International Mathematical Forum, Vol. 18, 2023, no. 1, 15 - 31
HIKARI Ltd, www.m-hikari.com
https://doi.org/10.12988 /imf.2023.912354

Inertial Extragradient-Viscosity Algorithms for
Nonmonotone and Non-Lipschitzian Equilibrium
Problems in Hilbert Spaces
Liang Yan !, Zhaoli Ma “** and Xin Chang

1 College of Statistics and Mathematics
Yunnan University of Finance and Economics
Kunming, Yunnan 650221, P.R. China

2 College of Public Foundation, Yunnan Open University
(Yunnan Technical College of National Defence Industry)
Kunming 650500, China
* Corresponding author

This article is distributed under the Creative Commons by-nc-nd Attribution License.
Copyright (© 2023 Hikari Ltd.

Abstract

In this paper, combining line-search technique with viscosity method, inertial al-
gorithm and subgradient algorithm, we propose a new iterative algorithm that does
not involve in projection operators to solve the nonmonotone and non-Lipschitzian
equilibrium problem in Hilbert space and obtain the strong convergence theorem.
In addition, we also use our main result to the variational inequality and the convex
minimization problem, and obtain the corresponding strong convergence theorems.
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1. INTRODUCTION

Let C' be a nonempty closed convex subset of real Hilbert space H with the
inner product (-, -) and the induced norm |||, f : C'xC — R be an equilibrium
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bifunction, the equilibrium problem (EP) associated f and C, refer to Blum
and Oettli [1] is to find a point x* € C such that

(1.1) flz*,y) >0, Vy € C.

The solution set of EP(f,C) is denoted by Sg. In addition, the Minty equi-
librium problem [2,3] consists in finding a point 2* € C such that

fly,z*) <0, Vy € C,

which is denoted by M EP(f,C) and its solution set is denoted by Sy,. It is
well known that the inclusion Sy; C Sg holds provided that f is jointly weakly
continuous on C' x C, this means Sg # 0 if Sy # 0.

The equilibrium problem is an important problem in the fields of nonlin-
ear analysis and optimization. In recent years, equilibrium problem is widely
used to solve optimization problem, variational inequality problem, saddle
point problem, Nash equilibrium problem of non-cooperative game theory,
fixed point problem, complementary problem and minimax problem, etc (See
[1,4-12]). For example, if the equilibrium bifunction f(z,y) = (A(z),y — x)
for every x,y € C, where A : C' — H is a continuous mapping, the equilibrium
problem is reduced to the variational inequality problem.

It is difficult to obtain the exact solution for most nonlinear problems.
Therefore, constructing a reasonable iterative algorithm is the most commonly
used method to solve these problems.

It is well known that the solution of EP(f,C) is equivalent to the solution
of the following strongly convex programming problem:

1
min{\f(x,y) + §||x —y||? 1y € C},where A > 0.

To solve the solution of EP(f,C), when f is strong montone and Lips-
chitzian, Mastroeni [13] introduced the following iteration method and proved
that it converges to a solution of EP(f,C):

1
zo € C, xpp1 = argmin{\f(z,y) + §||xk —yl*: y € C},where A > 0.

In 2007, Takahashi, et al. [14] introduced the following algorithm combining
viscosity algorithm with proximal method to solve the equilibrium problem:
give g € H, compute, for all n € N,

{ 2n € C such that f(z,,y) + ;-(y = 2n, 20 — 2n) > 0 Yy € C,
Tn+1 = eng('xn> + (1 - en)s<zn)7

where g is a contraction mapping on C' and f is monotone. They proved that

the sequence {z,} generated by this iteration scheme converges strongly to
some r* € Sg.
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Further when f is pseudomonotone and Lipschitzian, Flam and Antipin [15]
introduced the following iteration method:

To € C,
Y = argmin{ Ay f (25, y) + 3/lzr —yl|* : y € C},
T1 = arg min{ \e f (Y, y) + 5 llzk — y||? 1y € C},

where A, > 0, they proved that the sequence {z)} generated by this iteration
scheme weakly converges to a solution of EP(f,C).

