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Abstract

In this paper, combining line-search technique with viscosity method, inertial al-

gorithm and subgradient algorithm, we propose a new iterative algorithm that does

not involve in projection operators to solve the nonmonotone and non-Lipschitzian

equilibrium problem in Hilbert space and obtain the strong convergence theorem.

In addition, we also use our main result to the variational inequality and the convex

minimization problem, and obtain the corresponding strong convergence theorems.
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1. Introduction

Let C be a nonempty closed convex subset of real Hilbert space H with the
inner product 〈·, ·〉 and the induced norm ‖·‖, f : C×C → R be an equilibrium
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bifunction, the equilibrium problem (EP ) associated f and C, refer to Blum
and Oettli [1] is to find a point x∗ ∈ C such that

(1.1) f(x∗, y) ≥ 0, ∀y ∈ C.

The solution set of EP (f, C) is denoted by SE. In addition, the Minty equi-
librium problem [2,3] consists in finding a point x∗ ∈ C such that

f(y, x∗) ≤ 0, ∀y ∈ C,

which is denoted by MEP (f, C) and its solution set is denoted by SM . It is
well known that the inclusion SM ⊂ SE holds provided that f is jointly weakly
continuous on C × C, this means SE 6= ∅ if SM 6= ∅.

The equilibrium problem is an important problem in the fields of nonlin-
ear analysis and optimization. In recent years, equilibrium problem is widely
used to solve optimization problem, variational inequality problem, saddle
point problem, Nash equilibrium problem of non-cooperative game theory,
fixed point problem, complementary problem and minimax problem, etc (See
[1, 4–12]). For example, if the equilibrium bifunction f(x, y) = 〈A(x), y − x〉
for every x, y ∈ C, where A : C → H is a continuous mapping, the equilibrium
problem is reduced to the variational inequality problem.

It is difficult to obtain the exact solution for most nonlinear problems.
Therefore, constructing a reasonable iterative algorithm is the most commonly
used method to solve these problems.

It is well known that the solution of EP (f, C) is equivalent to the solution
of the following strongly convex programming problem:

min{λf(x, y) +
1

2
‖x− y‖2 : y ∈ C}, where λ > 0.

To solve the solution of EP (f, C), when f is strong montone and Lips-
chitzian, Mastroeni [13] introduced the following iteration method and proved
that it converges to a solution of EP (f, C):

x0 ∈ C, xk+1 = arg min{λf(xk, y) +
1

2
‖xk − y‖2 : y ∈ C}, where λ > 0.

In 2007, Takahashi, et al. [14] introduced the following algorithm combining
viscosity algorithm with proximal method to solve the equilibrium problem:
give x0 ∈ H, compute, for all n ∈ N,{

zn ∈ C such that f(zn, y) + 1
rn
〈y − zn, zn − xn〉 ≥ 0 ∀y ∈ C,

xn+1 = θng(xn) + (1− θn)S(zn),

where g is a contraction mapping on C and f is monotone. They proved that
the sequence {xn} generated by this iteration scheme converges strongly to
some x∗ ∈ SE.
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Further when f is pseudomonotone and Lipschitzian, Flam and Antipin [15]
introduced the following iteration method: x0 ∈ C,

yk = arg min{λkf(xk, y) + 1
2
‖xk − y‖2 : y ∈ C},

xk+1 = arg min{λkf(yk, y) + 1
2
‖xk − y‖2 : y ∈ C},

where λk > 0, they proved that the sequence {xk} generated by this iteration
scheme weakly converges to a solution of EP (f, C).

By using line-search technique and viscosity method, Vuone, et al. [16] pro-
posed the following algorithm 1 to solve the solution of EP (f, C), where f
is pseudomonotone and jointly weakly continuous, and proved that the iter-
ative sequence generated by algorithm 1 converges strongly to a solution of
EP (f, C):

Algorithm 1.

Step 0. Choose α ∈ (0, 2), γ ∈ (0, 1) and the sequences {αn} ⊂ [0, 1), {βn} ⊂
(0, 1) and {λn} ⊂ (0, 1].

Step 1. Let x0 ∈ C. Set n = 0
Step 2. Solve the strongly convex program min

y∈C

{
λnf(xn, y) + 1

2
‖y − xn‖2

}
to obtain the unique solution yn.

Step 3. If yn = xn, then set vn = xn and go to Step 4. Otherwise
Step 3.1. Find m the smallest non-negative integer such that{

vn,m = (1− γm)xn + γmyn
f(vn,m, xn)− f(vn,m, yn) ≥ α

2λn
‖xn − yn‖2.

