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Abstract
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our main result is used to solve split feasibility problem and equilibrium
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1 Introduction

Censor and Elfving [1] initially put forward the split feasibility problem
(shortly, SFP ) in finite-Hilbert spaces for modeling inverse problems which
originate from medical image reconstruction and phase retrievals [2]. It is for-
mulated as below: finding a point d∗, such that:

d∗ ∈ C and Gd∗ ∈ Q, (1.1)

where C and Q be nonempty closed and convex subsets of real Hilbert spaces
H1 and H2, respectively. G : H1 → H2 is a bounded linear operator. The
solution set of SFP (1.1) is represented by Γ = {d∗ ∈ C : Gd∗ ∈ Q}. SFP
has attracted a great deal of attention from authors owing to it is an incred-
ibly effective tool in various disciplines such as radiation therapy treatment
planning, signal processing, computer tomograph and image restoration, for
details see [3-4].

If C and Q are the sets of fixed points of two nonlinear mappings S and
T , respectively, C and Q are nonempty closed convex subsets, then SFP (1.1)
is generalized as the split common fixed point problem (shortly, SCFP ) for S
and T . That is, finding a point d∗ ∈ H1 such that:

d∗ ∈ F (S) and Gd∗ ∈ F (T ), (1.2)

where S : H1 → H1, T : H2 → H2 be two nonlinear operators, F (S) and F (T )
represent the fixed point sets of S and T , respectively.

Many researchers have been working on constructing iterative algorithms
for finding solution of SFP and got numerous weak or strong convergence
theorems in Hilbert space. See, for example [5-11] and the references therein.
Recently, attempt to solve SFP in Banach spaces have been concerned by a
number of authors. However, there are some difficulties to surmount, for in-
stance, the projection operators are no longer expansive, and dual mappings
are nonlinear. In 2008, Schöpfer et al. [12] first established weak convergence
theorem for SFP in p-uniformly convex and uniformly smooth real Banach
spaces. Until 2015 and 2016, Tang et al.[13], Tian et al.[14] got strong con-
vergence theorems for SCFP under the assumption of semi-compactness on
mappings. Afterwards, for solving split feasibility problem and fixed point
problem in Banach space, Ma et al.[15] studied the problem of finding a point
d∗ ∈ E1 with the property:

d∗ ∈ F (S) and Gd∗ ∈ Q, (1.3)

where E1 be a Banach space, Q be nonempty closed and convex subsets of
Banach space E2, S : E1 → E1 be a closed quasi-φ-nonexpansive mapping.
They proposed an iterative algorithm to approximate a solution of (1.3) and
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the strong convergence theorem is obtained without the assumption of semi-
compactness on mapping in 2-uniformly convex and 2-uniformly smooth Ba-
nach spaces. These works inspire us to consider the following question.

Question.Can we propose an iterative algorithm converges strongly to a
solution of (1.3) for a more general than quasi-nonexpansive mapping in p-
uniformly convex and uniformly smooth real Banach spaces which p > 1.

So, in this article, we keep on study the problem (1.3) for Bregman to-
tally quasi-asymptotically nonexpansive mapping in p-uniformly convex and
uniformly smooth real Banach spaces. A new iterative algorithm was estab-
lished and strong convergence theorem of proposed algorithm was obtained
and proved in the absence of the assumption of semi-compactness on map-
ping. Our result complement and extend the corresponding results on the
topic in the literature.

2 Preliminaries

Let E be a real Banach space and let 1 < q ≤ 2 ≤ p with 1
p

+ 1
q

= 1. The

modulus of convexity δE : [0, 2]→ [0, 1] is defined by

δE(ε) = inf{1− ‖d+ e‖
2

: ‖d‖ = ‖e‖ = 1, ‖d− e‖ ≥ ε}.

