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Abstract 

 
 In estimating/testing a functional relationship in Economics, one collects data - 
- both the dependent variable and the explanatory variables, which is not the same as 
an experiment in Physics with all the independent variables in full control by the 
analyst. This brings about the problem of multicollinearity in multiple linear regression 
to all fields that do not enjoy true degrees of freedom in the causal variables of a 
regression model. This note presents a simple example, where a pair of variables, u and 
v, seeks to explain y, but u(t, s) and v(t, s) share one common parameter domain, t and 
s, so that it becomes evident that the regression model y = a + bu + cy + e is simply 
invalid. We thus recommend constructing regression models based on independent 
variables true to their definition of independence, such as time and space, by using a 
spatiotemporal sample.  
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1 Introduction 
 
There is a fundamental schism between the construct of a regression equation 

1 1 2 2i i i iY X Xα β β ε= + + +  and its algebraic underpinning ( ) 1 2( , )E Y f X X= : 

whereas the former entails a sampling of ( ){ }1 2 1
, ,

n
i i i i

y x x
=

 usually with the values of 

( ){ }1 2,i ix x  not freely set in advance, the latter casts 1X  and 2X  as quantities enjoying 
their own degrees of freedom. That is, there is a basic contradiction between a fixed 3-
tuple ( )1 2, ,i i iy x x  as from one particular observation i and the standard understanding 
of the formulation of a function ( )1 2,y f x x= .  

To be sure, for implementing regression properly, one first derives a formula by 
theory and then experiments with alternative values of the independent variables to 
investigate their effects on the dependent variable. Yet, this condition of free choices 
of the values of the independent variables is not in the underlying assumptions of the 
regression model [3]. That is, the use of this methodology leans more toward 
observational, as in astronomy, rather than experimental, as in physical laboratories. 

As such, one must exercise caution against an overreliance on “regression for a 
functional relationship through plain observations of a sample,” wherein multi-
collinearity of ( ){ }1 2,i ix x  can present problems, since the inseparableness of the 
correlated independent variables compounds the variance of the random disturbances, 
rendering the estimated coefficients suffering from higher errors. Accordingly, it 
appears that the remedy might be a reduction of the sample coefficient of correlation 
r  between any two independent variables through some schemes, notably, the ridge 

regression [1, 4, 7], wherein the variance-covariance matrix has its diagonal artificially 
added by a constant so as to turn the column vectors “more orthogonal” (: inner 
products closer to zero) - - a procedure amounting to decreasing the proportions of 
covariances to variances, hence lowering { }jkr . It turns out that this logic is false: 

whereas high { }jkr  are definitely detrimental to the estimation of the coefficients of 

the independent variables { },j kX X , the converse is not true; this is demonstrated in 
the next section by an example. We then conclude with a summary remark in Section 
3. 
 
 
2. Analysis 
 
Since the sample coefficient of correlation between any two variables depends on the 
inner product of their values centered at their means, we consider an application of the 
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Gram-Schmidt orthogonalization [5] of a pair of highly correlated independent 
variables ( ),u v , where 
 
 

 

( ) 2

3 5 ,
3 6 ,

, ,

= +
= +

∈

u t s
v t s
t s

 

 
over a sample as based on: 
 
t s u v  t s u v 
1 0 3 3  6 0 18 18 
1 1 8 9  6 1 23 24 
2 0 6 6  7 0 21 21 
2 1 11 12  7 1 26 27 
3 0 9 9  8 0 24 24 
3 1 14 15  8 1 29 30 
4 0 12 12  9 0 27 27 
4 1 17 18  9 1 32 33 
5 0 15 15  10 0 30 30 
5 1 20 21  10 1 35 36 

 
 
where ( ) ( ), 0, and , 0.999,r t s r u v= =  as graphed below:  
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Set - - 

2

* *
* *

* *

*
** * *

*

,
, , cos : , and

cos
: , 1, 2, , 20,  

θ

θ

≡ − ≡ − =

= − = 

i i i i l

i i i

u v
u u u v v v

u v

v
v v u i

u

 

or in values - -  
 
 
u* v** 

 
u* v** 

-16.00 -0.25 
 

-1.00 -0.48 
-11.00 0.67 

 
4.00 0.44 

-13.00 -0.30 
 

2.00 -0.53 
-8.00 0.62 

 
7.00 0.39 

-10.00 -0.34 
 

5.00 -0.58 
-5.00 0.58 

 
10.00 0.34 

-7.00 -0.39 
 

8.00 -0.62 
-2.00 0.53 

 
13.00 0.30 

-4.00 -0.44 
 

11.00 -0.67 
1.00 0.48 

 
16.00 0.25 

 
 
Then ( )* **, 0r u v = , as shown in the following graph:  
 

 
 
 
Consider the following population regression equation, 
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( )2

1 2 3
11 ,
3

0, 0.25 .