Step 3.2. Set ρn = γm, vn = vn,m, and go to Step 4.
Step 4. Select gn ∈ ∂2f(vn, xn) and compute zn = PC∩Hn(xn), where

Hn = {x ∈ H|〈gn, xn − x ≥ f(vn, xn)〉}.
Step 5. Compute xn+1 = (1− βn)tn + βnStn, with tn = PC(zn − αnFzn).
Step 6. Set n := n+ 1, and go to Step 2.

In 2015, Dinh, et al. [17] proposed a projection algorithm to solve the solu-
tion of EP (f, C) which is based on Bregman distance and Armijo-linesearch
technique in Euclidean space and obtained the convergence of the iterative
algorithm. In 2016, using Armijo-linesearch technique and projection algo-
rithm, Dinh, et al. [18] introduced a new iterative algorithm for nonmonotone
function f . In 2020, Deng and Fang [19] introducted the following algorithm
2 with the assumption that f is nonmontone and non-Lipschitzian:

Algorithm 2.

Step 0. Take x0 ∈ C, choose parameters θ ∈ (0, 1) and ρ > 0, and set k = 0
and B0 = C.
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Step 1. Solve the strongly convex program

min{f(xk, y) +
ρ

2
‖y − xk‖2 : y ∈ C}.

to obtain its unique solution yk. If yk = xk, stop. xk is a solution of
EP (f, C). Otherwise, go to Step 2.

Step 2. (Armijo-linesearch) Find mk as the smallest positive integer m
satisfying  zk,m = (1− θm)xk + θmyk,

gk,m ∈ ∂2f(zk,m, zk,m),
〈gk,m, xk − yk〉 ≥ ρ

2
‖xk − yk‖2.

Step 3. Set θk = θmk
, zk = zk,mk

, gk = gk,mk
. Take ωk ∈ ∂2f(zk, xk) and

Hk = {x ∈ H : 〈ωk, xk − x〉 ≥ f(zk, xk)}.

Step 4. Compute σk = f(zk,xk)
‖ωk‖2

and

uk = PC∩Hk
(xk − γkσkωk).

Step 5. Take Bk+1 = {x ∈ Bk : ‖x− uk‖ ≤ ‖x− xk‖} and compute

xk+1 = PBk+1
(x0).

Set n := n+ 1 and go to Step 1.

Although the algorithm 2 does not depend on monotonicity and Lipschitz-
type property of the equilibrium function f and has strong convergence, it
needs to compute two projections at each iteration step. Therefore, we focus
on constructing a new iterative algorithm which does not involve projections
for the equilibrium function without monotonicity and Lipschitzian property.

2. Preliminaries

In this section, we show some basic definitions and common lemmas that
will be used in subsequent chapters.

Let H be a real Hilbert space and C be a non-empty closed convex subset
of H. We use ⇀ and → to describe weak convergence and strong convergence
respectively.

For any x, y ∈ H and α ∈ R, clearly,

(2.1) ‖x+ y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2,

and

(2.2) ‖αx+ (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2.

Lemma 2.1. (Lemma 1 in [19]) The following properties hold:

(i) z = PC(x) if and only if 〈x− z, y − z〉 ≤ 0, ∀y ∈ C;
(ii) ‖PC(x)− PC(y)‖2 ≤ ‖x− y‖2 − ‖PC(x)− x+ y − PC(y)‖2, ∀x, y ∈ C.
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Definition 2.2. (Definition 1 in [19]) A function f : H→ [−∞,+∞] is said to
lower semicontinuous at x ∈ H if for any sequence {xk} , which converges to x,
the f(x) ≤ lim inf

k→∞
f(xk) holds. A function f said to be upper semicontinuous

at x ∈ H if −f is lower semicontinuous at x. If f is lower semicontinuous and
upper semicontinuous at x ∈ H, then it is continuous at x ∈ H. Furthermore,
f is continuous on C if it is continuous at each x ∈ C ⊂ H.

Definition 2.3. (Definition 2.1 in [18]) A bifunction f : C × C → R is said
to be jointly weakly continuous on C × C if for all x, y ∈ C and sequences
{xk}, {yk} in C weakly converging to x and y, respectively, then f(xk, yk)
converges to f(x, y) as k →∞.

To solve the solution of EP (f, C), we need to make the following assump-
tions:

(A1) f(·, y) is convex on C for each y ∈ C;
(A2) f is jointly weakly continuous on C × C;
(A3) f is nonmonotone and non-Lipschitzian;
(A4) SM 6= ∅.