E is said to be uniformly convex if δE(ε) > 0 for any ε ∈ (0, 2]; p-uniformly
convex if there is a constant cp > 0 satisfies δE(ε) ≥ cpε

p for any ε ∈ (0, 2]. The
modulus of smoothness of E: ρE(τ) : [0,∞)→ [0,∞) is defined by

ρE(τ) = sup{‖d+ τe‖+ ‖d− τe‖
2

− 1 : ‖d‖ = ‖e‖ = 1}.

E is said to be uniformly smooth if limn→∞
ρE(τ)
τ

= 0; q-uniformly smooth if
there is a constant Cq > 0 satisfies ρE(τ) ≤ Cqτ

q for any τ > 0. We know
that if E is p-uniformly convex and uniformly smooth, then its dual space E∗

is q-uniformly smooth and uniformly convex. In this condition, the duality
mapping J p

E is one-to-one, single-valued and contents J p
E = (J q

E∗)−1, where
J q
E∗ is the duality mapping of E∗.

Definition 2.1. ([16]) The duality mapping J p
E : E → 2E

∗
is defined by

J p
E(d) = {d∗ ∈ E∗ : 〈d, d∗〉 = ‖d‖p, ‖d∗‖ = ‖d‖p−1},∀d ∈ E.

The duality mapping J p
E is called weak-to-weak continuous if

dn ⇀ d⇒ 〈J p
Edn, e〉 → 〈J

p
Ed, e〉, ∀e ∈ E.
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Lemma 2.2. ([17]) Let d, e ∈ E. If E is q-uniformly smooth, then there
is a constant Cq > 0 with

‖d− e‖q ≤ ‖d‖q − q〈e,J q
E(d)〉+ Cq‖e‖q.

Definition 2.3. There is a Gâteaux differentiable convex function f : E →
R. The Bregman distance related to f is defined by:

∆f (d, e) := f(e)− f(d)− 〈f ′(d), e− d〉, e, d ∈ E.

As is known to all, the duality mapping J p
E is the derivative of the function

fp(d) = 1
p
‖d‖p. For convenience, the ∆fp(d, e) is denoted by ∆p(d, e), then the

Bregman distance related to fp can be written as follows

∆p(d, e) =
1

q
‖d‖p − 〈J p

Ed, e〉+
1

p
‖e‖p

=
1

p
(‖e‖p − ‖d‖p) + 〈J p

Ed, d− e〉

=
1

q
(‖d‖p − ‖e‖p)− 〈J p

Ed− J
p
Ee, e〉.

By the definition of ∆p(·, ·), we have

∆p(d, e) = ∆p(d, w) + ∆p(w, e) + 〈w − e,J p
Ed− J

p
Ew〉, (2.1)

and
∆p(d, e) + ∆p(e, d) = 〈d− e,J p

Ed− J
p
Ee〉. (2.2)

for any d, e, w ∈ E.
Lemma 2.4. ([12]) Let E be a p-uniformly convex space, the following

inequality relationship hold:

τ‖d− e‖p ≤ ∆p(d, e) ≤ 〈d− e,J p
Ed− J

p
Ee〉, d, e ∈ E.

Where τ > 0 is some fixed number.
Evidently, if {dn} and {en} are both bounded sequences of a p-uniformly

convex and uniformly smooth space E, then dn−en → 0 (n→∞) means that
∆p(dn, en)→ 0 as n→∞.

The metric projection

PCd = argmine∈C‖d− e‖, d ∈ E,

is the unique minimizer of the norm distance, which can be described by a
variational inequality:

〈J p
E(d− PCd), w − PCd〉 ≤ 0, ∀w ∈ C. (2.3)
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Where C be a nonempty, closed and convex subset of a strictly convex and
reflexive Banach space E.

