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Abstract

In this study, we investigate uo-convergence of nets of positive con-
tinuous operators defined on the topological dual of a completely regu-
lar Hausdorff topological space. Firstly, we make the definition of uo-
convergence on this class and then we present some characterizations of
it.
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1 Introduction

The notion of unbounded order convergence, simply uo-convergence, is firstly
studied in the article [7] by a mathematician Hidegoro Nakano. The aim
of Nakano was to define almost everywhere convergence in terms of lattice
operations without direct use of measure theory and he defined ”individual
convergence”. Then, it was named as "unboundedly order convergence” in the
paper [3] by Ralph DeMaar. The development of this subject continued with
[4], [5], [8], [9] and other researchers. We refer the reader to [2] for a survey of
some convergence types on vector lattices.

In section 2, we give some basic definitions of Riesz spaces and some con-
vergences on it. Let X be a set with an order relation 7 < 7. X is said to
be a lattice if any two elements x,y € X have a least upper bound and a
greatest lower bound such that = V y = sup{z,y} and x Ay = inf{z,y}. A
lattice (X, <) is called a vector lattice if the order and vector space structure
are compossible. A net is a function from a directed set A to an arbitrary set
(a vector lattice) X. It is denoted by (x4)aca or simply (z,) if the index set
is clear from a context. We refer the reader to [6] to for detailed information
about vector lattices.

In section 3, we characterize uo-convergence of nets of operators which are
defined on continuous functionals. In the paper [1], order and uo-convergence
on C(Q2) were characterized where €2 is a Baire space and C(€2) is the space of
all real valued functions. We study the uo-convergence of operator nets defined
on the space of continuous functionals satisfying the same conditions in [1].

2 Preliminaries

Definition 2.1 Let X be a vector lattice. The positive cone X consists of
all x € X such that x > 0. Furthermore, for every v € X let

rt=2Vv0, 27 =(—2) V0, and |z| =2V (-2)
be the positive part, the negative part and the absolute value of x, respectively.

Definition 2.2 Let (x,) be a net indexed by a directed set A. For ap € A
fized, let Ag = {a € A : a > ag} which is again a directed set under the
pre-order induced from A. The restriction of the function x to Ay is called a
tail of (x), and it is denoted by (Ta)a>aq-

Definition 2.3 Let (z4)aca be a net in X. (z,) is said to be order conver-
gent to x if there exists a net (Yo)aca Such that y, | 0 and |z, — x| < y, for
all v € A. It is denoted as xo — .
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Lemma 2.4 (Lemma 2.1, [1]) For a net (z,) in a vector lattice X, 1, =
x if and only if there exists a set G C Xy such that inf G = 0 and every element
of G dominates a tail of (x,), that is, for every g € G there exists ag such that
|zo| < g for all @ > ay.

Definition 2.5 A net (z,) is said to be unbounded order converges to x if
2o — 2| Ay 2 0 for every y > 0. We will use the notation (x4) uo-converges
to z, for short, and we will denote it as To —> .

Order and uo-convergences agree for order bounded nets. If w > 0 is a
weak unit then z, — z if and only if |z, — x| Aw = 0 [1].

Definition 2.6 i. A subspaceY of X s called a sublattice of Y if xVy € Y
andx ANy €Y forallz,y €Y.

1. A sublattice Y of X s called order dense if 0 < x € X implies that
there ezists y € Y with 0 <y < x.

1i. A sublattice is reqular if the inclusion map is order continuous, that is,
it preserves order convergence of nets.

Every order dense sublattice is regular. For a net (z,,) in a regular sublattice
Y of X, 2, = 0 in X if and only if 2, — 0in Y.

Definition 2.7 A net (x4)aca is called order Cauchy (or simply o-Cauchy)
if the double net (x, — x3)a2 is order null. Unbounded order Cauchy (simply
uo-Cauchy) is defined in the same way.

Before giving the Uryson’s lemma, recall that a normal space is a topo-
logical space that satisfies the Axiom T}, that is, every disjoint closed sets of
a topological space have disjoint open neighborhoods. In addition, a normal
Hausdorff space is called T} space.

Theorem 2.8 (Uryson’s Lemma) A topological space X is normal if and
only if for any two disjoint nonempty closed subsets Y,7Z C X there is a
continuous function f : X — [0,1] such that f(z) = 0 for all x € Y and
f(x)=1 forallz € Z.

Definition 2.9 A topological space X is completely reqular if the points
can be seperated from closed sets via continuous real-valued functions. That is,
for any closed set A C X and any point v € X\A, there exists a real-valued
continuous function f : X — R such that

and
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Throughout the paper, X stands for a locally solid Riesz space and also
completely regular Hausdorff topological space which is exactly the class of
Hausdorff spaces where the conclusion of Uryson’s Lemma holds. As a conse-
quence of Uryson’s Lemma, we can say that every locally compact Hausdorff
space or every normal space is completely regular.