Definition 2.4. (Definition 3 in [19]) Let f : H×H→ R be a function such
that f(x, ·) is convex for all x ∈ H. For x, y ∈ H, the subdifferential ∂2f(x, y)
of f(x, ·) at y is defined by

∂2f(x, y) = {β ∈ H : f(x, z)− f(x, y) ≥ 〈β, z − y〉, ∀z ∈ H}.

Lemma 2.5. (Lemma 2 in [19]) Let f(x, y) be a convex differentiable function
with respect to y at x = x∗ ∈ C and ρ > 0. Then x∗ is a solution of EP (f, C)
if and only if it is a solution of the auxiliary equilibrium problem:

Find x∗ ∈ C : f(x∗, y) +
ρ

2
‖y − x∗‖2 ≥ 0, ∀y ∈ C.

Lemma 2.6. (Lemma 2.5 in [18]) With assumptions (A1) and (A2), if {zk} ⊂
C is a sequence converging strongly to z and the sequence {wk} ⊆ ∂2f(zk, zk),
converges weakly to w, then w ∈ ∂2f(z, z).

Lemma 2.7. (Proposition 2.1 in [20]) With assumptions (A1) and (A2), for
x, y ∈ C and sequence {xk}, {yk} in C converging weakly to x and y respec-
tively, it follows that for any ε > 0, there exist ξ > 0 and kξ ∈ N such that

∂2f(xk, yk) ⊂ ∂2f(x, y) +
ε

ξ
B,

for every k ≥ kε, where B denotes the closed unit ball in H.

Lemma 2.8. (Lemma 2.6 in [19]) With assumptions (A1) and (A2), if {xk} ⊂
C is bounded, ρ > 0, and {yk} is a sequence such that

yk = arg min{f(xk, y) +
ρ

2
‖y − xk‖2 : y ∈ C},

then {yk} is bounded.
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Lemma 2.9. (Lemma 1 in [21]) Assume that {sn}∞n=0 is a sequence of non-
negative real numbers such that

sn+1 ≤ (1− λn)sn + λnδn,∀n ≥ 0,

sn+1 ≤ sn − µn + φn, ∀n ≥ 0,

where {λn} is a sequence in (0,1), {φn}∞n=0 is a sequence of nonnegative real
numbers, and {δ}∞n=0, {φn}∞n=0 are two real sequences such that

(i)
∞∑
n=0

λn =∞;

(ii) lim
n→∞

φn = 0;

(iii) lim
k→∞

µnk
= 0 implies lim sup

n→∞
δnk
≤ 0 for any subsequence {nk}∞k=0 ⊂

{n}∞n=0. Then lim
n→∞

sn = 0.

3. Main results

Motivated by the work of Deng and Fang [19], when equilibrium bifunction
f is nonmonotone and non-Lipschitzian in Hilbert spaces, we combine the
viscosity algorithm with the subgradient algorithm to construct a new iterative
algorithm 3 to approximate a solution of the equilibrium problem. The strong
convergence of the algorithm 3 is proved by referring to the proof methods in
Thong [21] and Xie [22]. The new algorithm does not depend on the projection
operator.

Before giving the algorithm, we need to make some assumptions:
(B1) T : C → H is a contraction mapping with a constant c ∈ [0, 1);
(B2) {αn}, {ηn} are two sequencesa in [0,1) statisfying the following condi-

tions:

lim
n→∞

αn = 0, lim
n→∞

ηn = 0,
∞∑
n=1

ηn =∞.

(B3) {γn} is a sequence in (0,2) and statisfies lim inf
n→∞

γn(2− γn) > 0;

(B4) {τn} ⊂ [0, θ) for some θ > 0 is a positive sequence such that lim
n→∞

τn
ηn

= 0.

(B5) f(·, ·) is a equilibrium bifunction and statisfies assumption A1-A3.

Algorithm 3.

Initialization. Give η > 0. arbitrarily chosen x0, x1 ∈ C.
Iterative Steps. Calculate xn+1 as follows:
Step 1. Give the sequence xn−1 and xn(n ≥ 0), choose θn such that 0 ≤

θn ≤ θn, where

θn =

{
min{θ, τn

‖xn−xn−1‖} if xn 6= xn−1,

θ if otherwise.
(3.1)

Step 2. Set wn = xn + θn(xn − xn−1).
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Step 3. Solve the strongly convex program:

(3.2) yn = arg min{f(wn, y) +
ρ

2
‖y − wn‖2 : y ∈ C}.

