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Abstract 

 

I want to introduce the notion of unbounded order convergence in 𝐶𝑝(X, [0,1]) 

which is the space of all continuous [0,1]-valued functions on a Tychonoff space X 

with the topology of pointwise convergence. I will give the fact that the unbounded 

order convergence on a Baire space X agrees the pointwise convergence on a co-

meagre set. 

 

Mathematics Subject Classification: 46A40, 47B60. 

 

Keywords: Unbounded Order Convergence, 𝐶𝑝(X, [0,1]), Tychonoff Space, 

Pointwise Convergence, Baire Space. 

 

 

1 Introduction 
 

   The notion of unbounded order convergence, shortly uo-convergence, is firstly 

studied in the article [5] by Hidegoro Nakano. The aim of Nakano was to define 

almost everywhere convergence in terms of lattice operations without direct use of 

measure theory and he defined “individual convergence”. Then, it was named as 

“unboundedly order convergence” in the paper [3] by Ralph DeMaar. After couple 

of years, some mathematicians began studying this topic such as Anthony 

Wickstead, Jan Harm van der Walt -who is still studying- ( [6], [7], [8] ) and Samuel 

Kaplan ([4]). In this article, Kaplan characterized the usage of weak order units to  
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define unbounded order convergence. Walt studied this convergence type on the 

family of continuous functions and Wickstead stated the relationship between weak 

convergence and uo-convergence in [9]. In 2014, the mathematicians Nishuan Gao, 

Vlademir Troitsky and Foivos Xanthos published several papers which include 

important generalizations to different families, spaces and algebras. I refer the 

reader to [2] for a survey of some convergence types on vector lattices.  

In this work, my aim is to give an approach to the characterization of unbounded 

order convergence in the space of 𝐶𝑝(X, [0,1]) which includes all [0,1]-valued 

continuous functions on X, specifically Tychonoff  space during this paper. 

In section 2, I give some fundamental definitions, theorems and unbounded order 

convergence in Riesz spaces, also some topological concepts dealed with my work.  

In section 3, I characterize uo-convergence of nets of [0,1]-valued continuous 

functions on a Tychonoff space, inspired by [1]. Moreover, I give an important 

relation between ou-convergence and pointwise convergence in a co-meagre of  

Baire Spaces at the end.   

 

2 Preliminaries 
 

𝑋  is said to be an ordered set whenever the following conditions are satisfied: 

i. 𝑥 ≤ 𝑥 for every 𝑥 ∈ 𝑋, 
ii. 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 implies that 𝑥 = 𝑦, 

iii. 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 implies that 𝑥 ≤ 𝑧. 
An ordered real vector space 𝑋 with the property that for every 𝑥, 𝑦 ∈ 𝑋 the 

supremum and infimum of {𝑥, 𝑦} exist in 𝑋 is called a Riesz space or a vector 

lattice. We denote the following notations for supremum and infimum: 𝑥 ∨  𝑦 = 

sup{𝑥, y} and 𝑥 ∧  𝑦 = inf{𝑥, 𝑦}. Let 𝑋 be a Riesz space. The positive cone 𝑋 + 

consists of all 𝑥 ∈ 𝑋 such that 𝑥 ≥ 0. Furthermore, for every 𝑥 ∈ 𝑋 let   𝑥 +  = 𝑥 ∨ 0, 

𝑥 − = (−𝑥) ∨ 0, and | 𝑥 | = 𝑥 ∨  (−𝑥) be the positive part, the negative part and the 

absolute value of 𝑥, respectively. 

A vector lattice 𝑋 is called Archimedean if 
𝑥

𝑛
↓ 0 holds in 𝑋 for every 𝑥 ∈ 𝑋 +. In 

this work, I will assume that all vector lattices are Archimedean. The set [𝑥, 𝑦] = 

{ 𝑧 ∈ E : 𝑥 ≤ 𝑧 ≤ 𝑦 } is said to be an order interval. A subset 𝐴 of 𝐸 is called an 

order bounded set if there exist 𝑥, 𝑦 ∈ 𝐸 such that 𝐴 ∈ [𝑥, 𝑦]. A function from a 

directed set 𝐴 to an arbitrary set 𝑋 is said to be a net in 𝑋 indexed by 𝐴. It is denoted 

by (𝑥𝛼)𝛼∈𝐴. A net (𝑥𝛼)𝛼∈𝐴 is said to be increasing whenever  𝑥𝛼 ≤ 𝑥𝛽  for all α,β 