By using line-search technique and viscosity method, Vuone, et al. [16] pro-
posed the following algorithm 1 to solve the solution of EP(f,C'), where f
is pseudomonotone and jointly weakly continuous, and proved that the iter-

ative sequence generated by algorithm 1 converges strongly to a solution of
EP(f,C):

Algorithm 1.

Step 0. Choose « € (0,2),7 € (0,1) and the sequences {«,, } C [0,1),{8,} C
(0,1) and {A,} C (0,1].

Step 1. Let g € C. Set n =0

Step 2. Solve the strongly convex program I;élél {Nif (xn,y) + Ly — 2.}

to obtain the unique solution y,,.
Step 3. If y,, = x,,, then set v,, = z,, and go to Step 4. Otherwise
Step 3.1. Find m the smallest non-negative integer such that

Un,m = (1 - P)/m)%l + YmUYn
f(vn,ma xn) - f(%l,m,@/n) Z &Hxn - ynH2

Step 3.2. Set p, = Vm, Un = Upm, and go to Step 4.
Step 4. Select g, € O0af(vpn,x,) and compute z, = Ponp, (z,), where
Hy, =A{z € H{(gn, xn — = = f(vn, 20)) }-
Step 5. Compute z,,,1 = (1 — 5,)t, + BnSty, with t, = Po(z, — @, Fz,).
Step 6. Set n:=n+ 1, and go to Step 2.

In 2015, Dinh, et al. [17] proposed a projection algorithm to solve the solu-
tion of EP(f,C) which is based on Bregman distance and Armijo-linesearch
technique in Euclidean space and obtained the convergence of the iterative
algorithm. In 2016, using Armijo-linesearch technique and projection algo-
rithm, Dinh, et al. [18] introduced a new iterative algorithm for nonmonotone
function f. In 2020, Deng and Fang [19] introducted the following algorithm
2 with the assumption that f is nonmontone and non-Lipschitzian:

Algorithm 2.

Step 0. Take z € C, choose parameters 6§ € (0,1) and p > 0, and set k =0
and By = C.
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Step 1. Solve the strongly convex program
: P
min{ f(zy, y) + éHy —z)|*:y € CY

to obtain its unique solution yi. If y. = xx, stop. =z is a solution of
EP(f,C). Otherwise, go to Step 2.
Step 2. (Armijo-linesearch) Find my as the smallest positive integer m
satisfying
Zkm = (1 - em)xk + emyka
9k,m € 82f<zk,m7 Zk,m>,
(Gms T — yk) > Slloe — yrll®
Step 3. Set 0y = Orn, 2k = Zhmys Gk = Gom,- Lake wy € 0o f (21, 1) and

Hy={rx e H: (wr,zr —x) > f(2k, k) }

Step 4. Compute o}, = L&) anq

zZ
[PAR

up = Ponm, (Tx — MeopWr)-
Step 5. Take By = {x € By : ||x — ui|| < ||z — xx||} and compute
Try1 = Ppy, (o).

Set n :=n+ 1 and go to Step 1.

Although the algorithm 2 does not depend on monotonicity and Lipschitz-
type property of the equilibrium function f and has strong convergence, it
needs to compute two projections at each iteration step. Therefore, we focus
on constructing a new iterative algorithm which does not involve projections
for the equilibrium function without monotonicity and Lipschitzian property.

2. PRELIMINARIES

In this section, we show some basic definitions and common lemmas that
will be used in subsequent chapters.

Let H be a real Hilbert space and C' be a non-empty closed convex subset
of H. We use — and — to describe weak convergence and strong convergence
respectively.

For any =,y € H and a € R, clearly,

(2.1) 2+ ylI? = =] + 2(z, y) + llyl1%,
and
(2.2) oz + (1= a)yll* = allz)* + (1 = ) lylI* — a(l — a)llz — yl|*.