Get the solution yn. If yn = wn, stop. wn is an element of SE. Otherwise,
go to Step 4.

Step 4. (Line-search) Find the smallest positive integer m to satisfy:

(3.3)

{
un,m = (1− αm)wn + αmyn,
f(un,m, wn)− f(un,m, yn) ≥ ρ

2
‖wn − yn‖2.

Step 5. Set αn = αn,m, un = un,m, Let dn ∈ ∂2f(un, wn) and satisfy:

(3.4) 〈wn − y, dn〉 ≥ f(un, wn),∀y ∈ C.

Step 6. Compute zn = wn − γnendn, where en = f(un,wn)
‖dn‖2 .

Step 7. Compute xn+1 = (1− ηn)zn + ηnT (zn).
Set n := n+ 1 and go to Step 1.

Lemma 3.1. The line-search rule (3.3) is well defined when assume A1-A4,
B2 hold and wn 6= yn.

Proof. Assume that (3.3) is not true. So there exists non-negative integer m
such that: {

un,m = (1− αm)wn + αmyn,
f(un,m, wn)− f(un,m, yn) < ρ

2
‖wn − yn‖2.

Since lim
m→∞

αm = 0, we have un,m → wn(m → ∞). Set un,m = wn. Since f is

jointly weakly continuous and f(wn, wn) = 0, we have

f(wn, yn) +
ρ

2
‖wn − yn‖2 ≥ 0.

On the other hand, since yn is a solution of the strongly convex programming
problem, it can be obtained

f(wn, yn) +
ρ

2
‖wn − yn‖2 ≤ f(wn, y) +

ρ

2
‖wn − y‖2,∀y ∈ C.

we set y = wn and get f(wn, yn) + ρ
2
‖wn− yn‖2 ≤ 0, namely, ρ

2
‖wn− yn‖2 = 0,

which implies that wn = yn, we get contradiction. �

Lemma 3.2. If the algorithm stops at some iteration points wn, Then wn is
an element in SE.

Proof. When the algorithm 3 stops at some iteration points wn, which means
yn = wn. Due to f(wn, wn) = 0, so

f(wn, yn) +
ρ

2
‖yn − wn‖2 = 0.
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Since yn is a solution of the strongly convex programming problem, the
following holds:

f(wn, yn) +
ρ

2
‖wn − yn‖2 ≤ f(wn, y) +

ρ

2
‖wn − y‖2,∀y ∈ C.

Thus we have f(wn, y)+ ρ
2
‖y−wn‖2 ≥ 0. By Lemma 2.5, we have wn ∈ SE. �

Lemma 3.3. If the assumption A1-A4 hold, then the dn in algorithm 3 exists.

Proof. If SM 6= ∅, it means that there exists x∗ ∈ SM , such that f(y, x∗) ≤ 0
for any y ∈ C. Set y = un, we have f(un, x

∗) ≤ 0.
Taking e ∈ ∂2f(un, wn), from the convexity of f(un, ·), we get

f(un, y)− f(un, wn) ≥ 〈e, y − wn〉, ∀y ∈ C.
Set y = x∗ and e = dn, then we have 〈dn, wn − x∗〉 ≥ f(un, wn)− f(un, x

∗) ≥
f(un, wn). Hence, the dn in algorithm 3 exists. �

Lemma 3.4. Let {wn} and {yn} be the two sequences generated by algorithm
3. If wnk

⇀ w as k →∞ and lim
k→∞
‖ynk

− wnk
‖ = 0, then w ∈ SE.

Proof. Let iC be the indicator function of C, i.e.

iCy =

{
0 y ∈ C,
∞ y 6∈ C.

From the definition of yn in algorithm 3, we get

yn = arg min{f(wn, y) +
ρ

2
‖y − wn‖2 + iCy}.

According to generalized Fermat’s theorem, we have

0 ∈ ∂2f(wn, yn) + ρ(yn − wn) +NC(yn),

where NC(yn) is the norm cone of C at yn, which is defined by

NC(yn) = {ζ ∈ H : 〈ζ, y − yn〉 ≤ 0, ∀y ∈ C}.
Namely, there exists β ∈ ∂2f(wn, yn) such that 0 = β + ρ(yn − wn) + ζ, so
β = ρ(wn − yn)− ζ.