∈ 𝐴 such that α ≤ β. If (𝑥𝛼)𝛼∈𝐴 is an increasing net and 𝑥 = 𝑠𝑢𝑝{𝑥𝛼 : α ∈ 𝐴}, then 

we write  𝑥𝛼↑ 𝑥 as α ∈ 𝐴. A net (𝑥𝛼)𝛼∈𝐴 is said to be decreasing whenever 𝑥𝛼 ≥ 𝑥𝛽   

for all α,β ∈ 𝐴 such that α ≤ β. If (𝑥𝛼)𝛼∈𝐴 is a decreasing net and                                          

𝑥 = 𝑖𝑛𝑓{𝑥𝛼 : 𝛼 ∈ 𝐴 }, then we write  𝑥𝛼 ↓ 𝑥 as α ∈ 𝐴. A vector 𝑒 ∈ 𝑋 + is said to 

be an order unit (or strong unit) if 𝑋𝑒 = 𝑋 satisfies. If 𝐵𝑒 = 𝑋, then 𝑒 is said to be a 

weak unit, that is, if (𝑥 ∧ 𝑛𝑒) ↑ 𝑥 holds for each 𝑥 ∈ 𝑋 +. 

If 𝑋 is Archimedean, then a vector 𝑒 > 0 is a weak unit if and only if | 𝑥 | ∧ 𝑒 = 0 

whenever 𝑥 = 0. It can be easily seen that every order unit is a weak unit. Let (𝑥𝛼) 

be a net indexed by a directed set 𝐴. For 𝛼0 ∈ 𝐴 fixed, let 𝐴0  = { 𝛼 ∈  : 𝛼 ≥ 𝛼0}  
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which is again a directed set under the pre-order induced from 𝐴. The restriction of 

the function 𝑥 to 𝐴0 is called a tail of (𝑥𝛼), and it is denoted by (𝑥𝛼) 𝛼 ≥𝛼0. 

 

Unbounded Order Convergence 

 
Definition 2.1 Let (𝑥𝛼)𝛼∈𝐴  be a net in 𝑋. (𝑥𝛼) is said to be order convergent to 𝑥 

if there exists a net (𝑦𝛼)𝛼∈𝐴 such that 𝑦𝛼 ↓ 0 and |𝑥𝛼 − 𝑥 | ≤ 𝑦𝛼 for all 𝛼 ∈ 𝐴. It is 

denoted as 𝑥𝛼 
𝑜
→ 𝑥. 

 

Lemma 2.2 [1] For a net (𝑥𝛼) in a vector lattice 𝑋, 𝑥𝛼 
𝑜
→ 𝑥 if and only if there exists 

a set 𝐺 ⊆ 𝑋 + such that 𝑖𝑛𝑓𝐺 = 0 and every element of 𝐺 dominates a tail of (𝑥𝛼), 

that is, for every 𝑔 ∈ 𝐺 there exists 𝛼0 such that |𝑥𝛼 | ≤ 𝑔 for all α ≥ 𝛼0.  
 

Definition 2.3 [1] A net (𝑥𝛼) is said to be unbounded order converges to 𝑥 if            

|𝑥𝛼 − 𝑥| ∧ 𝑦 
𝑜
→ 0  for every 𝑦 ≥ 0. We will use the notation (𝑥𝛼) uo-converges to 𝑥, 

for short, and we will denote it as 𝑥𝛼
𝑢𝑜
→ 𝑥.  

Order and uo-convergences agree for order bounded nets. If 𝑤 ≥ 0 is a weak unit 

then 𝑥𝛼 
𝑢𝑜
→ 𝑥  if and only if |𝑥𝛼 − 𝑥 | ∧ 𝑤 

𝑜
→ 0. 

 

Definition 2.4 i. A subspace 𝑌 of  𝑋 is called a sublattice of  𝑌 if  𝑥 ∨ 𝑦 ∈ 𝑌 and   𝑥 

∧ 𝑦 ∈ 𝑌 for all 𝑥, 𝑦 ∈ 𝑌 . 

ii. A sublattice 𝑌 of 𝑋 is called order dense if 0 < 𝑥 ∈ 𝑋 implies that there exists   𝑦 

∈ 𝑌 with 0 < 𝑦 ≤ 𝑥. 

iii. A sublattice is regular if the inclusion map is order continuous, that is, it 

preserves order convergence of nets. 

Every order dense sublattice is regular. For a net (𝑥𝛼) in a regular sublattice 𝑌 of 𝑋, 

𝑥𝛼
𝑢𝑜
→ 0 in 𝑋 if and only if 𝑥𝛼

𝑢𝑜
→ 0  in 𝑌 . 