Lemma 2.1. (Lemma 1 in [19]) The following properties hold:
(i) z = Po(x) if and only if (x — z,y — 2z) <0, Yy € C;
(ii) [|Po(z) = Pe(y)lI” < llo =yl = [ Po(x) =2z +y — Pe@)|?, Yo,y € C.
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Definition 2.2. (Definition 1 in [19]) A function f : H — [—o00, +00] is said to

lower semicontinuous at x € H if for any sequence {x} , which converges to z,

the f(z) < li]gn inf f(zx) holds. A function f said to be upper semicontinuous
—00

at x € H if —f is lower semicontinuous at x. If f is lower semicontinuous and
upper semicontinuous at x € H, then it is continuous at x € H. Furthermore,
f is continuous on C'if it is continuous at each x € C' C H.

Definition 2.3. (Definition 2.1 in [18]) A bifunction f : C' x C' — R is said
to be jointly weakly continuous on C' x C'if for all z,y € C and sequences
{z},{yr} in C weakly converging to = and y, respectively, then f(zx,yx)
converges to f(z,y) as k — oc.

To solve the solution of EP(f,C), we need to make the following assump-
tions:

(A1) f(-,y) is convex on C for each y € C;

(A2) f is jointly weakly continuous on C' x C

(A3) f is nonmonotone and non-Lipschitzian;

(A4) Sy # 0.

Definition 2.4. (Definition 3 in [19]) Let f : H x H — R be a function such
that f(x,-) is convex for all x € H. For z,y € H, the subdifferential 0y f(z,y)
of f(x,-) at y is defined by

Lemma 2.5. (Lemma 2 in [19]) Let f(x,y) be a convez differentiable function

with respect toy at x = x* € C and p > 0. Then x* is a solution of EP(f,C')
if and only if it s a solution of the auziliary equilibrium problem:

Find z* € C': f(:z:*,y)-l-gHy—:E*HQzO, vy e C.

Lemma 2.6. (Lemma 2.5 in [18]) With assumptions (A1) and (A2), if {z} C
C' is a sequence converging strongly to Z and the sequence {wy} C Oaf (2k, 2x),
converges weakly to w, then w € Oy f(Z, Z).

Lemma 2.7. (Proposition 2.1 in [20]) With assumptions (A1) and (A2), for
Z,y € C and sequence {xi},{yr} in C converging weakly to T and 7§ respec-
twely, it follows that for any € > 0, there exist § > 0 and k¢ € N such that

Do f (wr, yr) C Oof(T,7) + EB,

for every k > k., where B denotes the closed unit ball in H.

Lemma 2.8. (Lemma 2.6 in [19]) With assumptions (A1) and (A2), if {zx} C
C' is bounded, p > 0, and {yx} is a sequence such that

. p
i = srgmin{ f(z1.9) + Sy~ wul y € C),
then {yx} is bounded.
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Lemma 2.9. (Lemma 1 in [21]) Assume that {s,}22, is a sequence of non-
negative real numbers such that

Sn41 S (]- - /\n>8n + )\n(sn;vn 2 07
Sn—l—l S Sn — Hn + ¢n7vn Z O;

where {\,} is a sequence in (0,1), {pn}2, is a sequence of nonnegative real
numbers, and {0}, {dn}e, are two real sequences such that

(i) DAy = 00;
n=0
(i) Tim ¢ = 0;
n—oo
(iii) klim fn, = 0 implies limsup 9,, < 0 for any subsequence {ny}3>, C
—00

n—oo
{n}>y. Then lim s, = 0.
n—oo

3. MAIN RESULTS

Motivated by the work of Deng and Fang [19], when equilibrium bifunction
f is nonmonotone and non-Lipschitzian in Hilbert spaces, we combine the
viscosity algorithm with the subgradient algorithm to construct a new iterative
algorithm 3 to approximate a solution of the equilibrium problem. The strong
convergence of the algorithm 3 is proved by referring to the proof methods in
Thong [21] and Xie [22]. The new algorithm does not depend on the projection
operator.