Likewise the definition of metric projection, the Bregman projection is
defined as follows:

ΠCd = argmine∈C∆p(d, e), d ∈ E,

it is the unique minimizer of the Bregman distance. The Bregman projection
can also be described by a variational inequality:

〈J p
Ed− J

p
E(ΠCd), w − ΠCd〉 ≤ 0, ∀w ∈ C. (2.4)

from (2.4), we have

∆p(ΠCd, w) ≤ ∆p(d, w)−∆p(d,ΠCd), ∀w ∈ C. (2.5)

Following [18,19], the function Vp : E∗×E → [0,+ ∝) related to fp, which
is defined by

Vp(d̄, d) =
1

q
‖d̄‖q − 〈d̄, d〉+

1

p
‖d‖p,∀d ∈ E, d̄ ∈ E∗.

Obviousely, Vp is nonnegative and

Vp(d̄, d) = ∆p(J p
E∗(d̄), d),∀d ∈ E, d̄ ∈ E∗. (2.6)

Furthermore, by the subdifferential inequality, we have

Vp(d̄, d) + 〈ē,J p
E∗(d̄)− d〉 ≤ Vp(d̄+ ē, d). (2.7)

for all d ∈ E and d̄, ē ∈ E∗ (see [20]). In addition, Vp is convex in the first
variable. Thus,

∆p(J q
E∗(

N∑
i=1

tiJ p
Edi), w) ≤

N∑
i=1

ti∆p(di, w),∀w ∈ E, (2.8)

where {di} and {ti} satisfy {di}Ni=1 ⊂ E, {ti}Ni=1 ⊂ (0, 1) and
∑N

i=1 ti = 1.

Let C be a subset of E and T be a self-mapping of C. A point p ∈ C is
called an asymptotic fixed point of T if C includes a sequence {dn}∞n=1 which

converges weakly to p and limn→∞ ‖dn − Tdn‖ = 0. F̂ (T ) is used to denote
the set of asymptotic fixed points of T .

Definition 2.5. Let C be a subset of E. The set of fixed points of mapping
T denoted by F (T ) = {d ∈ C : Td = d}, A mapping T : C → C is said to be:
(i) Bregman quasi-nonexpansive mapping [21], if F (T ) 6= ∅ and

∆p(Td, d̄) ≤ ∆p(d, d̄), ∀d ∈ C, d̄ ∈ F (T );
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(ii) Bregman relatively nonexpansive [21], if F̂ (T ) = F (T ) and

∆p(Td, d̄) ≤ ∆p(d, d̄), ∀d ∈ C, d̄ ∈ F (T );

(iii)Bregman firmly nonexpansive [22], if

〈J p
E(Td)− J p

E(Te), Td− Te〉 ≤ 〈J p
E(Td)− J p

E(Te), d− e〉;

for any d, e ∈ C, or equivalently,

∆p(Td, Te) + ∆p(Te, Td) + ∆p(d, Td) + ∆p(e, Te) ≤ ∆p(d, Te) + ∆p(e, Td);

(iv) Bregman totally quasi-asymptotically nonexpansive mapping [23], if F (T ) 6=
∅ and there are nonnegative real sequences {νn}, {µn} with νn → 0, µn → 0(as
n → ∞) and a strictly increasing continuous function ζ : R+ → R+ with
ζ(0) = 0 such that

∆p(T
nd, d̄) ≤ ∆p(d, d̄) + νnζ(∆p(d, d̄)) + µn, ∀d ∈ C, d̄ ∈ F (T ).

Lemma 2.6.([23]) Let C be a nonempty, closed and convex subset of
real reflexive Banach space E and f : X → (−∞,+∞] be a Legendre function
which is total convex on bounded subsets of E. Let T : C → C be a closed and
Bregman totally quasi-asymptotically nonexpansive mapping with nonnegative
real sequences {νn}, {µn} with νn → 0, µn → 0 (as n → ∞) and a strictly
increasing continuous function ζ : R+ → R+ with ζ(0) = 0, then the fixed
point set F (T ) of T is a closed and convex subset of C.

Definition 2.7. A mapping T : C → C is said to be closed if for any
sequence dn ⊂ C with dn → d ∈ C and Tdn → e as n→∞, then Td = e.