ε

ε

ε σ

= + + +

≡ + − +

=

Y t s

u v

N

 

Upon the ordinary least-squares estimation of  
* * **

1 2≡ − = + +i i i i iy y y b u b v e   
with the following simulated Y with their associated Y* 
 
 
y y* 

 
y y* 

3.27 -10.17 
 

12.81 -0.63 
6.16 -7.28 

 
16.01 2.56 

4.85 -8.59 
 

14.65 1.21 
8.76 -4.68 

 
17.71 4.26 

6.42 -7.02 
 

16.55 3.11 
10.35 -3.10 

 
20.45 7.01 

8.49 -4.95 
 

18.82 5.38 
12.56 -0.88 

 
22.11 8.67 

10.92 -2.52 
 

20.92 7.47 
13.09 -0.35 

 
23.95 10.51 

 
we obtained 

 
* **

* * **ˆ 0.66 0.06 , :
71.18, 0.36,

= + −
= =

i i i

u v

y u v with the t statistics
t and t

 

 
where the estimation of the effect of ( ) ( )* *u or u on y or y  by 0.66  deviated from the 
true coefficient 1 by  0.34− , yet with 71.18=t . We thus see that the above reduction 
of r  by the Gram-Schmidt orthogonalization can result in false confidence in an 
estimated coefficient that greatly deviated from its true value, the same drawback as in 
the ridge regression [2, 6]. Two remarks here are in order: (a) the two perpendicular 
vectors * **,u v in 20

  do not lend to orthogonality in 2
  as in 

( ) ( ) ( ) 2
1 2 1 2,0 , 0, 0, ,= ∈x x X X , but nevertheless, (b) the variance-covariance 

matrix is diagonal: 

2

2

2* * **

2* ** **

, 1610 0 84.7 01 1 .
19 19 0 4.61 0 0.24,

l

l

u u v

u v v

 
        = =              

 
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Now, a straightforward regression of Y  on ,u v also led to the following 

unsatisfactory results: 

constant

ˆ 0.93 0.59 0.06 ,
4.60, 3.29, 0.35.

= + +
= = =

i i i

u v

y u v with
t t t

 

This led to the following regression as based on the parameter domain, t s× : 

 constant
2

ˆ 0.93 1.97 3.35 ,
4.60, 66.34, 19.61,

0.996,

= + +
= = =

=

i i i

t s

y t s with
t t t
R

 

which suggested that in treating multi-collinearity one simply regresses the dependent 
variable y directly against time and some spatially oriented dummy variables, treating 
which as the common parameter domain for both the dependent variable y  and all the 
correlated independent variables. From this perspective, one sees that the attempt of 

estimating 
( )1 :

,
β ∂

=
∂

y
u t s

 as implied in the regression model 

( ) ( )0 1 2, ,β β β ε= + + +y u t s v t s  be fundamentally invalid. It is clear from the above 
example that the only way to transform u  and v  into two orthogonal variables would 
be 

13 5
,

3 6
u t
v s

−
     

=     
     

 

in which case, we come to the same conclusion that regressors ought to be time and 
space oriented. 
 
3. Summary Remark 
 
From the above analysis, we see that correlated independent variables in samples may 
share certain unspecified parameter domain so that the posited regression model per se 
is invalid; thereof, a reformulation of the model becomes necessary. In the case where 
a model is theoretically derived, we contend that regressing over a time-series cross-
section sample as patterned after the above ( ){ },i it s  appears to be the most promising 
against multicollinearity. Otherwise, we suggest a multiplicative modeling followed by 
a log-linear transformation, since proportional relationships abound in Nature. 
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