Before giving the algorithm, we need to make some assumptions:

(B1) T : C — H is a contraction mapping with a constant ¢ € [0, 1);

(B2) {an}, {n.} are two sequencesa in [0,1) statisfying the following condi-
tions: .

oo =0, Jim 1o =0, 3, =20

(B3) {v,} is a sequence in (0,2) and statisfies lim inf ~,,(2 — v,,) > 0;
n—oo
(B4) {r,} C [0, 0) for some § > 0 is a positive sequence such that lim = = 0.

n—oo 'Im

(B5) f(+,-) is a equilibrium bifunction and statisfies assumption A1-A3.

Algorithm 3.

Initialization. Give n > 0. arbitrarily chosen g, x; € C.

Iterative Steps. Calculate x,; as follows:

Step 1. Give the sequence z,,_; and z,(n > 0), choose 6, such that 0 <
0,, < 0, where

(3.1) 0, = min{f, \\rn—Tchn,l||} if  TnF To-1,
0 if otherwise.

Step 2. Set w, =z, + O () — T5—1).
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Step 3. Solve the strongly convex program:
: P
(3.2) yn = argmin{ f (wn,y) + S lly —wal* 1 y € C}.

Get the solution y,. If y, = w,, stop. w, is an element of Sg. Otherwise,
go to Step 4.
Step 4. (Line-search) Find the smallest positive integer m to satisfy:

(3.3) { Unm = (1 — am) Wy + O Yn, ,
Sy wn) = f (Ungn, ) > §llwn = ynll*.
Step 5. Set ay, = Qym, Un = U, Let d,, € 0o f (up, wy,) and satisfy:
(3.4) (wp, —y,dn) > f(un, wy,),Vy € C.
S (tn,wn)

Step 6. Compute z, = w, — V,e,d,, where e, = N

Step 7. Compute z,11 = (1 — 1) 20 + 0.1 (20).
Set n:=n+ 1 and go to Step 1.

Lemma 3.1. The line-search rule (3.3) is well defined when assume A1-A4,
B2 hold and w, # y,.

Proof. Assume that (3.3) is not true. So there exists non-negative integer m
such that:

{ Un,m = (1 - am)wn + AmUn,
f(un,ma wn) - f(un,myyn) < g”wn - yn||2

Since lim «,, = 0, we have u,,, — w,(m — 00). Set Uy m = w,. Since f is
m—00

jointly weakly continuous and f(w,,w,) = 0, we have
p

On the other hand, since y, is a solution of the strongly convex programming
problem, it can be obtained

p p
S (Wn,y Yn) + EHwn - yn||2 < f(wmy) + §||wn - y||2,Vy e C.

we set y = w, and get f(wn, ) + §llw, — | < 0, namely, §lluw, — a2 =0,
which implies that w,, = y,,, we get contradiction.

Lemma 3.2. If the algorithm stops at some iteration points w,, Then w, s
an element in Sg.

Proof. When the algorithm 3 stops at some iteration points w,,, which means
Yn = Wy. Due to f(w,,w,) =0, so

p
s ) + 2l = wa* = 0.
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Since y, is a solution of the strongly convex programming problem, the
following holds:

P P
f(wm yn) + §||wn - yn||2 < f(wnay) + §||wn - y||27vy eC.
Thus we have f(wn,y)—i-gHy—wn\P > 0. By Lemma 2.5, we have w,, € Sg. U
Lemma 3.3. If the assumption A1-A4 hold, then the d, in algorithm 3 exists.

