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Abstract

In this study, we present the Fremlin projective tensor product of
Banach d-algebras and Banach almost f -algebras. We prove that the
Fremlin projective tensor product of two Banach d-algebras A and B is
a Banach d-algebra containing Riesz tensor product A

⊗
B of A,B as

a d-algebra. Also, we show that the Fremlin projective tensor product
of Banach almost f -algebras A and B is a Banach almost f -algebra
containing Riesz tensor product A

⊗
B of A and B as an almost f -

algebra.
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1 Introduction

D.H. Fremlin introduced the tensor product of Archimedean Riesz spaces in
[6] and projective tensor product of Banach lattices in [7]. A lot of mathemati-
cians such as Grobler, Ben Amor, Buskes and so on studied in this subject.
The tensor product of Archimedean ordered vector spaces was introduced by
Grobler et al in [8]. Ben Amor proved in [2] that the tensor product of two
d-algebras is also a d-algebra.The result that the Fremlin tensor product of two
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f-algebras is an f-algebra is due to Azouzi et al in [3]. For more information
for almost f-algebras and d-algebras, we can refer to the paper in [4]. That
the Fremlin tensor product of two f-algebras is an f-algebra was introduced by
Buskes et al in [5] by different method.

In [9], Jaber proved that the Fremlin projective tensor product of Banach f -
algebras A,B is a Banach f -algebra. Here, we show that the Fremlin projective
tensor product of Banach d-algebras A and B is a Banach d-algebra and also
the Fremlin projective tensor product of Banach almost f -algebras A and B
is a Banach almost f -algebra. Therefore, we have shown that the results of
Jaber [9] are also true for Banach d-algebras and Banach almost f -algebras.

We refer to the books [1], [10] for unexplained terminology and notation..

2 Preliminaries

A real vector space E is called a Riesz space (vector lattice) if it is linearly
ordered and the infimum and supremum of the set {x, y} exist for every x, y ∈
E. We use the notations ∨,∧ for supremum and infimum, respectively. The
set E+ = {x ∈ E : x ≥ 0} denotes the positive cone of a Riesz space E. A
Riesz space E is called Dedekind complete if every subset that has an upper
bound has a least upper bound(supremum). Dedekind complete Riesz spaces
are certainly Archimedean. The absolute value( modulus) of x ∈ E is defined
by the formula : |x| = x ∨ −x. A norm ‖.‖ on a vector lattice E is called a
lattice norm if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x, y ∈ E. A vector lattice is
called a normed vector lattice if it has a lattice norm. We say that a Banach
lattice is a normed complete vector lattice.

.

Definition 2.1 A linear operator T : E → F between vector lattices E,F
is called Riesz homomorphism (lattice homomorphism) if |T (x)| = T (|x|) holds
for every x ∈ E. A linear operator T : E → F between vector lattices E,F is
said to be positive if Tx ∈ F+ whenever x ∈ E+.

Notice that a lattice homomorphism is positive.

Definition 2.2 Let E,F,G be Archimedean vector lattices. A bilinear map
Ψ : E × F → G is called positive if Ψ(x, y) ∈ G+ for every x ∈ E+, y ∈ F+.
A bilinear map Ψ : E × F → G is said to be lattice(Riesz) bimorphism if
Ψ(|x|, |y|) = |Ψ(x, y)| holds for all x ∈ E, y ∈ F .

Assume that any Archimedean vector lattices E and F are given. Then,it
can be constructed an Archimedean vector lattice E

⊗
F called Fremlin tensor

product and a map
⊗

: E × F → E
⊗
F such that the following properties

hold in [6]:
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1.
⊗

is a Riesz bimorphism and represents algebraic tensor product E
⊗
F

as a linear subspace of E
⊗
F .

2.If G is any Archimedean vector lattice, then there is a one-one correspon-
dence between Riesz bimorphisms Ψ : E × F → G and lattice homomorphism
τ : E

⊗
F → G given by Ψ = τ

⊗
.

3. E
⊗
F is dense in E

⊗
F in the sense that for any u ∈ E

⊗
F there

exist x0 ∈ E+, y0 ∈ F+ such that for every δ > 0 there is a v ∈ E⊗
F with

|u− v| ≤ δx0 ⊗ y0.
4. If u ∈ E

⊗
F , then there exist x0 ∈ E+ and y0 ∈ F+ such that |u| ≤

x0 ⊗ y0.
5. E

⊗
F is order dense in E

⊗
F in the sense that for any 0 < u ∈ E⊗

F
there exist x > 0 in E , y > 0 in F such that 0 < x⊗ y ≤ u.

