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Abstract 

 

Let Ɍ be a ring then the ideal I known as right (left) strongly pure 

ideal if , for every x ∈ I there exist a prime element p ∈ I such that x =
x. p(x = p. x) . And several properties of this class of ideals are discussed  . 

Finally we presented another definition that is , Let Ɍ be a ring then I is 

called right (left) strongly pure ideal of prime elements if , for every prime 

element pi ∈ I there exist a prime element p ∈ I such that pi = pi. p(pi =
p. pi) , with some important results. 

 

Keywords: right (left) strongly pure ideal, right (left) strongly pure 

ideal of prime elements  

 

 

1. Introduction 
 

In this article , Ɍ be a ring with identity. We write ⋂ , ⋃ , ⊕ for the 

Intersection , Union  and Direct sum, respectively . A ring Ɍ is cycle ring iff 

Ɍ can be written as Ɍ = (a) = {an: n ∈ Z}  [5] . 

Generalization of pure ideal have been discussed in many papers ( 

see [1] , [2] , [3] , [4]) , . In ( [1] defined right (left) strongly pure ideals ( for 

short SP-Ideal ).The nice structure of SP-Ideal draws our attention to study 

some properties of this kind of ideals and to  define right (left) SP-Ideal of 

prime elements . 

As usual , I ∈ Ɍ is called idempotent if I2 = I [6] . A non-empty set 

I ∈ Ɍ is ideal if , for every x ∈ I , y ∈ Ɍ implies that x. y ∈ I  ⋀  y. x ∈ I) . 
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2. SP-Ideals  
 

Definition 2.1:  An ideal  I ∈ Ɍ is called right (left) pure ideal if , for 

every x ∈ I there exist y ∈ I such that x = x. y(x = y. x) . [1] , [4] 

 

Definition 2.2: Let Ɍ be a ring then I is called right (left) SP-Ideal if, 

for every x ∈ I there exist a prime element p ∈ I such that x = x. p(x =
p. x). 

 

Note: Every right (left) SP-Ideal is right (left) pure ideal, but the 

converse is not true . 

 

Example: In the rings 𝒵6 an ideal I = {0 , 2 , 4} is right (left) pure 

ideal but it is not right (left) SP-Ideal because there is no a prime element 

p ∈ I such that x = x. p(x = p. x) .                
 

Note: Not every right SP-Ideal is left SP-Ideal, and never the 

converse. 

 

Example: In the rings Ɍ = {[
a b
0 d

] , a, b, d ∈  z2} an ideals I =

{[
0 0
0 0

] , [
1 0
0 0

] , [
0 1
0 0

] , [
1 1
0 0

]}   

     and J = {[
0 0
0 0

] , [
0 0
0 1

] , [
0 1
0 0

] , [
0 1
0 1

]}  

So I is left SP-Ideal but it is not right SP-Ideal because there is no a 

prime element p ∈ I such that [
0 1
0 0

] = [
0 1
0 0

] ∙ P. 

And J is right SP-Ideal but it is not left SP-Ideal because there is no a 

prime element p ∈ J such that [
0 1
0 0

] = P ∙ [
0 1
0 0

].     

 

Lemma 2.3: Let I be a SP-Ideal of Ɍ . Then J. I = J ∩ I , for every 

ideal J of Ɍ. [1] 

 

Lemma 2.4: every idempotent ideal generated by prime element is 

SP-Ideal. And every SP-Ideal is idempotent ideal . [1] 

 

Theorem 2.5: If Ɍ = Zn , I = (p), J = (k) , I   and J  are two deferent 

SP-Ideals in Ɍ then either I = Ɍ or J = Ɍ  . where p , k are two prime 

elements.  