Proof. If Syr # 0, it means that there exists z* € Sy, such that f(y,z*) <0
for any y € C. Set y = u,, we have f(u,,z*) <0.
Taking e € 0y f(uy,, w,), from the convexity of f(u,,-), we get

f(unvy) _f(unawn) > <67y_wn>7 ‘V’y eC.
Set y = z* and e = d,,, then we have (d,,w, — z*) > f(u,,w,) — f(u,,z*) >
f(up,wy). Hence, the d,, in algorithm 3 exists. O

Lemma 3.4. Let {w,} and {y,} be the two sequences generated by algorithm
3. If w,, — w as k — oo and klim |Yn, — Wn, || =0, then w € Sg.
—00

Proof. Let ic be the indicator function of C), i.e.

i — 0 yed,
v = oo y¢C.

From the definition of v, in algorithm 3, we get
o = argming f(wn,y) + Slly = wal” + icy}.
According to generalized Fermat’s theorem, we have
0 € Oy f (Wn; yn) + p(Yn — wn) + Ne(yn),
where N¢(y,) is the norm cone of C' at y,,, which is defined by
Ne(yn) ={C € H 1 ((y —yn) <0, Vy € C}.
Namely, there exists 8 € s f(wp,y,) such that 0 = 5+ p(y, — wy,) + ¢, so

B = p(wn - yn) —C.
On the other hand, due to 5 € Oy f(wn, yn), we have

f(wn,y) = fwn, yn) > (B,Y — Yn)
= (p(Wn = Yn — C), Y — Yn)
= (p(Wn = Yn), ¥ = Yn) = ((, Y = Yn)-
Since w,, — w and kll_g)lo |Yn,, — wn, || = 0, we get y,, — w. Taking the limit
as k — oo, since f be jointly weakly continuous, we obtain
F(w,y) — Fw,w) > plw —w,y — w) =0,

this implies that
flw,y) =20, vy € C.

Therefore w € Sg. O
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Theorem 3.5. Let {x,} be the sequence generated by algorithm 3, assume
that A1-A4 and B1-B/ hold. Then the sequence {x,} converges strongly to an
element ¢ € Sg, where ¢ = Ps,(T(q)).

Proof. We divide the proof into six claims.
Claim 1. For any certain point p € Sg, the following inequality holds:

2—Yn

n

120 = pII* < llwn = plI* = 120 = wall*.

Indeed, by (3.4), we have
(3.5) (wn = p,dn) > ftn,wn) = eqlldnl*.
It follows from the definition of z, and (3.5) that

Hzn _p||2 = Hwn - 7n€ndn _p”2
= Hwn - p”2 - 2’7n6n<wn - D dn> + %36721||dn||2
(3.6) < Jlwn = pl* = (2 = ) (enlldnl])?
2 — Y
= Hwn_pH2 - ||Zn_wn||2'

n

Therefore, the claim 1 holds.
Claim 2. We prove that the inequality [jw, — y,|* < #)QHZW, — wyl?

= p(ynen
holds.
By line-search technique (3.3), we get
2
[|wn — ynH2 < ;(f(unv Wwy) = f(Un, Yn))
(3.7) 9
< ;<wn = Yns ) < || wn = Ynl|l|dn |-

Thus, we have

p
(3.8) S llwn = ynll < lldall

From the definition of z, and (3.8), we get
e
(3.9) 120 = wall” = menlldnll* = === {lwn — yull*.

It follow from (3.9) that |Jw, — y,||* < L)QHZ,L — wy||?, so the claim 2 is

p(men
proved.
Claim 3. Next, we prove that the {x,} is bounded.
Indeed, according to claim 1, we have

(3.10) 20 — pll < |lwn — p)|.
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Thus
Hanrl _pH = H(l - nn)zn + nnT(Zn)”
= ||(1 - nn)(zn - p) + nn<T(2n - p))”
< (I =n)llzn — 2l + 0l T(20) — pl|
(T =1 =) llzn — Pl + mllT(p) —
(L= na(1 =) lwn — pll + 7/ T (p) — |-

(3.11)