6. If G is any Archimedean vector lattice and Φ : E × F → G is a Riesz
bimorphism such that Φ(x, y) > 0 whenever x > 0 in E and y > 0 in F , then
E
⊗
F may be identified with the Riesz subspace of G generated by Φ[E × F ].
7. If G is a uniformly complete Archimedean vector lattice, then there is

a 1 − 1 correspondence between positive bilinear maps Φ : E × F → G and
increasing linear maps τ : E

⊗
F → G given by Φ = τ⊗.

Let us take E,F as Banach lattices, [7].
8. E

⊗
F is dense in the Riesz tensor product E

⊗
F for any topology on

E
⊗
F defined by a Riesz norm.
9. If G is any Banach lattice and Φ : E×F → G is a Riesz bimorphism and

τ : E
⊗
F → G is the corresponding Riesz homomorphism, then the closure of

τ(E
⊗
F ) in G is equal to the closure of τ(E

⊗
F ), so is a closed Riesz subspace

of G and is a Banach lattice.
10. If E and F are Banach lattices, the positive projective norm ‖.‖|π| on

E
⊗
F is defined by

‖u‖|π| = sup{‖ϕ̂‖ : ϕ a positive bilinear function on E×F, ‖ϕ‖ ≤ 1}

where ϕ runs over all positive bilinear maps from E×F to all Banach lattices
G , ϕ̂ : E

⊗
F → G is in each case the linear map corresponding to ϕ and

‖ϕ‖ = sup{|ϕ(x, y)| : ‖x‖ ≤ 1, ‖y‖ ≤ 1}

for each ϕ .
11. If E,F are Banach lattices, E

⊗̂
F is the completion of E

⊗
F under

the norm ‖.‖|π|.
The Riesz space structure of E

⊗̂
F :

Let E,F be Banach lattices. Then ‖.‖|π| is a norm on E
⊗
F , so E

⊗̂
F is a

Banach space, and there is a unique Riesz space structure on E
⊗̂
F such that

:
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a.E
⊗̂
F is a Banach lattice, and

⊗
: E×F → E

⊗̂
F is a Riesz bimorphism,

b. The positive cone in E
⊗̂
F is the closure in E

⊗̂
F of the cone P ⊆ E

⊗
F

generated by {x⊗ y : x ∈ E+, y ∈ F+},
c. For any Banach lattice G , there is a 1 − 1 norm preserving corre-

spondence between continuous positive bilinear maps ϕ : E
⊗
F → G and

continuous increasing linear maps τ : E
⊗̂
F → G given by ϕ = τ

⊗
d. τ is a Riesz homomorphism if and only if ϕ is a Riesz bimorphism,
e. ‖x⊗ y‖|π| = ‖x‖‖y‖ for every x ∈ E, y ∈ F ,

f. E
⊗
F is naturally embedded as a norm-dense Riesz subspace of E

⊗̂
F

and for u inE
⊗
F ,

‖u‖|π| = inf{
∑
i≤n
‖xi‖‖yi‖ : xi ∈ E+, yi ∈ F+∀i ≤ n, |u| ≤

∑
i≤n

xi ⊗ yi}

g. For any u ∈ E⊗̂
F ,

‖u‖|π| = inf{
∑
i∈N
‖xi‖‖yi‖ : xi ∈ E+, yi ∈ F+∀i ∈ N, |u| ≤

∑
i∈N

xi ⊗ yi}

Let us recall that a Banach lattice is a Banach lattice algebra if it is a
Banach algebra where the multiplication of positive elements is positive.

In [9], for any given Banach lattice algebras E and F , the Fremlin projective
tensor product E

⊗̂
|π|F is a Banach lattice algebra with the following universal

property:
For every Banach lattice algebra G and for every positive (continuous),

multiplicative bilinear map Ψ : E × F → G there exists a unique positive
algebra homomorphism τ : E

⊗̂
|π|F → E

⊗̂
|π|F for which Ψ(x, y) = τ(x ⊗ y)

for every x ∈ E, y ∈ F . In [9], Jaber proved that for given Banach f -algebras
E and F , the Fremlin projective tensor product E

⊗̂
|π|F is a Banach f -algebra.