On the other hand, due to β ∈ ∂2f(wn, yn), we have

f(wn, y)− f(wn, yn) ≥ 〈β, y − yn〉
= 〈ρ(wn − yn − ζ), y − yn〉
= 〈ρ(wn − yn), y − yn〉 − 〈ζ, y − yn〉.

Since wnk
⇀ w and lim

k→∞
‖ynk

− wnk
‖ = 0, we get ynk

⇀ w. Taking the limit

as k →∞, since f be jointly weakly continuous, we obtain

f(w, y)− f(w,w) ≥ ρ〈w − w, y − w〉 = 0,

this implies that
f(w, y) ≥ 0, ∀y ∈ C.

Therefore w ∈ SE. �
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Theorem 3.5. Let {xn} be the sequence generated by algorithm 3, assume
that A1-A4 and B1-B4 hold. Then the sequence {xn} converges strongly to an
element q ∈ SE, where q = PSE

(T (q)).

Proof. We divide the proof into six claims.
Claim 1. For any certain point p ∈ SE, the following inequality holds:

‖zn − p‖2 ≤ ‖wn − p‖2 −
2− γn
γn
‖zn − wn‖2.

Indeed, by (3.4), we have

(3.5) 〈wn − p, dn〉 ≥ f(un, wn) = en‖dn‖2.

It follows from the definition of zn and (3.5) that

‖zn − p‖2 = ‖wn − γnendn − p‖2

= ‖wn − p‖2 − 2γnen〈wn − p, dn〉+ γ2ne
2
n‖dn‖2

≤ ‖wn − p‖2 − γn(2− γn)(en‖dn‖)2

= ‖wn − p‖2 −
2− γn
γn
‖zn − wn‖2.

(3.6)

Therefore, the claim 1 holds.
Claim 2. We prove that the inequality ‖wn − yn‖2 ≤ 2

ρ(γnen)2
‖zn − wn‖2

holds.
By line-search technique (3.3), we get

‖wn − yn‖2 ≤
2

ρ
(f(un, wn)− f(un, yn))

≤ 2

ρ
〈wn − yn, dn〉 ≤ ‖wn − yn‖‖dn‖.

(3.7)

Thus, we have

ρ

2
‖wn − yn‖ ≤ ‖dn‖.(3.8)

From the definition of zn and (3.8), we get

‖zn − wn‖2 = γ2ne
2
n‖dn‖2 ≥

ργ2ne
2
n

2
‖wn − yn‖2.(3.9)

It follow from (3.9) that ‖wn − yn‖2 ≤ 2
ρ(γnen)2

‖zn − wn‖2, so the claim 2 is

proved.
Claim 3. Next, we prove that the {xn} is bounded.

Indeed, according to claim 1, we have

‖zn − p‖ ≤ ‖wn − p‖.(3.10)
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Thus

‖xn+1 − p‖ = ‖(1− ηn)zn + ηnT (zn)‖
= ‖(1− ηn)(zn − p) + ηn(T (zn − p))‖
≤ (1− ηn)‖zn − p‖+ ηn‖T (zn)− p‖
≤ (1− ηn)‖zn − p‖+ ηn‖T (zn)− T (p)‖+ ηn‖T (p)− p‖
≤
(
1− ηn(1− c)

)
‖zn − p‖+ ηn‖T (p)− p‖

≤
(
1− ηn(1− c)

)
‖wn − p‖+ ηn‖T (p)− p‖.

(3.11)

By (3.1), we have θn‖xn − xn−1‖ ≤ τn for all n ≥ 1. In addition, since
lim
n→∞

τn
ηn

= 0, we have lim
n→∞

θn
ηn
‖xn−xn−1‖ ≤ lim

n→∞
τn
ηn

= 0. Therefore, there exists

a contant M1 ≥ 0, such that

θn
ηn
‖xn − xn−1‖ ≤M1, ∀n ≥ 1.(3.12)

By the definition of wn and (3.12), we get

‖wn − p‖ = ‖xn + θn(xn − xn−1)− p‖
≤ ‖xn − p‖+ θn‖xn − xn−1‖

= ‖xn − p‖+ ηn ·
θn
ηn
‖xn − xn−1‖

≤ ‖xn − p‖+ ηnM1.