Definition 2.8. A mapping T : C → C is said to be uniformly L-Lipschitz
continuous, if there exist a constant L > 0 such that‖T nd − T ne‖ ≤ L‖d −
e‖, ∀d, e ∈ C, ∀n ≥ 1.

3 Main Results

Theorem 3.1. Let E1, E2 be two p-uniformly convex and uniformly smooth
real Banach spaces. Let Q be nonempty closed and convex subset of E2.
Let G : E1 → E2 be a bounded linear operators and G∗ : E∗2 → E∗1 be
the adjoint operator of G. Let T : E1 → E1 with C := F (T ) 6= ∅ be a
closed Bregman totally quasi-asymptotically nonexpansive mapping with
nonnegative real sequences {νn}, {µn} and a strictly increasing continuous
function ζ : R+ → R+ such that νn → 0, µn → 0 (as n → ∞), ζ(0) = 0.
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Assume that T is uniformly L-Lipschitz continuous. Let d1 ∈ E1 and C1 = E1,
and {dn} be a sequence generated by


wn = J q

E∗
1
(J p

E1
dn − γnG∗J p

E2
(Gdn − PQGdn)) n ≥ 1

en = J q
E∗

1
[αnJ p

E1
wn + (1− αn)J p

E1
T ndn]

Cn+1 = {u ∈ Cn : ∆p(en, u) ≤ ∆p(dn, u) + δn; ∆p(wn, u) ≤ ∆p(dn, u)}
dn+1 = ΠCn+1d1,

(3.1)
where δn = νnsupη∈Γζ(∆p(dn, η)) + µn, PQ is the metric projection of E2 onto

Q, {αn} ⊂ [k, l] ⊂ (0, 1) and {γn} ⊂ [a, b] ⊂ (0, ( q
Cq‖G‖q )

1
q−1 ). If Γ = {y ∈

F (T ) : Gy ∈ Q} 6= ∅, then the sequence {dn} converges strongly to a point
ΠΓd1.

Proof. We shall divided the proof into four steps.

Step 1. We first prove that Cn is closed and convex for any n ≥ 1.

We know that C1 is closed and convex by C1 = E1. Presuming Cn is closed
and convex. For any u ∈ Cn, we obtain

∆p(en, u) ≤ ∆p(dn, u) + δn ⇔ 〈J p
E1
dn − J p

E1
en, u〉 ≤

1

q
(‖dn‖p − ‖en‖p) + δn,

(3.2)

∆p(wn, u) ≤ ∆p(dn, u)⇔ 〈J p
E1
dn − J p

E1
wn, u〉 ≤

1

q
(‖dn‖p − ‖wn‖p). (3.3)

These indicate that Cn+1 is closed. It is evident that Cn+1 is convex. Therefore,
{dn+1} is well defined.

Step 2. We prove that Γ ⊆ Cn for any n ≥ 1.

Let y ∈ Γ, by (3.1) and Lemma 2.2, we have

∆p(wn, y) = ∆p(J q
E∗

1
(J p

E1
dn − γnG∗J p

E2
(Gdn − PQGdn)), y)

=
1

q
‖J p

E1
dn − γnG∗J p

E2
(Gdn − PQGdn)‖q − 〈J p

E1
dn, y〉

+ γn〈J p
E2

(Gdn − PQGdn), Gy〉+
1

p
‖y‖p

≤ 1

q
‖J p

E1
dn‖q − γn〈J p

E2
(Gdn − PQGdn), Gdn〉

+
Cq(γn‖G‖)q

q
‖J p

E2
(Gdn − PQGdn)‖q − 〈J p

E1
dn, y〉

+ γn〈J p
E2

(Gdn − PQGdn), Gy〉+
1

p
‖y‖p



40 Xuejiao Zi and Zhaoli Ma

=
1

q
‖dn‖p − 〈J p

E1
dn, y〉+

1

p
‖y‖p

+ γn〈J p
E2

(Gdn − PQGdn), Gy −Gdn〉

+
Cq(γn‖G‖)q

q
‖J p

E2
(Gdn − PQGdn)‖q

= ∆p(dn, y) + γn〈J p
E2

(Gdn − PQGdn), Gy −Gdn〉

+
Cq(γn‖G‖)q

q
‖J p

E2
(Gdn − PQGdn)‖q

(3.4)