We denote by E
⊗̂
|π|F the completion of E

⊗
F with respect to the positive

projective norm ‖.‖|π|. Fremlin in [7] proved that E
⊗̂
|π|F is a Banach lattice

called the Fremlin projective tensor product of E and F .

3 Results and Discussion

Definition 3.1 A Banach lattice algebra A is called a Banach f -algebra if
x ∧ y = 0 and z ∈ A+ imply zx ∧ y = xz ∧ y = 0.

For example, the algebra C(K) of all real-valued continuous functions on
a compact Hausdorff space K is a Banach f -algebra.
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Definition 3.2 A Banach lattice algebra A is said to be a Banach d-algebra
if x ∧ y = 0 and z ∈ A+ imply zx ∧ zy = xz ∧ yz = 0.

Definition 3.3 A Banach lattice algebra A is called a Banach almost f -
algebra if x ∧ y = 0 in A implies x.y = 0.

Theorem 3.4 [9] Let A be a normed f -algebra. Then, the completion Â of
A is a Banach f -algebra containing A as an f -subalgebra.

Theorem 3.5 Assume that A is a normed d-algebra. Then, the completion
Â of A is a Banach d-algebra containing A as a d-subalgebra.

Proof. It is clear that the norm completion Â of A is a Banach lattice and
a Banach algebra.Let 0 ≤ x, y ∈ Â. So, there are sequences (xn), (yn) in A
satisfying (xn) converging to x and (yn) converging to y. Since x, y are positive,
we can assume that sequences (xn), (yn) are positive.Since (xnyn) converges to
xy and the multiplication of xn and yn is positive , we get that xy is positive.
Our claim is that Â is a d-algebra. Let us take elements x, y ∈ Â satisfying
x ∧ y = 0 and 0 ≤ z ∈ Â. Firstly, let z ∈ A. There are sequences (xn), (yn)
in A satisfying (xn) converging to x and (yn) converging to y. By using the
continuity of lattice operations, we get

xn ∧ y → x ∧ y = 0.

From the following inequality,

|xn ∧ yn| = |xn ∧ yn − xn ∧ y + xn ∧ y| ≤ |xn ∧ yn − xn ∧ y|+ |xn ∧ y|

≤ |yn − y|+ |xn ∧ y|

for every natural number n, we have

‖xn ∧ yn‖ ≤ ‖yn − y‖+ ‖xn ∧ y‖

converging to zero. Assume that un = (xn − yn)+ and vn = (xn − yn)− for
every natural number n. Again, by using the continuity of lattice operations,
we obtain un → x and vn → y. since A is a d-algebra, it follows from un∧vn = 0
that

zun ∧ zvn = unz ∧ vnz = 0

for every natural number n. Since zun ∧ zvn converges to zx ∧ zy = 0 and
unz ∧ vnz converges to xz ∧ yz = 0
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Let 0 ≤ z ∈ Â. There is a sequence 0 ≤ (zn) in A converging to z. By
before, we have

znx ∧ zny = xzn ∧ yzn = 0

for all natural number n. As n→∞, we get that zx ∧ zy = xz ∧ yz = 0.

Theorem 3.6 Assume that A is a normed almost f -algebra. Then, the
completion Â of A is a Banach almost f -algebra containing A as an almost
f -subalgebra.

Proof. It is clear that the norm completion Â of A is a Banach lattice
and a Banach algebra.Let 0 ≤ x, y ∈ Â. So, there are sequences (xn), (yn)
in A satisfying (xn) converging to x and (yn) converging to y. Since x, y are
positive, we can assume that sequences (xn), (yn) are positive.Since (xnyn)
converges to xy and the multiplication of xn and yn is positive , we get that xy
is positive. Our claim is that Â is an almost f -algebra. Let us take elements
x, y ∈ Â satisfying x ∧ y = 0. There are sequences (xn), (yn) in A satisfying
(xn) converging to x and (yn) converging to y. By using the continuity of
lattice operations, we get

xn ∧ y → x ∧ y = 0.