 

Definition 2.5 A net (𝑥𝛼)𝛼∈𝐴 is called order Cauchy (or simply o-Cauchy) if the 

double net (𝑥𝛼 − 𝑥𝛽)𝐴2
  is order null. Unbounded order Cauchy (simply uo-

Cauchy) is defined in the same way. 

 

Some Topological Concepts 

 
Let 𝐴 be a subset of a Hausdorff topological space. Then, 𝐴 is said to be nowhere 

dense if Int(𝐴̅) = ∅. 

Let 𝐴 be a subset of  𝑋, which is defined as in the previous definition. Then, 

i) It is called meagre or of the first category if it can be represented as a union of a 

sequence of nowhere dense sets. 

ii) it is called co-meagre or residual if its complement is of the first category. 

𝑋 is said to be a Baire space if it satisfies the Baire condition, that is, if every 

intersection of countably many dense open sets is dense.  
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Equivalently, 𝑋 is Baire if every co-meagre set is dense. Every locally compact 

Hausdorff space is Baire. Every nonempty open subspace of a Baire space is a Baire 

space. A space is Baire if and only if every point has a neighborhood which is also 

Baire.  

Topological vector space 𝑋 is said to be normal if it satisfies Axiom 𝑇4: every 

disjoint closed sets of 𝑋 have disjoint open neighborhoods, that is, for disjoint 

closed sets 𝐴, 𝐵 ⊂ 𝑋 there exists neighborhoods 𝐴 ⊂ 𝑈 and 𝐴 ⊂ 𝑉 such that                

𝑈 ∩ 𝑉 = ∅.  

 

Theorem 2.6 (Uryson’s Lemma) A topological space 𝑋 is normal if and only if 

for any two disjoint nonempty closed subsets 𝑌, 𝑍 ⊆ 𝑋 there is a continuous 

function 𝑓 : 𝑋 → [0, 1] such that 𝑓(𝑥) = 0 for all 𝑥 ∈ Y and 𝑓(𝑥) = 1 for all 𝑥 ∈ 𝑍.  

A topological space 𝑋 is completely regular if the points can be seperated from 

closed sets via continuous real-valued functions. That is, for any closed set 𝐴 ⊆ 𝑋 

and any point 𝑥 ∈ 𝑋 \𝐴, there exists a real-valued continuous function 𝑓 : 𝑋 → ℝ 

such that 𝑓(𝑥) = 1 and 𝑓|𝐴= 0. 

As a consequence of Uryson’s Lemma, we can say that every locally compact 

Hausdorff space or every normal space is completely regular. 

Also, 𝑋 is said to be Tychonoff or completely 𝑇3 space if it is a completely regular 

Hausdorff space. 

 

3 Unbounded Order Convergence in 𝐂𝐩(𝐗, [𝟎, 𝟏]) 

 
Throughout this section, 𝑋 stands for a completely regular Hausdorff topological 

space (Tychonoff space), which is exactly the class of Hausdorff spaces where the 

conclusion of Uryson’s lemma holds. Recall that every locally compact Hausdorff 

space or every normal space is completely regular. 

𝐶𝑝(X, [0,1]) denotes the space of all continuous [0,1]-valued functions on a 

Tychonoff space 𝑋 with the topology of pointwise convergence and 𝟙 is the constant 

one function. 

 

Lemma 3.1 [1] Suppose that 𝑋 is a completely regular Hausdorff topological space 

and 𝐺 ⊂ 𝐶𝑝(X, [0,1]) . The following are equivalent: 

i. inf𝐺  = 0;  

ii. for every non-empty U and every ϵ > 0 there exists 𝑡 ∈ U and 𝑔 ∈ 𝐺 with   
𝑔(𝑡) < ϵ;  

iii. for every non-empty U and every ϵ > 0 there exists a non-empty open set V ⊆ U 

and 𝑔 ∈ 𝐺 such that 𝑔(𝑡) < ϵ for all  𝑡 ∈ V.  

 

Proof. (i) ⇒ (ii) Suppose that inf𝐺  = 0, but (ii) fails, i.e., there is a non-empty U 

and ϵ > 0 such that every 𝑔 ∈ 𝐺 is greater than or equal to ϵ on U. Since 𝑋 is 

completely regular, we find a non-zero 𝑓 ∈ 𝐶(𝑋)+ such that 𝑓 ≤ ϵ𝟙 and 𝑓 vanishes 

outside of U. Then 𝑓 ≤ 𝐺 , which contradicts infG = 0. 
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(ii) ⇒ (i) Assume that infG ≠ 0. Then there is 𝑓 ∈ 𝐶𝑝(X, [0,1])  with 0 < 𝑓 ≤ 𝐺 . We 

can find an open non-empty set U and ϵ > 0 such that 𝑓 is greater than ϵ on U. 