It follows from (2.3) that

〈J p
E2

(Gdn − PQGdn), Gy −Gdn〉 = −〈J p
E2

(Gdn − PQGdn), Gdn −Gy〉
= −〈J p

E2
(Gdn − PQGdn), Gdn − PQGdn〉

− 〈J p
E2

(Gdn − PQGdn), PQGdn −Gy〉
= −‖(Gdn − PQGdn)‖p

− 〈J p
E2

(Gdn − PQGdn), PQGdn −Gy〉
≤ −‖(Gdn − PQGdn)‖p.

(3.5)
Substituting (3.5) into (3.4), we get

∆p(wn, y) ≤ ∆p(dn, y)− γn‖(Gdn − PQGdn)‖p +
Cq(γn‖G‖)q

q
‖Gdn − PQGdn‖p

= ∆p(dn, y)− (γn −
Cq(γn‖G‖)q

q
)‖Gdn − PQGdn‖p.

(3.6)

Since {γn} ⊂ [a, b] ⊂ (0, ( q
Cq‖G‖q )

1
q−1 ), we get

∆p(wn, y) ≤ ∆p(dn, y). (3.7)

Furthermore, from (3.1), (2.8) and (3.7), we obtain

∆p(en, y) = ∆p(J q
E∗

1
[αnJ p

E1
wn + (1− αn)J p

E1
T ndn], y)

≤ αn∆p(wn, y) + (1− αn)∆p(T
ndn, y)

≤ αn∆p(wn, y) + (1− αn){∆p(dn, y) + νnζ(∆p(dn, y)) + µn}
≤ αn∆p(dn, y) + (1− αn)∆p(dn, y) + νnsupη∈Γζ(∆p(dn, η)) + µn

= ∆p(dn, y) + δn,
(3.8)

where δn = νnsupη∈Γζ(∆p(dn, η)) + µn. (3.7) and (3.8) show that y ∈ Cn+1,
which implies Γ ⊆ Cn+1.

step 3. We show that {dn} is a Cauchy sequence.
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It follows from the definition of Cn, we have dn = ΠCnd1, for all n ≥ 1.
From (2.5) and for all y ∈ Γ, we have

∆p(d1, dn) = ∆p(d1,ΠCnd1)

≤ ∆p(d1, y)−∆p(ΠCnd1, y)

≤ ∆p(d1, y).

(3.9)

This shows that ∆p(d1, dn) is bounded. Hence {dn} is bounded.
For some positive integers m, n with m ≥ n, we have dm = ΠCmd1 ∈ Cm ⊂ Cn
and

∆p(dn, dm) = ∆p(ΠCnd1, dm)

≤ ∆p(d1, dm)−∆p(d1,ΠCnd1)

= ∆p(d1, dm)−∆p(d1, dn).

(3.10)

which implies that ∆p(d1, dm) ≥ ∆p(d1, dn) for all m ≥ n. Therefore, {∆p(d1, dn)}
is nondecreasing and bounded and hence the limit limn→∞∆p(d1, dn) exists.
It follows from (3.10) that ∆p(dn, dm) → 0 as m,n → ∞. From Lemma 2.4
we have ‖dn − dm‖ → 0 as m,n→∞. Hence {dn} is a Cauchy sequence. So,
there exists d∗ ∈ E1 such that dn → d∗ as n→∞.

Step 4. We prove that d∗ ∈ Γ.
Since dn+1 = ΠCn+1d1 ∈ Cn+1 ⊂ Cn, we have

∆p(dn, dn+1) = ∆p(ΠCnd1, dn+1)

≤ ∆p(d1, dn+1)−∆p(d1,ΠCnd1)

= ∆p(d1, dn+1)−∆p(d1, dn).