IAIA

By (3.1), we have 0, ||93n Tp-1|| < 1, for all n > 1. In addition, since

lim = = (, we have hm "Hxn Tp_1|| < lim = = 0. Therefore, there exists
n—oo " n—oo

a contant M; > 0, such that

O
(3.12) Iz — wos || < M, ¥n > 1.
n

n

By the definition of w,, and (3.12), we get

||wn _pH = ||mn + en(xn - xn—l) —p||
< l#n = pll + Onllzn — zn-|

(3.13) 0,
= ||zn — Dl + 70 - n_Hxn — Ty |

n

Substitute (3.13) into (3.11), we have

21 — pll < (1= (1= 0))[Jwn — pl| + 0l T(p) — p|

< (1 =11 = 0))([lzn — pll + 1 M1) + 0| T (p) — 1|
= (1=l = )Jan —pll + (1 = 0 (1 = )My + 0, || T(p) — pl|
< (1= 1u(1 = ) |z = pll + 1My + 1| T (p) — p|

= (1= (1 = )t =l + ma(1 — ) - 2P

(3.14) : _

< maX{HﬂSn -l M+ |1|T_<I;) 7l }

< max{‘|xn1 -l M !jl(i) =l }

<

< max { ay = ), T,

It implies that the sequence {x,} is bounded.
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Claim 4. We prove that
2—

n

(3'15) Hzn - wnH2 < Hxn - pH2 - Hxn-l-l - pH2 + N My

Indeed, from the definition of x,, 1, we have
21 = plI* < (L= n0)20 + 12T (20) = p?
= [|(1 = 1) (20 = ) + 1 (T(20) — D)|I?
= (L=m)llzn = pI* + 1l T(20) = pII* = 0a(L = 0a) 120 — T(20) I

< (1= m)llzn — I+ T (2) — o

B16) (1 pllzn = bl + (17 (o0 = T + 17() — )
< (1 =) l20 = pI* + 12 (1 = )| 20 — 0]l + | T(p) — p])
< (1= m) 120 — pIP + mulll2n — 2]l + IIT(P) — I)?

= |20 = pII* + 7 (2ll20 — T () = pll + [T (p) = pII)-
From claim 3, we can get
120 = pll < lwn = pll < llzn = pll + 170 M.

By the assumption B3, we have lim 7, = 0. So ||z, — p|| is bouned, i.e. there
n—oo

exists constant N such that ||z, — p|| < N, Further we get
11 = pI* < 120 = pII* + 10 Mo,

where M := 2N T(p) — p|| + | T'(p) — pI*.
Form claim 1 and (3.13), we get

2_’771

n

(3.17) 12 = pII* < llwn —plI* - 120 — wall?,

and
lw, = plI* < (|20 — pll + 0. M)
(3.18) = |0 = plI® + 1 (2M ||z — pl| + 0. M)
< lan = plI* + 0 M,

where M; := 2M,||z, — p|| + n.ME.
It follows from (3.16), (3.17) and (3.18) that

2—Yn
[2n41 = plI* < [Jwn = pl* — 120 — wal|* + nn My
(3.19) n
2 2 — Tn
< |lzn —plI* -

n

Hzn - wn”2 + MMy,

where My := My + Mjs. The proof of claim 4 is completed.
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Claim 5. We prove that

ns1 = pl* < (L= na(L = 0)) ll2n — plI”

2 3M 0,

1 —C<T(p) — Dy Tnt1 —p> + 1——6 : n—”l’n —xn+1|| .

+ 77n(1 - C)
By the definition of z,,1 and (3.10), we have

201 = plI> = 1(1 = 0n) 20 + 00T (20) — pl|?
= [[(1 =) (20 = p) + 1 (T (20) = T(p)) + 1u(T(p) — p)II”
<N = 0) (20 = p) + 10 (T(z0) = T@)I* + 200 (T (p) — P, Tnr1 — p)
(320)< (1 = ma)llzn = PI* + 1l T (20) = T@)? + 200(T(p) = P, Tnyr — p)
(1= n0)llzn =PI + 10?20 — DII* + 200 (T (D) — P, Zni1 — p)
(1 =7 (1 = )llzn = plI* + 20.(T(p) = P, Tns1 — )
(1= 7 (1 = ) llwn = plI* + 20.(T(p) = P, Tny1 — D).

