International Mathematical Forum, Vol. 18, 2023, no. 3, 121 - 123 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2023.912392

Quasicomponents of Elements and the Partition of a Finite Disconnected Topological Space

Olufemi Sunday Olusa

Department of Mathematical Sciences
Adekunle Ajasin University
Akungba-Akoko
Ondo State, Nigeria

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2023 Hikari Ltd.

Abstract

It is proved that the number of elements in the quasicomponents in a certain finite disconnected topological space divides the number of elements in the space.

Mathematics Subject Classification: 54D05, 03E02

Keywords: Quasicomponent, Connected space, Disconnected space

1 Introduction

The quasicomponent of a point x in a metric space X is defined as the intersection of all clopen (open and closed) subsets of X which contain x([2]). The objective of this paper is to see how this concept is broadened to general topological spaces with a view of getting a result regarding the number of elements in a certain finite topological space.

It is known that a topological space is connected if and only if the only subsets which are clopen are the empty set and the whole space (page 148 of [1]).

In order to ensure a supply of clopen sets therefore, an equivalence relation is defined on a disconnected space. It turns out that the equivalence classes emanating from this relation, which gives a partition of the space, coincides with the quasicomponent Q(x) for each $x \in X$.

122 O. S. Olusa

We conclude that the number of elements in the quasicomponent for a certain finite disconnected topological space divides the number of elements in it.

2 The Quasicomponent as an Equivalence Class

Definition 2.1 Let X be a topological space. The quasicomponent of $x \in X$ is defined by

$$Q(x) = \bigcap_{\substack{C \subset X \ clopen}} C$$
$$x \in C$$

Lemma 2.2 Let X be a disconnected topological space. Define a relation \sim on X by $x \sim y \iff$ whenever C is a clopen set containing x, it also contains y. Then \sim is an equivalence relation.

Proof: Let $x \in X$ and let $x \in C$, C a clopen set $\Rightarrow x \sim x \ \forall \ x \in C$ $\Rightarrow \sim$ is reflexive Suppose $x \sim y$ \Rightarrow Any clopen set C containing x contains y. Let C be a clopen set containing yWe show that $x \in C$ but suppose that $x \notin C$ $\Rightarrow x \in C' = X - C$ Now C' is closed (C is open) and C' is open (C is closed) $\Rightarrow C'$ is also clopen which contain x $\Rightarrow y \in C' \text{ (since } x \sim y)$ This is a contradiction since $y \in C$ The contradiction arose from the assumption that $x \notin C$ Thus any clopen set which contains y will also contain xTherefore $x \sim y \implies y \sim x \ \forall \ x, y \in C$ $\Rightarrow \sim \text{ is symmetric}$ Let $x \sim y$ and $y \sim z$ Let C be a clopen set $\ni x \in C$ $\Rightarrow y \in C \ (x \sim y)$

 $\Rightarrow z \in C \ (y \sim z)$

 $\Rightarrow \sim$ is transitive.

Therefore $x \sim y$, $y \sim z \implies x \sim z$

Hence \sim is an equivalence relation.

Quasicomponents 123

Remark 2.3 (i) $[x] = \{t \in X | x \sim t\}$ is the equivalence class of $x \in X$ under the relation \sim .

- (ii) The set of all equivalence classes under the relation \sim above is denoted by X/\sim and the number of equivalence classes by $o(X/\sim)$
- (iii) The number of elements in an equivalence class for $x \in X$ will be denoted by o([x]). Likewise, o(X) and o(Q(x)) will denote the number of elements in X and the quasicomponent of $x \in X$ respectively.

Lemma 2.4 $[x] = Q(x) \ \forall \ x \in X$

Proof: Let $y \in [x]$

 $\iff x \sim y$

 \iff Any clopen set $C \subset X$ which contains x must also contain y

$$\iff y \in \left(\bigcap_{\substack{C \subset X \text{ clopen} \\ x \in C}}\right)$$

$$\iff y \in Q(x)$$

Hence [x] = Q(x).

Theorem 2.5 If X is a finite disconnected topological space with o(X) = n and $o(Q(x)) = o(Q(y)) = k \ \forall \ x, y \in X$. Then k divides o(X).

Proof: Since \sim is an equivalence relation on X (Lemma 2.2) which is finite with o(X) = n, and $Q(x) = [x] \ \forall \ x \in X$ (Lemma 2.4), it follows that the equivalence classes partitions X. Suppose that $o(X/\sim) = m$; we will have that n = km.

References

- [1] J. Munkres, Topology, Pearson New International Edition, 2014.
- [2] L.G. Oversteegen, and E.D Tymchatyn, On the dimension of certain totally disconnected spaces, *Proc. Amer. Math. Soc.*, **122** (1994), 885 891. https://doi.org/10.1090/s0002-9939-1994-1273515-1

Received: September 12, 2023; Published: October 11, 2023