(3.13)

Substitute (3.13) into (3.11), we have

‖xn+1 − p‖ ≤
(
1− ηn(1− c)

)
‖wn − p‖+ ηn‖T (p)− p‖

≤
(
1− ηn(1− c)

)
(‖xn − p‖+ ηnM1) + ηn‖T (p)− p‖

=
(
1− ηn(1− c)

)
‖xn − p‖+ (1− ηn(1− c))ηnM1 + ηn‖T (p)− p‖

≤
(
1− ηn(1− c)

)
‖xn − p‖+ ηnM1 + ηn‖T (p)− p‖

=
(
1− ηn(1− c)

)
‖xn − p‖+ ηn(1− c) · M1 + ‖T (p)− p‖

1− c

≤ max

{
‖xn − p‖,

M1 + ‖T (p)− p‖
1− c

}
≤ max

{
‖xn−1 − p‖,

M1 + ‖T (p)− p‖
1− c

}
≤ · · ·

≤ max

{
‖x0 − p‖,

M1 + ‖T (p)− p‖
1− c

}
.

(3.14)

It implies that the sequence {xn} is bounded.
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Claim 4. We prove that

2− γn
γn
‖zn − wn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + ηnM4.(3.15)

Indeed, from the definition of xn+1, we have

‖xn+1 − p‖2 ≤ ‖(1− ηn)zn + ηnT (zn)− p‖2

= ‖(1− ηn)(zn − p) + ηn(T (zn)− p)‖2

= (1− ηn)‖zn − p‖2 + ηn‖T (zn)− p‖2 − ηn(1− ηn)‖zn − T (zn)‖2

≤ (1− ηn)‖zn − p‖2 + ηn‖T (zn)− p‖2

≤ (1− ηn)‖zn − p‖2 + ηn(‖T (zn − T (p))‖+ ‖T (p)− p‖)2

≤ (1− ηn)‖zn − p‖2 + ηn
(
(1− c)‖zn − p‖+ ‖T (p)− p‖

)2
≤ (1− ηn)‖zn − p‖2 + ηn(‖zn − p‖+ ‖T (p)− p‖)2

= ‖zn − p‖2 + ηn(2‖zn − p‖‖T (p)− p‖+ ‖T (p)− p‖2).

(3.16)

From claim 3, we can get

‖zn − p‖ ≤ ‖wn − p‖ ≤ ‖xn − p‖+ ηnM1.

By the assumption B3, we have lim
n→∞

ηn = 0. So ‖zn − p‖ is bouned, i.e. there

exists constant N such that ‖zn − p‖ ≤ N , Further we get

‖xn+1 − p‖2 ≤ ‖zn − p‖2 + ηnM2,

where M2 := 2N‖T (p)− p‖+ ‖T (p)− p‖2.
Form claim 1 and (3.13), we get

‖zn − p‖2 ≤ ‖wn − p‖2 −
2− γn
γn
‖zn − wn‖2,(3.17)

and

‖wn − p‖2 ≤ (‖xn − p‖+ ηnM1)
2

= ‖xn − p‖2 + ηn(2M1‖xn − p‖+ ηnM
2
1 )

≤ ‖xn − p‖2 + ηnM3,

(3.18)

where M3 := 2M1‖xn − p‖+ ηnM
2
1 .

It follows from (3.16), (3.17) and (3.18) that

‖xn+1 − p‖2 ≤ ‖wn − p‖2 −
2− γn
γn
‖zn − wn‖2 + ηnM2

≤ ‖xn − p‖2 −
2− γn
γn
‖zn − wn‖2 + ηnM4,

(3.19)

where M4 := M2 +M3. The proof of claim 4 is completed.
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Claim 5. We prove that

‖xn+1 − p‖2 ≤
(
1− ηn(1− c)

)
‖xn − p‖2

+ ηn(1− c)
[

2

1− c
〈T (p)− p, xn+1 − p〉+

3M

1− c
· θn
ηn
‖xn − xn+1‖

]
.

By the definition of xn+1 and (3.10), we have

‖xn+1 − p‖2 = ‖(1− ηn)zn + ηnT (zn)− p‖2

= ‖(1− ηn)(zn − p) + ηn(T (zn)− T (p)) + ηn(T (p)− p)‖2

≤ ‖(1− ηn)(zn − p) + ηn(T (zn)− T (p))‖2 + 2ηn〈T (p)− p, xn+1 − p〉
≤ (1− ηn)‖zn − p‖2 + ηn‖T (zn)− T (p)‖2 + 2ηn〈T (p)− p, xn+1 − p〉
≤ (1− ηn)‖zn − p‖2 + ηnc

2‖zn − p‖2 + 2ηn〈T (p)− p, xn+1 − p〉
≤ (1− ηn(1− c))‖zn − p‖2 + 2ηn〈T (p)− p, xn+1 − p〉
≤ (1− ηn(1− c))‖wn − p‖2 + 2ηn〈T (p)− p, xn+1 − p〉.