INIAIA

In addition, from the definition of w,,, we have
[wnll* = |z + On(2n — 2n-1) — pI*
(321) = llwn = pl* + 200 (w0 — P2y — Tam1) + 07|20 — 20|
< llzn = plI* + 20ull2n = pllllzn — @]l + O ll2n — 20 ||
So, combining (3.20) with (3.21), we obtain

lzns1 = plI* < (1= m0(1 = ) [l = plI* + 20020 = pllll2n — 20l
+ 0l — 2ot IP] + 200(T(p) = p, Tus1 — 1)
= (1= na(1 = c))llzn = plI* + 200(1 = 0u(1 = ) [@n—pll|zn — s
+ 00 (1 =01 = )lzn — 2ot [I* + 20,(T(p) — p, 21 — p)
< (1= (1 = o)llwn = plI* + 20020 — pllllzn — 2]
(3.22) + 02|20 — 20”4 200(T(p) = p, Tng1 — p)

< (A= =eNzn —pIP +0.(1—0)]
+ 3M6,, ||z, — ]|

< (L= =c)llzn —pI* +na(1l = o)
3M 0,

1—6 77_n|| Tpn — Tn— 1”]

2 (T(0) ~ p,7ens )

T T(P) =P s —p)

where M = sup{||a:n pl, 0l|xn — 01|}
Claim 6. We prove that {z, } converges strongly to ¢, where ¢ = Ps,(T(q)).
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Indeed, we set

Sn = “mn - QHa Ap = nn(l - C)v
2 3M 6
by = (T(g) = @ ns — @) + - O
T \T(0) = @ 2n —a) + 17— o

n

H'Tn - xnley

M Hzn - wn||7 an = 7771]\44-

By combining Lemma 2.9 with claim 4 and claim 5, we have
Spt1 < (1= Xp)sn + Ay,
Sni1 < Sp = fin + P
It is easy to prove that condition (i) and (ii) of Lemma 2.9 are satisfied. By
(B1), we have io An = 00 and
lim ¢, = 0.

n—oo

Next, we just have to prove limsupd,, < 0.
k—o0
From lim p,, =0, we get
k—o00

(3.23) khi{olo Hznk — Wn,, || = 0.
By claim 2, we have
(3.24) kh—gjo Hwnk = Yny, H = 0.

By using lim 7, =0 and 41 = (1 — )20 + 01 (2,), we get
n—oo

(3.25) kh—{go ||xnk+1 - an” = kh—{go nnkHan - T(an)H =0,
and
. . . On,
kh_{g]guzﬁﬂ)k - wnk” = k;h—>Holo gnkH'rnk - $nk—1|| = ,}1_{2077% ’ _||xnk - xnk—1|| = 0.

Nk

Furthermore, we get
(3'2’ﬂ)rnk+1 - xnk” < Hxnk+1 - Z”k” + Hznk - w”k” + Hwﬂk - 'InkH — 0.

From claim 3, we known that {z,, } is bounded. So there exists a subsequence
{xnkj} of {x,, }, which converges weakly to some w € H, such that

Kmggp(T(a) = ¢ 2np1 = @) = Jim (T(q) = ¢, o, — ) = (T(a) = ¢,w —q).
From (3.26), we known that Wy, — w. Therefore it follows from (3.24) and

Lemma 3.4 that w € Sg. Further from (3.28), we have

(3.29) limsup(T'(q) — q,2n,) = (T'(q) — ¢ w —q) < 0.

k—o0
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Combining (3.27) with (3.29), we get
limsup(7'(q) — ¢, Tpy1 — q)
k—o0

(3.30) < limsup(T(q) — ¢, Tnyq1 — Zn,) + limsup(T(q) — ¢, T, — q)

k—o00 k—o00

<0.
Hence, by Lemma 2.9, we conclude that
lim |z, —q|| = 0.
n—0o0
The proof of the Theorem 3.5 is completed. 0

4. APPLICATIONS

In this section, we apply the main results to solve variational inequality
problem and convex minimization problem in Hilbert spaces.