Let X’ be a topological dual of X which we have mentioned above. C(X)
denotes the space of all real-valued continuous functions on X, and 1 for the
constant one function. Let B(X’); be a family of all continuous positive
operators defined as follows:

B(X')y ={T:X' = X'|Tf>0for f X} (1)

3 Main Results

The following lemma essentially Lemma 3.1 in [1], we rewrite it for our main
goal:

Lemma 3.1 Suppose that X is a Hausdorff locally solid vector lattice (and
Tychonoff ), X' be the topological dual of it and H C B(X')y. The following
are equivalent:

. inf H = 0;

it. for every non-empty open set U, g € X' and every ¢ > 0, there exists
an element s € U and T € H, with (T'g)(s) < ¢;

1. for every non-empty open set U, g € X' and every e > 0, there exists
a non-empty open set V-C U and T € H such that (Tg)(s) < ¢ forall s € V.

Proof. (i) = (ii) Consider that inf H = 0, but (ii) fails, that is, there
exists an open non-empty U, g € X’ and ¢ > 0 such that for every T' € H,
(T'g)(s) > e on U for all s. Since X is completely regular, we find a nonzero
f € C(X)4 and an operator S € B(X'); such that Sf < el and Sf vanishes
outside of U. Then S < H, which contradicts inf H = 0.

(ii) = (i) Suppose that (ii) holds and inf H # 0. Then there exists S €
B(X')4 such that 0 < § < H. Next, we can find an open non-empty set
U, f € C(X) and € > 0 such that Sf > ¢ on U. It follows that every
T € H,g € X' we obtain that Tg is greater than € on U, which contradicts
(ii).

Other implications can be clearly seen. O

Now, we will define uo-convergence and characterize it on B(X’), by using
operator nets.
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Definition 3.2 Let Ty be a net in B(X'),. Ty = T if and only if |Ty —
TIAf 20 forall f € B(X")s. Since Ty <> T if and only if |T\ —T| <> 0, it
is enough to characterize Ty — 0.

Theorem 3.3 Let X' be the dual of a Hausdorff locally solid vector lattice
(and Tychonoff) X and (Ty) be a net in B(X'),. Then T\ <> 0 if and only
if for every non-empty open set U, f € X', and every e > 0, there exists an
open non-empty V- C U and an index \g such that Tx\f is less than € on V
whenever A > \g.

Proof. Let Ty = 0. Then T\ A1 > 0. By the Lemma 2.4, we can find a
set H C B(X'), such that inf H = 0 and every element of H dominates a tail
of (T\ A 1). Fix a non-empty open U and ¢ € (0,1). Choose such V and T
that Lemma 3.1 (iii) holds. Since T' € H then T" dominates a tail of (7\ A 1),
followingly, there exists Ay such that T\ AT < T for all A > Ay. In particular,

(Tf)(s) A(s) = (Taf)(s) N1 < (Tf)(s) <e

hence (T f)(s) < e for all s € V. This completes the proof.

Conversely, suppose that the condition in the theorem holds. Since 1 is a
weak unit, it is enough to prove that T\ A 1T 2% 0. We will use Lemma 2.4
to prove it. Fix a nonempty set U and € > 0. We assume that V C U is a
non-empty set and Ag is an index such that T)f is less than € on V for all
f € X', whenever A > )\¢. Fix any s € V. Since X is completely regular,
we can find g € C(X); such that g(s) = 0 and g equals 1 outside of V. Put
k= gVel. Then

k(s) =g(s)Ve-1(s) =e.
We claim that (T\ A 1)(f) < k for every A > Ag. Indeed, if m € V' then
(Thf)(m) < e < k(s)
and if m ¢ V then

[(TAT)(PI(m) <1 = g(s) < k(s).

Repeat this process for every pair (U, e) where U is open and non-empty and
€ > 0. Let H be the set of the resulting functions k. Each such k& dominates
a tail of (T A 1) Lemma 3.1 implies inf H = 0, completes the proof. O

Corollary 3.4 Let X be a Hausdorff locally solid vector lattice (and Ty-
chonoff), X' be a topological dual of it and (Tx)xea be a net in B(X'),. Then
(Ty) is uwo— Cauchy if and only if for every non-empty set U, f € X', and
every € > 0, there exists an open non-empty V- C U and an index \g such that

[(Taf)(s) = (Tsf)(s)| < e
forall s €V and \,3 > Ag.
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Proof. (=) Let (1)) be an uo — Cauchy net. That is, for \, § € A, the net
— T3) ax 4 is vo—null. By the Theorem 3.3 we get the result directly.

(<) It can be easily seen by using Theorem 3.3 again. O
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