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Abstract

In estimating/testing a functional relationship in Economics, one collects data -
- both the dependent variable and the explanatory variables, which is not the same as
an experiment in Physics with all the independent variables in full control by the
analyst. This brings about the problem of multicollinearity in multiple linear regression
to all fields that do not enjoy true degrees of freedom in the causal variables of a
regression model. This note presents a simple example, where a pair of variables, u and
v, seeks to explain y, but u(t, s) and v(t, s) share one common parameter domain, t and
s, so that it becomes evident that the regression model y = a + bu + cy + e is simply
invalid. We thus recommend constructing regression models based on independent
variables true to their definition of independence, such as time and space, by using a
spatiotemporal sample.
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1 Introduction

There is a fundamental schism between the construct of a regression equation
Y, =a+pBX,+p,X,+¢& and its algebraic underpinning E(Y)=£(X,,X,):

whereas the former entails a sampling of {( Vir Xigs X5 )}; usually with the values of

{(X,1, X, )} not freely set in advance, the latter casts X, and X, as quantities enjoying

their own degrees of freedom. That is, there is a basic contradiction between a fixed 3-
tuple (y,., X,.1,X,.2) as from one particular observation / and the standard understanding

of the formulation of a functiony = f(X,, X, ).

To be sure, for implementing regression properly, one first derives a formula by
theory and then experiments with alternative values of the independent variables to
investigate their effects on the dependent variable. Yet, this condition of free choices
of the values of the independent variables is not in the underlying assumptions of the
regression model [3]. That is, the use of this methodology leans more toward
observational, as in astronomy, rather than experimental, as in physical laboratories.

As such, one must exercise caution against an overreliance on “regression for a
functional relationship through plain observations of a sample,” wherein multi-

collinearity of {(X,.1,X,.2 )} can present problems, since the inseparableness of the
correlated independent variables compounds the variance of the random disturbances,

rendering the estimated coefficients suffering from higher errors. Accordingly, it
appears that the remedy might be a reduction of the sample coefficient of correlation

|| between any two independent variables through some schemes, notably, the ridge

regression [ 1, 4, 7], wherein the variance-covariance matrix has its diagonal artificially
added by a constant so as to turn the column vectors “more orthogonal” (: inner
products closer to zero) - - a procedure amounting to decreasing the proportions of

covariances to variances, hence lowering {|”jk|} It turns out that this logic is false:
whereas high {|r_/.k|} are definitely detrimental to the estimation of the coefficients of

the independent variables {X /.,X k}, the converse is not true; this is demonstrated in

the next section by an example. We then conclude with a summary remark in Section
3.
2. Analysis

Since the sample coefficient of correlation between any two variables depends on the
inner product of their values centered at their means, we consider an application of the
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Gram-Schmidt orthogonalization [5] of a pair of highly correlated independent
variables (u,v), where

u=3t+5s,
v=23t+6s,
(t,s)eR?,

over a sample as based on:

t S u v t S u v
1 0 3 3 6 0 18 18
1 1 8 9 6 1 23 24
2 0 6 6 7 0 21 21
2 1 11 12 7 1 26 27
3 0 9 9 8 0 24 24
3 1 14 15 8 1 29 30
4 0 12 12 9 0 27 27
4 1 17 18 9 1 32 33
5 0 15 15 10 0 30 30
5 1 20 21 10 1 35 36
where r(t,s)=0,and r(u,v)=0.999, as graphed below:
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Set - -
) B ) B <u*,v*>

u, =u,—u, v, =v,—v, cos=p—mr| ., and

u |[||v

" ”v*”cos (7

v, =V, = U;, i=1,2,---,20,

u

or in values - -
u* V** u* V**
-16.00 | -0.25 -1.00 -0.48
-11.00 | 0.67 4.00 0.44
-13.00 | -0.30 2.00 -0.53
-8.00 0.62 7.00 0.39
-10.00 | -0.34 5.00 -0.58
-5.00 0.58 10.00 0.34
-7.00 -0.39 8.00 -0.62
-2.00 0.53 13.00 0.30
-4.00 -0.44 11.00 -0.67
1.00 0.48 16.00 0.25

Then r(u*,v**) =0, as shown in the following graph:
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Consider the following population regression equation,
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Y=1+2t+3s5s+¢
1

=l+u—-—v+e,
3

e~ N(0,0%=025).

Upon the ordinary least-squares estimation of

y; =y,-y :b1”i* +bzvj* +e

with the following simulated Y with their associated Y*

y y* y y*
3.27 -10.17 12.81 | -0.63
6.16 -7.28 16.01 | 2.56
4.85 -8.59 14.65 | 1.21
8.76 -4.68 17.71 | 4.26
6.42 -7.02 16.55 | 3.11
1035 | -3.10 2045 | 7.01
8.49 -4.95 18.82 |5.38
12.56 | -0.88 22.11 | 8.67
1092 | -2.52 20.92 | 7.47
13.09 |-0.35 23.95 |10.51

we obtained
P, =0.66u; +0.06v.", with the t — statistics :

t.=71.18,and t . =0.36,

where the estimation of the effect of u (or u) on y(or y*) by 0.66 deviated from the

true coefficient 1 by —0.34, yet with # =71.18. We thus see that the above reduction
of r by the Gram-Schmidt orthogonalization can result in false confidence in an
estimated coefficient that greatly deviated from its true value, the same drawback as in
the ridge regression [2, 6]. Two remarks here are in order: (a) the two perpendicular

vectors u,v in R* do not lend to orthogonality in R’ as in
<(x1,0),(0,x2)>=0,(X1,X2)6R2, but nevertheless, (b) the variance-covariance
matrix is diagonal:
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Now, a straightforward regression of Y on u,valso led to the following
unsatisfactory results:
¥, =0.934+0.59%;, +0.06v,, with
st = 4-00, 2, =3.29,¢ =0.35.
This led to the following regression as based on the parameter domain, fxS:
¥, =0.93+1.97¢, +3.35s,, with
b = 460, 2, =66.34, ¢ =19.61,

R* =0.996,
which suggested that in treating multi-collinearity one simply regresses the dependent
variable y directly against time and some spatially oriented dummy variables, treating

which as the common parameter domain for both the dependent variable y and all the
correlated independent variables. From this perspective, one sees that the attempt of

estimating B = 5 ?y ) as implied in  the  regression  model
u(\t,s

y =P+ Pu(t,s)+pv(t,s)+¢ be fundamentally invalid. It is clear from the above

example that the only way to transform ¢ and v into two orthogonal variables would
be

3 5)'(u) (t

3 6) v (s)
in which case, we come to the same conclusion that regressors ought to be time and
space oriented.

3. Summary Remark

From the above analysis, we see that correlated independent variables in samples may
share certain unspecified parameter domain so that the posited regression model per se
is invalid; thereof, a reformulation of the model becomes necessary. In the case where
a model is theoretically derived, we contend that regressing over a time-series cross-

section sample as patterned after the above {(t S, )} appears to be the most promising

against multicollinearity. Otherwise, we suggest a multiplicative modeling followed by
a log-linear transformation, since proportional relationships abound in Nature.
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