime element in R = Z_n
- (2) I \cup J is SP-Ideal of prime element in R = Z_n
- (3) I \oplus J is SP-Ideal of prime element in R = Z_n

Proof: By **Proposition 3.2**, implies that I, J SP-Ideal in $R = Z_n$. So we can proof (1), (2), (3) by **Theorem 2.6** (1), (2), (3) respectively.

Acknowledgments. The authors are very grateful to the Ministry of Education / General Directorate of Nineveh Education for their provided facilities, which helped to improve the quality of this work.

References

- [1] N. K. Abdullah, Strongly Pure Ideals And Strongly Pure Sub-Modules, *Kirkuk University Journal / Scientific Studies (KUJSS)*, **10** (2015), no. 1, 12-28. https://doi.org/10.32894/kujss.2015.102008
- [2] H. A-Ezeh, The Pure Spectrum of PF-ring, *Comm. Math. University S. P.*, **37** (1988), no. 2, 179-183.

56 Khudher J. Khider

[3] D. J. Fieldhous, Pure Theories, *Math. Ann.* Soc., **184** (1969), 1-18. https://doi.org/10.1007/bf01350610

- [4] R. D. Mahmood, *On Pure Ideals And Pure Sub Modules*, PhD Thesis, University Of Mosul, 2000.
- [5] B. A. Sethuraman, *A Gentle Introduction To Abstract Alrebra*, GNU Free Documentation License, Version 1.3, 2012.
- [6] J. Vou Neumann, On regular rings, *Nat. Scad. Sciences U.S.A.*, **22** (1936), 707-717. https://doi.org/10.1073/pnas.22.12.707

Received: March 15, 2024; Published: April 9, 2024