Followingly, every 𝑔 ∈ 𝐺  is greater than ϵ on U, which contradicts (ii).  

 

Now, I will define uo-convergence and characterize it on 𝐶𝑝(X, [0,1]). Since 𝑓𝛼 
𝑢𝑜
→ 𝑓 

if and only if |𝑓𝛼− 𝑓| 
𝑢𝑜
→  0, it sufficies to characterize order convergence of positive 

nets to zero. 

 

Definition 3.2 Let (𝑓𝛼) be a net in 𝐶𝑝(X, [0,1]). 𝑓𝛼 
𝑢𝑜
→ 𝑓  if and only if                                 

| 𝑓𝛼 − 𝑓 | ∧ 𝑔 
𝑜
→ 0 for all 𝑔 ≥ 0.  

 

Theorem 3.3 [1] Let 𝑋 be Tychonoff space and (𝑓𝛼) a net in 𝐶𝑝(X, [0,1]). Then       

𝑓𝛼 
𝑢𝑜
→ 0  if and only if for every non-empty open set U and every ϵ > 0 there exists 

an open non-empty 𝑉 ⊆ U and an index 𝛼0 such that 𝑓𝛼 is less than ϵ on 𝑉 whenever 

α ≥ 𝛼0.  
 

Proof. Suppose that 𝑓𝛼 
𝑢𝑜
→ 0. Then 𝑓𝛼 ∧ 𝟙

𝑜
→ 0. By Lemma 2.2, there exists a set            

G ⊂ 𝐶𝑝(X, [0,1]) such that infG = 0 and every member of G dominates a tail of  (𝑓𝛼 

∧ 𝟙). Fix a nonempty open set U and ϵ ∈ (0, 1). Let V and 𝑔 be as in Lemma 3.1 

(iii). Since 𝑔 dominates a tail of (𝑓𝛼 ∧ 𝟙), there is an 𝛼0 such that 𝑓𝛼 ∧ 𝟙 ≤ 𝑔 for 

every α ≥ 𝛼0. In particular,  𝑓𝛼 (s) ∧ 𝟙(s) ≤ 𝑔(s) < ϵ, hence 𝑓𝛼 (s) < ϵ for all s ∈ V. 

This proves the forward implication. 

To prove the converse, consider that the condition in the theorem is satisfied. Since 

𝟙 is a weak unit, it suffices to prove that 𝑓𝛼 ∧ 𝟙 
𝑜
→ 0. We will use Lemma 3.1 again. 

Fix an open non-empty set U and ϵ > 0. Let V and 𝛼0 be as in the assumption. 

Choose any 𝑡 ∈ V. Since 𝑋 is completely regular, there is an h ∈ 𝐶(𝑋)+ such that 

h(𝑡) = 0 and h equals 1 outside of V. Put 𝑔 = h ∨ ϵ 1. Then 𝑔(𝑡) = ϵ. We claim that 

𝑓𝛼 ∧ 𝟙 ≤ 𝑔 for every α ≥ 𝛼0. Indeed, if s ∈ V then 𝑓𝛼 (s) < ϵ ≤ 𝑔(s), and if s is not in 

𝑉 then  (𝑓𝛼 ∧ 𝟙 )(s) ≤ 1 = ℎ (s) ≤ 𝑔(s).   

Repeat this process for every pair (U, ϵ), where U is open and non-empty and ϵ > 0; 

let G be the set of the resulting functions 𝑔. Each such 𝑔 dominates a tail of                

(𝑓𝛼 ∧ 𝟙). Lemma 2.2 yields infG = 0. This completes the proof. 

 

Corollary 3.4 Let 𝑋 be completely regular Hausdorff and (𝑓𝛼) a net in 𝐶𝑝(X, [0,1]). 

Then (𝑓𝛼) is uo-Cauchy if and only if for every non-empty open set U and every       

ϵ > 0 there exists an open non-empty V ⊆ U and an index 𝛼0 such that  

| 𝑓𝛼(𝑡) − 𝑓𝛽(𝑡)| < ϵ for all t ∈ V and 𝛼, 𝛽 ≥ 𝛼0. 