 

Proof: Let I ≠ Ɍ , since I   and J  are two deferent SP-Ideals in Ɍ , 

then p. k ∈ I ⋀ p. k ∈ J  , so we have three cases either k = 1 implies that  

, J = (k) = Ɍ . Or k < p 
         
⇒   k ∙ k < n 

         
⇒   k ∙ k ≠ k  ( contradiction with  
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J is SP-Ideal ) . Or p < k 
         
⇒  p ∙ p < n 

         
⇒   p ∙ p ≠ p  ( contradiction with 

I is SP-Ideal ) . Therefore  J = Ɍ  . By the same method we can proof that 

I = Ɍ if J ≠ Ɍ   . 
 

Note: ( This suggest in general is not true ) let  I  , J ideals in Ɍ =
Zn and I SP-Ideal  in Ɍ  then I ∩ J SP-Ideal  in Ɍ  . See the next example 

 

Example: Let  I = (3) = {0,3}  , J = {0} such that I  , J ideals in Z6, 
and I SP-Ideal  in Z6  . But I ∩ J = {0} is not SP-Ideal  in Z6  . 

 

Theorem 2.6: If  I   and J  are SP-Ideals in Ɍ = Zn then I ∩ J , I ∪
J and I ⊕ J are SP-Ideals in Ɍ = Zn . 

 

Proof: by Theorem 2.5  then either I = Ɍ or J = Ɍ    
1 - I ∩ J equal to either I   or  J , so I ∩ J is SP-Ideal . 

2 - I ∪ J equal to Ɍ , so I ∪ J is SP-Ideal. 

3 - I ⊕ J equal to Ɍ , so I ⊕ J is SP-Ideal. 

 but the converse is not true see the next examples:  

 

Examples:  

(1) I = (3) =  {0,3} , J = {0,2,3}  
         
⇒   I ∩ J = {0,3}  . Then I ∩ J 

SP-Ideal in  Z6  . But  J is not ideal in Jin Z6 . 
(2) I = (5) = {0,5,10,15} , J = (10) = {0,10}in Z20 . Then I ∪ J =

{0,5,10,15} is SP-Ideal in Z20 . But J  is not SP-Ideal in Z20 , because there 

is no prime element P ∈ Jsuch that 10 = 10 ∙ p. 

(3) I = (2) = {0,2,4} , J = (3) = {0,3} in Z6  .Then I ⊕ J = Z6 is 

SP-Ideal in Z6. But  I is not SP-Ideal in Z6 . 
 

Note: ( This suggest in general is not true ) let I  , J ideals in Ɍ = Zn 

and I ⊕ J   SP-Ideal in Ɍ = Zn either I or J SP-Ideal in Ɍ  : See the next 

example 

 

Example: Let I = (3) = {0,3,6,9}    , J = (4) = {0,4,8}  in Z12 , then 

  I ⊕ J = Z12is SP-Ideal in Z12. But I is not SP-Ideal in Z12. And  J  is not 

SP-Ideal in Z12. 
 

Corollary 2.7: let I  , J ideals in Ɍ = Zn and I ⊕ J   SP-Ideal in Ɍ =
Zn either I or J SP-Ideal in Ɍ  if I ⊆ J  or J ⊆ I  . 

 

Proof: Let 𝑗 ⊆ J   implies that  𝑗 ∈ I ⊕ 𝐽 , since  I ⊕ J   SP-Ideal in 

Ɍ = Zn , so there exist a prime element 𝑝 ∈  I ⊕ J , so 𝑗 = 𝑗. 𝑝 , since I ⊆ J  
so 𝑝 ∈  I ⊕ J = J so J  is SP-Ideal in Ɍ . by the same way can we proof  I  is 

SP-Ideal in Ɍ . 
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3 – SP-Ideals of prime element 
 

Definition 3.1: Let I any ideal of  Ɍ  we said I is right ( left ) SP-

Ideal of prime element on a ring Ɍ  if for every Pi ∈ I such that Pi is prime 

element   , there exist a prime element p ∈ I  such that Pi = Pi ∙ P     (Pi = P ∙
Pi) 

 

Proposition 3.2: Every SP-Ideal is SP-Ideal of prime element . 