(3.11)

In addition, limn→∞∆p(d1, dn) exist, hence,

lim
n→∞

∆p(dn, dn+1) = 0. (3.12)

So, by Lemma 2.4, we get

lim
n→∞

‖dn − dn+1‖ = 0. (3.13)

From definition of Cn+1, we have

∆p(en, dn+1) ≤ ∆p(dn, dn+1) + δn; ∆p(wn, dn+1) ≤ ∆p(dn, dn+1),

where δn = νnsupη∈Γζ(∆p(dn, η)) +µn. By ∆p(dn, dn+1)→ 0, νn → 0, µn → 0
as n→∞, we obtain limn→∞∆p(en, dn+1) = 0 and limn→∞∆p(wn, dn+1) = 0.
From Lemma 2.4, we conclude that

lim
n→∞

‖en − dn+1‖ = 0 and lim
n→∞

‖wn − dn+1‖ = 0, (3.14)
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and so

lim
n→∞

‖en − wn‖ = 0, lim
n→∞

‖wn − dn‖ = 0 and lim
n→∞

‖en − dn‖ = 0. (3.15)

From (3.1), we have

‖J p
E1
en − J p

E1
dn‖ = ‖αn(J p

E1
wn − J p

E1
dn) + (1− αn)(J p

E1
T ndn − J p

E1
dn)‖

≥ (1− αn)‖J p
E1
T ndn − J p

E1
dn‖ − αn‖J p

E1
wn − J p

E1
dn‖.

This implies that

(1−αn)‖J p
E1
T ndn−J p

E1
dn‖ ≤ αn‖J p

E1
wn−J p

E1
dn‖+‖J p

E1
en−J p

E1
dn‖. (3.16)

Since J p
E1

is norm-to-norm uniformly continuous, so, from (3.15), (3.16) and
{αn} ⊂ [k, l] ⊂ (0, 1), we have

lim
n→∞

‖T ndn − dn‖ = 0. (3.17)

Note that
‖T ndn − d∗‖ ≤ ‖T ndn − dn‖+ ‖dn − d∗‖,

hence, we have
lim
n→∞

‖T ndn − d∗‖ = 0. (3.18)

On the other hand, by the supposition that T is uniformly L-Lipschitz contin-
uous, thus we get

‖T n+1dn − T ndn‖ ≤ ‖T n+1dn − T n+1dn+1‖+ ‖T n+1dn+1 − dn+1‖
+ ‖dn+1 − dn‖+ ‖dn − T ndn‖
≤ (L+ 1)‖dn+1 − dn‖+ ‖T n+1dn+1 − dn+1‖+ ‖dn − T ndn‖.

(3.19)
From (3.13) and (3.17), we obtain

lim
n→∞

‖T n+1dn − T ndn‖ = 0. (3.20)

Further, we have

‖T n+1dn − d∗‖ ≤ ‖T n+1dn − T ndn‖+ ‖T ndn − d∗‖.

By (3.18) and (2.20), we get

lim
n→∞

‖T n+1dn − d∗‖ = 0, (3.21)

Owing to the closedness of T , it yields that Td∗ = d∗, i.e., d∗ ∈ F (T ). From
(3.6), we obtain

(γn −
Cq(γn‖G‖)q

q
)‖Gdn − PQGdn‖p ≤ ∆p(dn, y)−∆p(wn, y).
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By (3.15), we have
lim
n→∞

‖Gdn − PQGdn‖ = 0. (3.22)

In addition, from (2.3), we get

‖Gd∗ − PQGd∗‖p = 〈J p
E2

(Gd∗ − PQGd∗), Gd∗ − PQGd∗〉
= 〈J p

E2
(Gd∗ − PQGd∗), Gd∗ −Gdn〉

+ 〈J p
E2

(Gd∗ − PQGd∗), Gdn − PQGdn〉
+ 〈J p

E2
(Gd∗ − PQGd∗), PQGdn − PQGd∗〉

≤ 〈J p
E2

(Gd∗ − PQGd∗), Gd∗ −Gdn〉
+ 〈J p

E2
(Gd∗ − PQGd∗), Gdn − PQGdn〉.