(3.20)

In addition, from the definition of wn, we have

‖wn‖2 = ‖xn + θn(xn − xn−1)− p‖2

= ‖xn − p‖2 + 2θn〈xn − p, xn − xn−1〉+ θ2n‖xn − xn−1‖2

≤ ‖xn − p‖2 + 2θn‖xn − p‖‖xn − xn−1‖+ θ2n‖xn − xn−1‖2.
(3.21)

So, combining (3.20) with (3.21), we obtain

‖xn+1 − p‖2 ≤ (1− ηn(1− c))
[
‖xn − p‖2 + 2θn‖xn − p‖‖xn − xn−1‖

+ θ2n‖xn − xn−1‖2
]

+ 2ηn〈T (p)− p, xn+1 − p〉
= (1− ηn(1− c))‖xn − p‖2 + 2θn(1− ηn(1− c))‖xn−p‖‖xn − xn−1‖
+ θ2n(1− ηn(1− c))‖xn − xn−1‖2 + 2ηn〈T (p)− p, xn+1 − p〉
≤ (1− ηn(1− c))‖xn − p‖2 + 2θn‖xn − p‖‖xn − xn−1‖
+ θ2n‖xn − xn−1‖2 + 2ηn〈T (p)− p, xn+1 − p〉

≤ (1− ηn(1− c))‖xn − p‖2 + ηn(1− c)
[ 2

1− c
〈T (p)− p, xn+1 − p〉

]
+ 3Mθn‖xn − xn−1‖

≤ (1− ηn(1− c))‖xn − p‖2 + ηn(1− c)
[ 2

1− c
〈T (p)− p, xn+1 − p〉

+
3M

1− c
· θn
ηn
‖xn − xn−1‖

]
,

(3.22)

where M = sup
n∈N
{‖xn − p‖, θ‖xn − xn−1‖}.

Claim 6. We prove that {xn} converges strongly to q, where q = PSE
(T (q)).
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Indeed, we set

sn = ‖xn − q‖, λn = ηn(1− c),

δn =
2

1− c
〈T (q)− q, xn+1 − q〉+

3M

1− c
· θn
ηn
‖xn − xn−1‖,

µn =
2− γn
γn
‖zn − wn‖, φn = ηnM4.

By combining Lemma 2.9 with claim 4 and claim 5, we have

sn+1 ≤ (1− λn)sn + λnδn,

sn+1 ≤ sn − µn + φn.

It is easy to prove that condition (i) and (ii) of Lemma 2.9 are satisfied. By

(B1), we have
∞∑
n=0

λn =∞ and

lim
n→∞

φn = 0.

Next, we just have to prove lim sup
k→∞

δnk
≤ 0.

From lim
k→∞

µnk
= 0, we get

lim
k→∞
‖znk

− wnk
‖ = 0.(3.23)

By claim 2, we have

lim
k→∞
‖wnk

− ynk
‖ = 0.(3.24)

By using lim
n→∞

ηn = 0 and xn+1 = (1− ηn)zn + ηnT (zn), we get

lim
k→∞
‖xnk+1 − znk

‖ = lim
k→∞

ηnk
‖znk

− T (znk
)‖ = 0,(3.25)

and

lim
k→∞
‖xnk

− wnk
‖ = lim

k→∞
θnk
‖xnk

− xnk−1‖ = lim
k→∞

ηnk
· θnk

ηnk

‖xnk
− xnk−1‖ = 0.(3.26)

Furthermore, we get

‖xnk+1 − xnk
‖ ≤ ‖xnk+1 − znk

‖+ ‖znk
− wnk

‖+ ‖wnk
− xnk

‖ → 0.(3.27)

From claim 3, we known that {xnk
} is bounded. So there exists a subsequence

{xnkj
} of {xnk

}, which converges weakly to some w ∈ H, such that

lim sup
k→∞

〈T (q)− q, xn+1 − q〉 = lim
j→∞
〈T (q)− q, xnkj

− q〉 = 〈T (q)− q, w − q〉.(3.28)

From (3.26), we known that wnkj
⇀ w. Therefore it follows from (3.24) and

Lemma 3.4 that w ∈ SE. Further from (3.28), we have

lim sup
k→∞

〈T (q)− q, xnk
〉 = 〈T (q)− q, w − q〉 ≤ 0.(3.29)
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Combining (3.27) with (3.29), we get

lim sup
k→∞

〈T (q)− q, xnk+1 − q〉

≤ lim sup
k→∞

〈T (q)− q, xnk+1 − xnk
〉+ lim sup

k→∞
〈T (q)− q, xnk

− q〉

≤ 0.