(I) Application to the variational inequality problem

Let C be a nonempty closed convex subset of real Hilbert space H with the
inner product (-,-) and the induced norm || - ||. Assume that A: C — H is a
mapping. Set f(x,y) = (A(z),y — x), the equilibrium problem reduces to the
variational inequality problem: find z* € C' such that

(A(x*),y — x*) > 0 for every y € C.
The set of solution of the variational inequality problem is denoted Sy;. In
order to obtain the corresponding algorithm 4 and Theorem 4.1, we assume
that the following assumptions on A hold:

(C1) A is convex and subdifferentiable on H;

(C2) A is weakly continuous for on C, i.e if {z,} is a sequences in C' and
z, — z, then A(z,) — A(z);

(C3) The set solution of (Ay, z* — y) < 0 is non-empty.

Algorithm 4.

Initialization. Give > 0.Let x(,z; € C be arbitrary.
Iterative Steps. Calculate xz,; as follows:
Step 1. Give the iterates x,,_; and x,(n > 0), choose 6,, such that 0 < 6,, <

0,,, where

(4.1) 0, = min{f, Hmn—T;n,ln} if  TnF To-1,
0 if otherwise.

Step 2. Set w, =z, + 0 () — Ty—1).
Step 3. Compute

Yo = Po(tn — %A(wn».
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Get the solution y,. If y, = w,, stop. w, is a element of Sy ;. Otherwise,
go to Step4.
Step4. (line-search) Find m,, in the smallest positive integer m to satisfy:

{ Un,m = (1 - Oém)wn + QmYn,
(A(unm), W = Yn) > §llwn = yall*.

Step5. Set ay, = pm, Uy = Upm, Let d, € Oa(A(uy), w, — u,) and satisfy
the following condition:

(wy, — y,dy) > (Auy), w, — uy),Vy € C.

(A(un),wn—tn)

Stepﬁ. Compute Zn = Wy — ’)/nendn, where en = ENE

Step7. Compute z,,11 = (1 — nn)zn + 7.1 (2).
Set n:=n+ 1 and go to Stepl.

Theorem 4.1. Let {x,} be the sequence generated by algorithm 4 and as-
sume that C1-C2 and B1-B4 hold. The sequence {x,} converges strongly to an
element p € Sy, where p = Ps,,,(T(p)).

(II) Application to the convex minimization problem

Let ¢ : C' — R be a convex and differentiable function. The convex mini-
mization problem is as follows:

minimize p(z), where z € C'.

The set of solution of the convex minimization problem is denoted by Scasp.
It is well known that a point * € (' is a solution of the convex minimization
problem if and only if it is a solution of the following variational inequality
problem (see [23]):

(Vo(z*),y —a*) >0, Yy € C.

Obviously, set A(x) = Vp(z), the convex minimization problem reduces
to the variational inequality problem. In order to obtain the corresponding
algorithm 5 and Theorem 4.2, we assume that the following assumptions on ¢
hold:

(D1) Vi is convex and subdifferentiable on R;

(D2) Vy is weakly continuous for on R, i.e if {z,} are sequences in C' and
convergs weakly to x, then Vo(x,) — Vo(x);

(D3) The set solution of (Vp(y),z* —y) < 0 is non-empty.

Therefore, we get the following Theorem 4.2.

Theorem 4.2. Let {x,} be the sequence generated by algorithm 4 and assume
B1-Bj and D1-D3 hold. The sequence {x,} converges strongly to an element
p € Semp, where p = Ps,,,.(T(p)).
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