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Abstract

Let R be a ring then the ideal I known as right (left) strongly pure
ideal if , for every x € I there exist a prime element p € I such that x =
Xx. p(x = p.x) . And several properties of this class of ideals are discussed .
Finally we presented another definition that is , Let R be a ring then I is
called right (left) strongly pure ideal of prime elements if , for every prime
element p; € I there exist a prime element p € I such that p; = p;. p(p; =
p.pi) , With some important results.
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1. Introduction

In this article , R be a ring with identity. We write N, U , @ for the
Intersection , Union and Direct sum, respectively . A ring R is cycle ring iff
R can be writtenas R = (a) = {a™:n € Z} [5].

Generalization of pure ideal have been discussed in many papers (
see [1],[2], [3],[4]) .. In ([1] defined right (left) strongly pure ideals ( for
short SP-Ideal ).The nice structure of SP-Ideal draws our attention to study
some properties of this kind of ideals and to define right (left) SP-ldeal of
prime elements .

As usual , I € R is called idempotent if 12 =1 [6] . A non-empty set
[ e Risideal if, foreveryx €,y € Rimpliesthatx.y €l A y.x€l).
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2. SP-ldeals

Definition 2.1: Anideal I € Ris called right (left) pure ideal if , for
every x € I there existy € I such thatx = x.y(x = y.x) . [1], [4]

Definition 2.2: Let R be a ring then I is called right (left) SP-Ideal if,
for every x €1 there exist a prime element p € I such that x = x.p(x =

p.-Xx).

Note: Every right (left) SP-Ideal is right (left) pure ideal, but the
converse is not true .

Example: In the rings Z, an ideal I = {0,2,4} is right (left) pure
ideal but it is not right (left) SP-ldeal because there is no a prime element
p € Isuchthatx = x.p(x = p.x) .

Note: Not every right SP-ldeal is left SP-ldeal, and never the
converse.

Example: In the rings R = {[8 3 , a,b,d € zz} an ideals I =
0 0y O 0 13 1 1

030 gl ol
and]:{[o o] ‘[o 1] ‘[o 0] ’[0 1}

So I'is left SP-1deal but it is not right SP-ldeal because there is no a
prime element p € I such that [8 (1)] = [8 (1)] - P.

And ] is right SP-Ideal but it is not left SP-Ideal because there is no a
prime element p € ] such that [8 (1) =P [8 é :

Lemma 2.3: Let I be a SP-Ideal of R . Then J.I =] N1, for every
ideal J of R. [1]

Lemma 2.4: every idempotent ideal generated by prime element is
SP-Ideal. And every SP-Ideal is idempotent ideal . [1]

Theorem 25: IfR=Z,,1=(p),] = (k),I and] are two deferent
SP-Ideals in R then either I=R or ] =R . where p,k are two prime
elements.

Proof: Let 1 # R, since I and ] are two deferent SP-Ideals in R ,
then p.k el Ap.k €] , so we have three cases either k = 1 implies that
, J=((k)=R.0Ork<p = k-k <n = k-k # k (contradiction with
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JisSP-ldeal ) . Orp<k = p-p <n = p-p # p (contradiction with

I is SP-1deal ) . Therefore ] = R . By the same method we can proof that
I=Rif]#R .

Note: ( This suggest in general is not true ) let 1, Jideals inR =
Z, and I SP-Ideal in R thenIn] SP-lIdeal inR . See the next example

Example: Let I =(3) ={0,3} , ] ={0}suchthatl , Jidealsin Zg,
and I SP-Ideal inZg . Butln] = {0} is not SP-Ideal inZ, .

Theorem 2.6: If 1 and ] are SP-ldeals inR=7Z, thenIn], Iu
Jand 1@ J are SP-ldealsinR =Z, .

Proof: by Theorem 2.5 theneither =R or] =R
1-InJequaltoeitherl or J,soln]isSP-ldeal .
2-1UJequaltoR,solU]is SP-Ideal.
3-1@JequaltoR,sol & ] is SP-Ideal.

but the converse is not true see the next examples:

Examples:
1) I=B)= {03}, ]={023} = In]={0,3} . Then INn]

SP-ldeal in Zg . But Jis notideal inJinZg .

(2) 1=(5) ={0,5,10,15},] = (10) = {0,10}in Z,,. Then TU] =
{0,5,10,15} is SP-Ideal in Z,, . But J is not SP-Ideal in Z,, , because there
is no prime element P € Jsuch that 10 = 10 - p.