 

Proof: let I = (p)  SP-Ideal in Ɍ = zn . So either I = Ɍ  implies that 

for every prime element Pi ∈ I  there exist 1 ∈ I such that Pi = Pi ∙ 1 , 

therefore I SP-Ideal of prime element in  Ɍ  . Or I ⊆ Ɍ  
         
⇒   I = (p) =

{0, p, 2p,… }  Implies that p = p ∙ p (because  I SP-Ideal in  Ɍ  ) , so  I  is 

SP-Ideal of prime element in  Ɍ . 
But the converse is not true ( See the next Example and the next 

Proposition ) 

 

Example: Let J = (4) = {0,4,8}  in Z12 , then   J is SP-Ideal of 

prime element in Z12. But J  is not SP-Ideal in Z12. 
 

Proposition 3.3: The  SP-Ideal of prime element I in Ɍ = zn is SP-

Ideal If there exist a prime element  p ∈ I.  
 

Proof: let  Pi ∈ I then there exist p ∈ I  , such that  Pi = Pi ∙ p  Either  

I = zn , so I SP-Ideal in zn   Or    I ⊆ Ɍ  
          
⇒   I = (p) = {0, p, 2p,⋯ }

          
⇒   P = P ∙ P

          
⇒   2P = 2P ∙ P . If we continuo in this way we get  I is SP-

Ideal . 

 

Proposition 3.4: Let I SP-Ideal of prime element in Ɍ = zn . Then  

J ∙ I = J ∩ I   , for all J ideal in Ɍ = zn   

 

Proof :  by   Implies that ISP-Ideal in  Ɍ . By    Implies that J ∙ I =
J ∩ I 

 

Proposition 3.5: Idempotent ideal generated by prime element is 

SP-Ideal of prime element. . 

 

Proof:  By Lemma 2.4 every idempotent ideal generated by prime 

element is SP-Ideal . By Proposition 3.2 implies every idempotent ideal 

generated by prime element is SP-Ideal of prime element 

 

Proposition 3.6: Every SP-Ideal of prime element is idempotent 

ideal If there exist a prime element  p ∈ I. 
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Proof:  By  Proposition 3.3   the  SP-Ideal of prime element I in 

Ɍ = zn is SP-Ideal If there exist a prime element  p ∈ I. By  Lemma 2.4   

every SP-Ideal of prime element is idempotent ideal. 

 

Note: Not every left SP-Ideal  of prime element  in Ɍ   , is right SP-

Ideal  of prime element  in Ɍ  . and the converse is true : see example  

 

Example: Let    Ɍ = {[
a b
0 d

 ] , a, b, d ∈ z2}  

I = {[
0 0
0 0

] , [
1 0
0 0

] , [
0 1
0 0

] , [
1 1
0 0

]} 

J = {[
0 0
0 0

] , [
0 0
0 1

] , [
0 1
0 0

] , [
0 1
0 1

]} 

Then  I is left SP-Ideal  of prime element  in Ɍ   , but  it is not right 

SP-Ideal  of prime element  in Ɍ , because  the prime element [
0 1
0 0

] ∈ I 

but there is no prime element  p ∈ I , such that   [
0 1
0 0

] = [
0 1
0 0

] ∙ P . And  

J is right SP-Ideal  of prime element  in Ɍ  but it is not  left SP-Ideal  of 

prime element  in Ɍ  , because  the prime element [
0 1
0 0

] ∈ J but  there is no 

prime element p ∈ J such that   [
0 1
0 0

] = P ∙ [
0 1
0 0

] 

 

Theorem 3.7: Let   I , J are SP-Ideals  of prime element  in Ɍ = Zn 

such that  I , J contains prime elements  

(1) I ∩  J is  SP-Ideal  of prime element  in Ɍ = Zn 

(2) I ∪  J  is SP-Ideal  of prime element  in  Ɍ = Zn 

(3) I   ⊕   J is  SP-Ideal  of prime element  in Ɍ = Zn 

 

Proof  : By  Proposition 3.2 , implies that  I , J  SP-Ideal  in Ɍ = Zn . 

So we can proof (1) , (2) , (3) by   Theorem 2.6 (1) , (2) , (3) respectively.  
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