By (3.22) and Gdn → Gd∗ as n→∞, we have ‖Gd∗ − PQGd∗‖p → 0(as n→
∞), this implies that Gd∗ ∈ Q . Thus, we conclude that dn → d∗ ∈ Γ.

Since dn = ΠCnd1 and Γ ⊂ Cn, so, by (2.4), we have

〈J p
E1
d1 − J p

E1
dn, y − dn〉 ≤ 0 y ∈ Γ. (3.23)

By setting n→∞ in (3.23), we have

〈J p
E1
d1 − J p

E1
d∗, y − d∗〉 ≤ 0 y ∈ Γ. (3.24)

which implies that d∗ = ΠΓd1. This completes the proof.

4 Application to Split feasibility problem and

equilibrium problem

Here, we use Theorem3.1 to solve the following problem,

find d∗ ∈ E1 such that F (d∗, w) ≥ 0, and Gd∗ ∈ Q, ∀w ∈ E1,
(4.1)

where Q is a nonempty closed and convex subset of E2, E1 and E2 are p-
uniformly convex and p-uniformly smooth real Banach spaces, G : E1 → E2

is a bounded linear operator, F : E1 × E1 → R is a bi-function satisfying the
following conditions (A1)-(A4).

(A1) F (d, d) = 0,∀d ∈ E1 ;

(A2) F is monotone, that is, F (d, e) + F (e, d) ≤ 0, ∀d, e ∈ E1;

(A3) For all d, e, w ∈ E1, limt↓0 F (tw + (1− t)d, e) ≤ F (d, e);
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(A4) For each d ∈ E1, the function e 7−→ F (d, e) is convex and lower semi-
continuous.

The resolvent mapping of F is defined as

ResF (d) = {w ∈ E1 : F (w, e) + 〈e− w,J p
E1
w − J p

E1
d〉 ≥ 0,∀e ∈ E1}.

EP (F ) is the solution set of the equilibrium problem of F (d∗, w) ≥ 0. Then
the following assertions hold [24]:

(a) ResF is single-valued ;

(b) ResF is a Bregman firmly nonexpansive mapping;

(c) F (ResF ) = EP (F );

(d) EP (F ) is closed and convex.

Furthermore, we get F (ResF ) = F̂ (ResF ) from [22] and hence ResFF is
a relatively nonexpansive mapping. So, as a consequence of Theorem 3.1, we
have the following result.

Theorem 4.1 Let E1, E2 be two p-uniformly convex and uniformly smooth
real Banach spaces. Let Q be nonempty closed and convex subsets of E2. Let
G : E1 → E2, be a bounded linear operators and G∗ : E∗2 → E∗1 be the adjoint
operator of G. Let F : E1 × E1 → R be bi-function satisfying the condition
(A1)-(A4) and ResF be the resolvent mapping of F . Let d1 ∈ E1 and C1 = E1,
and {dn} be a sequence generated by

wn = J q
E∗

1
(J p

E1
dn − γnG∗J p

E2
(Gdn − PQGdn)) n ≥ 1

en = J q
E∗

1
[αnJ p

E1
wn + (1− αn)J p

E1
ResFdn]

Cn+1 = {u ∈ Cn : ∆p(en, u) ≤ ∆p(dn, u); ∆p(wn, u) ≤ ∆p(dn, u)}
dn+1 = ΠCn+1d1,

(4.2)

where PQ is the metric projection of E2 onto Q, {αn} ⊂ [k, l] ⊂ (0, 1) and

{γn} ⊂ [a, b] ⊂ (0, ( q
Cq‖G‖q )

1
q−1 ). If Γ = {y ∈ EP (F ) : Gy ∈ Q} 6= ∅, then the

sequence {dn} converges strongly to a point ΠΓd1.
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