) I=2)={0,24},]=3)={03}inZs; .ThenIP] =7Z4 is
SP-Ideal in Z¢. But 1 is not SP-Ideal in Zg .

Note: ( This suggest in general is not true ) let1 , JidealsinR =7,
and @] SP-ldeal in R =7Z, either I or ] SP-Ideal in R : See the next
example

Example: LetI = (3) ={0,3,6,9} ,] = (4) ={0,4,8} inZ,, , then
[ @] = Z;,is SP-1deal in Z;,. But I is not SP-Ideal in Z,,. And ] is not
SP-ldeal in Z,,.

Corollary 2.7: let1 , JidealsinR =Z,and 1] SP-ldealinR =
Z,eitherlor] SP-ldealinR ifIC]J or]J 1 .

Proof: Let j €] impliesthat j el @] ,since 1] SP-ldeal in
R =7, , so there exist a prime elementp € 1@ J,s0j=j.p,sincel =]
sope I @]=]so] is SP-Ideal in R . by the same way can we proof I is
SP-ldeal inR..
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3 — SP-Ideals of prime element

Definition 3.1: Let I any ideal of R we said I is right ( left ) SP-
Ideal of prime element on a ring R if for every P, € I such that P, is prime
element , there exist a prime element p € I such that P, =P,-P (B,=P-

P)
Proposition 3.2: Every SP-Ideal is SP-Ideal of prime element .

Proof: let I = (p) SP-ldeal in R =z, . So either I = R implies that
for every prime element P, €1 there exist 1 €1 such that b =P -1 ,
therefore 1 SP-ldeal of prime elementin R . Or ISR = [ =(p) =
{0,p,2p, ... } Implies that p = p-p (because I SP-ldealin R ),so I is
SP-ldeal of prime elementin R.

But the converse is not true ( See the next Example and the next
Proposition )

Example: Let ] = (4) ={0,4,8} in Z;, , then Jis SP-ldeal of
prime element in Z,,. But ] is not SP-ldeal in Z,,.

Proposition 3.3: The SP-Ideal of prime element [ in R = z, is SP-
Ideal If there exist a prime element p € L.

Proof: let P, € I then there exist p € I, such that P, = P,-p Either
=2z, ,s01 SP-ldeal in z, Or ICR = I=(p)={0,p,2p, -}
= P=P-P= 2P = 2P P . If we continuo in this way we get I is SP-
Ideal .

Proposition 3.4: Let I SP-Ideal of prime elementin R =z, . Then
J-I=]JnI,forall JidealinR =z,

Proof : by Implies that ISP-ldeal in R . By Impliesthat]-I =
Jnl

Proposition 3.5: Idempotent ideal generated by prime element is
SP-Ideal of prime element. .

Proof: By Lemma 2.4 every idempotent ideal generated by prime
element is SP-Ideal . By Proposition 3.2 implies every idempotent ideal
generated by prime element is SP-Ideal of prime element

Proposition 3.6: Every SP-ldeal of prime element is idempotent
ideal If there exist a prime element p € I.
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Proof: By Proposition 3.3 the SP-Ideal of prime element I in
R =z, is SP-Ideal If there exist a prime element p € 1. By Lemma 2.4
every SP-ldeal of prime element is idempotent ideal.

Note: Not every left SP-Ideal of prime element in R , is right SP-
Ideal of prime element in R . and the converse is true : see example

Example: Let R = {[8 3],a, b,d € zz}
= e ol o
]:{[0 0]’[0 1 '[o 0 ‘[0 1]}
Then 1 is left SP-lIdeal of prime element in R , but it is not right

SP-ldeal of prime element in R , because the prime element [8 é] €l

0 11_[0 17
0 0 —[0 O] P.And
] is right SP-1deal of prime element in R but it is not left SP-Ideal of

but there is no prime element p € I, such that [

prime element in R , because the prime element [8 (1)] € ] but there is no
: 0 17_,.[0 1

prime element p € J such that 0 ol = P 0 0

Theorem 3.7: Let 1,] are SP-Ideals of prime element inR =7,
such that I,] contains prime elements

(1) I n Jis SP-Ideal of primeelement inR =7,

(2) T U J isSP-ldeal of primeelement in R =7,

(3) I @ ]Jis SP-Ideal of prime element inR =17,

Proof: By Proposition 3.2, implies that 1,] SP-Ideal inR =7, .
So we can proof (1) , (2) , (3) by Theorem 2.6 (1), (2) , (3) respectively.
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