 

Lemma 3.5 [1] Let 𝑋 be a completely regular Hausdorff Baire space. For                     

𝐺 ⊆ 𝐶𝑝(X, [0,1]), the following are equivalent: 

i) inf 𝐺 = 0;  
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ii) There exists a dense set 𝐷 such that  inf
𝑔∈𝐺

𝑔(𝑡) = 0  for every 𝑡 ∈ 𝐷;  

iii) There exists a co-meagre set 𝐷 such that inf
𝑔∈𝐺

𝑔(𝑡) = 0  for every 𝑡 ∈ 𝐷.  

 

Proof. (ii) ⇒ (i) is a consequence of Lemma 3.1. 

 

(iii) ⇒ (ii) satisfies because every co-meagre set in a Baire space is dense.  

 

(i) ⇒ (iii), consider that inf 𝐺 = 0. For 𝑛 ∈ 𝑁, put 𝑊𝑛 = ⋃ {𝑔 <
1

𝑛
}𝑔∈𝐺 . Then 𝑊𝑛 is 

open. For every non-empty open set U, Lemma 3.1 yields a point 𝑡 ∈ U and 𝑔 ∈ 𝐺 

such that 𝑔(𝑡) <
1

𝑛
 . Hence, 𝑡 ∈ 𝑊𝑛 . That means 𝑊𝑛 is dense. Take                  

𝐷 :=⋂ 𝑊𝑛
∞
𝑛=1 , then 𝐷 is co-meagre. Let 𝑡 ∈ 𝐷, then for all 𝑛 ∈ 𝑁 we get 𝑡 ∈ 𝑊𝑛, 

hence inf
𝑔∈𝐺

𝑔(𝑡) = 0. 

 

Theorem 3.6 [1] Let 𝑋 be a completely regular Hausdorff Baire space and (𝑓𝛼) a 

net in 𝐶𝑝(X, [0,1]). If 𝑓𝛼 
𝑢𝑜
→ 𝑓  then 𝑓𝛼 converges to 𝑓 pointwise on a co-meagre set. 

The converse is true for countable nets.  

 

Proof. Without loss of generality, let choose 𝑓 = 0. Consider that 𝑓𝛼 
𝑢𝑜
→   0 . Then   

|𝑓𝛼 | ∧ 𝟙 
𝑜
→ 0. There exists a net (𝑔𝜆) satisfying 𝑔𝜆↓ 0 and for all λ there is 𝛼0 such 

that |𝑓𝛼 | ∧ 𝟙 ≤ 𝑔𝜆 whenever  𝛼 ≥ 𝛼0 . Fix 𝐺 = {𝑔𝜆}. 

Then inf 𝐺 = inf 𝑔𝜆 = 0. By the previous lemma, there exists a co-meagre set 𝐷 such 

that for all 𝑡 ∈ 𝐷, we get 0 = inf
𝑔∈𝐺

𝑔(𝑡) = inf
𝜆
𝑔𝜆(𝑡). Therefore, lim

𝛼
𝑓𝛼(𝑡) = 0.  

 

For simplicity, we use sequences instead of nets. Assume that a sequence (𝑓𝑛) is 

convergent to zero on a co-meagre set 𝐷. We will use Theorem 3.3 to show that     

𝑓𝑛 
𝑢𝑜
→   0 . Without loss of generality, 𝑓𝑛 ≥ 0 for all 𝑛. Take an open non-empty set U 

and ϵ > 0. For each 𝑚, put 𝑊𝑚 = ⋃ {𝑓𝑛 > ϵ}𝑛≥𝑚 . So, 𝑊𝑚 is open. If 𝑡 ∈ ⋂ 𝑊𝑚𝑚  then 

for all 𝑚 there exists 𝑛 ≥ 𝑚 such that 𝑓𝑛(𝑡) > ϵ, and therefore     𝑡 ∉ 𝐷. This provides 

that ⋂ 𝑊𝑚𝑚  is contained in 𝑋 \ 𝐷, hence is meagre. Since 𝑊𝑚 is open, ∂𝑊𝑚 is 

nowhere dense for every m. We conclude that ⋃ ∂𝑊𝑚𝑚  is meagre. It follows from 

⋂ 𝑊𝑚̅̅ ̅̅̅𝑚 ⊂ (⋂ 𝑊𝑚𝑚 ) ⊂ (⋃ 𝑊𝑚𝑚 ) that ⋂ 𝑊𝑚̅̅ ̅̅̅𝑚   is meagre, so that its complement 

⋃ (𝑋 \𝑊𝑚̅̅ ̅̅̅)𝑚  is co-meagre, hence dense. Therefore, it meets U. Consequently,           

U ∩ (𝑋 \ 𝑊𝑚) ≠ ∅ for some 𝑚. Therefore, the condition in Theorem 3.3 is satisfied. 
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