From the following inequality,

|xn ∧ yn| = |xn ∧ yn − xn ∧ y + xn ∧ y| ≤ |xn ∧ yn − xn ∧ y|+ |xn ∧ y|

≤ |yn − y|+ |xn ∧ y|

for every natural number n, we have

‖xn ∧ yn‖ ≤ ‖yn − y‖+ ‖xn ∧ y‖

converging to zero. Assume that un = (xn − yn)+ and vn = (xn − yn)− for
every natural number n. Again, by using the continuity of lattice operations,
we obtain un → x and vn → y. Since A is an almost f -algebra, it follows from
un ∧ vn = 0 for every natural number n that

un ∧ vn = un.vn = 0

converges to 0.
Since un.vn converges to 0 and un.vn converges to x.y by the uniqueness of

limits, x.y = 0. It shows that Â is a Banach almost f -algebra.



On the Fremlin projective tensor product 117

Let Banach lattice algebras E and F be given. The algebraic tensor product
E

⊗
F can be given by a canonical algebra product satisfying (a⊗ b).(c⊗d) =

ac⊗ bd for every a, c ∈ E and b, d ∈ F .
We can extend this multiplication to a Banach lattice algebra product on

the Fremlin projective tensor product E
⊗̂
|π|F , [9]. We need the following

information about multiplication in [9].
Define for a given a ∈ A and b ∈ B the bilinear map

La,b : A×B → A
⊗̂
|π|
B

by La,b(x, y) = ax⊗ by for every x ∈ A, y ∈ B. Let us assume that a ∈ A+, b ∈
B+. So, La,b is a positive bilinear map. By using the equality,

‖x⊗ y‖|π| = ‖x‖‖y‖

for all x ∈ A, y ∈ B, we get

‖La,b(x, y)‖|π| = ‖ax⊗ by‖|π| = ‖ax‖‖by‖

,

≤ ‖a‖‖x‖‖b‖‖y‖,

This shows that La,b is continuous and ‖La,b‖ ≤ ‖x‖‖y‖.
By the universal property of the Banach lattice tensor product, there is a

unique continuous linear map
λa,b : A

⊗̂
|π|B → A

⊗̂
|π|B such that (a⊗ b).(x⊗y) = La,b(x, y) = λa,b(x⊗y)

for all x ∈ A, y ∈ B and ‖λa,b‖ ≤ ‖a‖‖b‖. Notice that λa,b is the unique

continuous linear map on A
⊗̂
|π|B satisfying

λa,b(x ⊗ y) = (a ⊗ b) ? (x ⊗ y) and then the map R : A × B → A
⊗̂
|π|B

is a positive bilinear map. Let v ∈ A⊗̂
|π|B. Let us consider the bilinear map

Rv : A × B → A
⊗̂
|π|B by Rv(a, b) = λa,b(v) for all (a, b) ∈ A × B. Rv is

continuous . For every 0 ≤ v ∈ A⊗̂
|π|B there is a unique positive linear map

ρv : A
⊗̂
|π|B → A

⊗̂
|π|B such that ρv(a ⊗ b) = Rv(a, b) for all (a, b) ∈ A × B.

Hence, ρv is a positive map for every 0 ≤ v ∈ A⊗̂
|π|B and the map v → ρv is

linear.
We introduce a multiplication ? on A

⊗̂
|π|B. For every u, v ∈ A

⊗̂
|π|B,

we define u ? v by ρu(v) = v ? u. This multiplication extends the canonical
multiplication on A

⊗
B.

Theorem 3.7 [9] Let A and B be Banach lattice algebras. Then, the Frem-
lin projective tensor product A

⊗̂
|π|B is a Banach lattice algebra which contains

A
⊗
B as a subalgebra with respect to the multiplication ?.
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Theorem 3.8 [9] Assume that A and B are Banach f -algebras. Then, the
Fremlin projective tensor product A

⊗̂
|π|B is a Banach f -algebra that contains

A
⊗
B as an f -algebra.

Theorem 3.9 The Riesz tensor product A
⊗
B of Banach d-algebras A,B

is a normed d-algebra with respect to the positive projective norm ‖.‖|π|.

Proof. Since A and B are Archimedean d-algebras, the Riesz tensor product
A
⊗
B can be endowed with a d-algebra product denoted by . which extends

the algebraic multiplication. So, it is enough to show that u.v = u?v for every
u, v ∈ A

⊗
B. We claim that this multiplication is true for all u, v ∈ A

⊗
B.