(3.30)

Hence, by Lemma 2.9, we conclude that

lim
n→∞

‖xn − q‖ = 0.

The proof of the Theorem 3.5 is completed. �

4. Applications

In this section, we apply the main results to solve variational inequality
problem and convex minimization problem in Hilbert spaces.

(I) Application to the variational inequality problem

Let C be a nonempty closed convex subset of real Hilbert space H with the
inner product 〈·, ·〉 and the induced norm ‖ · ‖. Assume that A : C → H is a
mapping. Set f(x, y) = 〈A(x), y − x〉, the equilibrium problem reduces to the
variational inequality problem: find x∗ ∈ C such that

〈A(x∗), y − x∗〉 ≥ 0 for every y ∈ C.
The set of solution of the variational inequality problem is denoted SV I . In
order to obtain the corresponding algorithm 4 and Theorem 4.1, we assume
that the following assumptions on A hold:

(C1) A is convex and subdifferentiable on H;
(C2) A is weakly continuous for on C, i.e if {xn} is a sequences in C and

xn ⇀ x, then A(xn)→ A(x);
(C3) The set solution of 〈Ay, x∗ − y〉 ≤ 0 is non-empty.

Algorithm 4.

Initialization. Give η > 0.Let x0, x1 ∈ C be arbitrary.
Iterative Steps. Calculate xn+1 as follows:
Step 1. Give the iterates xn−1 and xn(n ≥ 0), choose θn such that 0 ≤ θn ≤

θn, where

θn =

{
min{θ, τn

‖xn−xn−1‖} if xn 6= xn−1,

θ if otherwise.
(4.1)

Step 2. Set wn = xn + θn(xn − xn−1).
Step 3. Compute

yn = PC(wn −
1

ρ
A(wn)).
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Get the solution yn. If yn = wn, stop. wn is a element of SV I . Otherwise,
go to Step4.

Step4. (line-search) Find mn in the smallest positive integer m to satisfy:{
un,m = (1− αm)wn + αmyn,
〈A(un,m), wn − yn〉 ≥ ρ

2
‖wn − yn‖2.

Step5. Set αn = αn,m, un = un,m, Let dn ∈ ∂2〈A(un), wn − un〉 and satisfy
the following condition:

〈wn − y, dn〉 ≥ 〈A(un), wn − un〉,∀y ∈ C.

Step6. Compute zn = wn − γnendn, where en = 〈A(un),wn−un〉
‖dn‖2 .

Step7. Compute xn+1 = (1− ηn)zn + ηnT (zn).
Set n := n+ 1 and go to Step1.

Theorem 4.1. Let {xn} be the sequence generated by algorithm 4 and as-
sume that C1-C2 and B1-B4 hold. The sequence {xn} converges strongly to an
element p ∈ SV I , where p = PSV I

(T (p)).

(II) Application to the convex minimization problem

Let ϕ : C → R be a convex and differentiable function. The convex mini-
mization problem is as follows:

minimize ϕ(x), where x ∈ C.

The set of solution of the convex minimization problem is denoted by SCMP .
It is well known that a point x∗ ∈ C is a solution of the convex minimization
problem if and only if it is a solution of the following variational inequality
problem (see [23]):

〈∇ϕ(x∗), y − x∗〉 ≥ 0, ∀y ∈ C.

Obviously, set A(x) = ∇ϕ(x), the convex minimization problem reduces
to the variational inequality problem. In order to obtain the corresponding
algorithm 5 and Theorem 4.2, we assume that the following assumptions on ϕ
hold:

(D1) ∇ϕ is convex and subdifferentiable on R;
(D2) ∇ϕ is weakly continuous for on R, i.e if {xn} are sequences in C and

convergs weakly to x, then ∇ϕ(xn)→ ∇ϕ(x);
(D3) The set solution of 〈∇ϕ(y), x∗ − y〉 ≤ 0 is non-empty.

Therefore, we get the following Theorem 4.2.

Theorem 4.2. Let {xn} be the sequence generated by algorithm 4 and assume
B1-B4 and D1-D3 hold. The sequence {xn} converges strongly to an element
p ∈ SCMP , where p = PSCMP

(T (p)).
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