Clearly, this multiplication is true for all u, v ∈ A⊗
B. Let u ∈ A⊗

B. By [7]
, there exist 0 ≤ a ∈ A and 0 ≤ b ∈ B and a sequence un in A

⊗
B such that

|u− un| ≤ 1
n
a⊗ b for all natural numbers n = 1, 2, 3, .... So, for all v ∈ A⊗

B,
we have
|u.v − un ? v| = |u.v − un.v| ≤ 1

n
(a ⊗ b)|v| for all natural numbers n =

1, 2, 3, .... It implies that the sequence (un ? v) converges in A
⊗̂
|π|B to u.v.

Also, (un ? v) converges to (u ? v) in A
⊗̂
|π|B. By the uniqueness of limits, we

have u.v = u?v for all u ∈ A⊗
B and v ∈ A⊗

B. We conclude that u.v = u?v
true for all u, v ∈ A⊗

B.

Theorem 3.10 Assume that A and B are Banach d-algebras.Then, the
Fremlin projective tensor product A

⊗̂
|π|B is a Banach d-algebra containing

Riesz tensor product A
⊗
B of d-algebras A and B as a d-algebra.

Proof. It is known that the vector lattice tensor product A
⊗
B of A and

B is a d-algebra, [2]. So,the norm completion A
⊗̂
|π|B of A

⊗
B is a Banach

d-algebra by Theorem 3.5 .
A vector lattice is called laterally complete whenever every set of pairwise

disjoint positive elements has a supremum. A Riesz space that is both lat-
erally complete and Dedekind complete is called a universally complete Riesz
space.If E is an Archimedean Riesz space, then there exists a unique (up to a
lattice isomorphism) universally complete Riesz space Eu called the universal
completion of E such that E is Riesz isomorphic to an order dense Riesz sub-
space of Eu. Identifying E with its copy in Eu, we have the Riesz subspace
inclusion E ⊆ Eu with E order dense in Eu. The Dedekind completion Eδ

of E can be identified with the ideal generated by E in Eu, and we get the
Riesz subspace inclusions E ⊆ Eδ ⊆ Euwith E order dense in Eu. The vector
lattice Eu is of the form C∞(X) for some Hausdorff , extremally disconnected,
compact topological space X. C∞(X), with X extremally disconnected, under
the pointwise multiplication is an Archimedean f -algebra with unit element
the constant function one. That is, Eu = C∞(X).
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Definition 3.11 Let E and F be Archimedean Riesz spaces and

Φ : E × E → F

be a bilinear mapping Φ is called an orthosymmetric mapping if x ⊥ y implies
Φ(x, y) = 0 for every x, y ∈ E, where x ⊥ y means |x| ∧ |y| = 0.

It is known that every symmetric mapping is an orthosymmetric mapping.
In the commutative case, they are identical.

Let A and B be almost f -algebras. We denote by Au and Bu the universally
completion of A and B. Here, Au and Bu are f -algebras. So, Au

⊗
Bu is an

f -algebra, [3], [5]. Consider the bilinear mapping Ψ : A
⊗
B×A⊗

B → Au
⊗
Bu

defined by Ψ(u, v) = u.v for every u, v ∈ A⊗
B.

Theorem 3.12 The Riesz tensor product of almost f -algebras A and B is
an almost f -algebra.

Proof. Every Archimedean f -algebra is commutative, [10]. In this reason
, the mapping Ψ is symmetric and so it is an orthosymmetric mapping. Since
A
⊗
B is a subspace of the Au

⊗
Bu, it follows that Ψ(u, v) = u.v = 0 for every

u, v ∈ A⊗
B with u ⊥ v. Hence, A

⊗
B is an almost f -algebra.

Theorem 3.13 The Riesz tensor product A
⊗
B of Banach almost f -algebras

A,B is a normed almost f -algebra with respect to the positive projection norm
‖.‖|π|.

Proof. The proof of this result is similar to that of Theorem 3.9. Hence,
we omit it.

Theorem 3.14 Assume that A and B are Banach almost f -algebras. Then,
the Fremlin projective tensor product of A and B is a Banach almost f -algebra
and contains the Riesz tensor product A

⊗
B as an almost f -algebra.

Proof. The Riesz tensor product A
⊗
B of almost f -algebras A,B is an

almost f -algebra by Theorem 3.12 . So, the norm completion A
⊗̂
|π|B of

A
⊗
B is a Banach almost f -algebra by Theorem 3.6 .
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