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Abstract

In 2011, W. Lang derived a novel, explicit formula for the sum of
powers of integers Sk(n) = 1k + 2k + · · ·+ nk involving simultaneously
the Stirling numbers of the first and second kind. In this paper, we first
recall and then slightly refine Lang’s formula for Sk(n). As it turns out,
the refined Lang’s formula constitutes a special case of a well-known
relationship between the power sums, the elementary symmetric func-
tions, and the complete homogeneous symmetric functions. In addition,
we provide several applications of this general relationship.
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1 Introduction

For integers n ≥ 1 and k ≥ 0, let Sk(n) denote the sum of the k-th powers of
the first n positive integers 1k + 2k + · · · + nk. In a 2011 technical note [7],
W. Lang derived the following explicit formula for Sk(n) (in our notation):

Sk(n) =

min (k,n−1)∑
m=0

(−1)m(n−m)

[
n+ 1

n+ 1−m

]{
n+ k −m

n

}
, (1)

see [7, Equation (10)], where
[
k
j

]
and

{
k
j

}
denote the (unsigned) Stirling num-

bers of the first and second kind, respectively.
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For completeness and for its intrinsic interest, in Section 2, we outline the
proof of formula (1) as given by Lang. Then, in Section 3, we slightly refine
Lang’s formula (1). The refinement made essentially amounts to the removal
of n from the factor (n−m). In Section 4, we show that the refined Lang’s for-
mula arises as a direct consequence of the Newton-Girard identities involving
the power sums Sk(n) and the elementary symmetric functions with natu-
ral arguments. In Section 5, we point out that, actually, the refined Lang’s
formula constitutes a special case of a well-known relationship between the
power sums, the elementary symmetric functions, and the complete homoge-
neous symmetric functions. We then look at several applications of this general
relationship, which, in the context of this paper, we refer to as the generalized
Lang’s formula.

2 Proof of Lang’s formula

Following Lang’s own derivation [7], next we give a simplified proof sketch of
formula (1). We start with the ordinary generating function of Sk(n), i.e.

Gn(x) =
∞∑
k=0

(1k + 2k + · · ·+ nk)xk =
n∑
j=1

1

1− jx
.

This generating function can be rewritten in the form

Gn(x) =
Pn(x)∏n

j=1(1− jx)
, (2)

where Pn(x) is the following polynomial in x of degree n− 1 with coefficients
Pn,r:

Pn(x) =
n∑
j=1

n∏
l=1
l 6=j

(1− lx) =
n−1∑
r=0

Pn,rx
r. (3)

Hence, noting that 1∏n
j=1(1−jx)

=
∑∞

m=0

{
n+m
n

}
xm, from (2) and (3) it follows

that

Sk(n) =

min (k,n−1)∑
m=0

Pn,m

{
n+ k −m

n

}
. (4)

Now, as pointed out by Lang [7], the elementary symmetric functions
σm(1, 2, . . . , n) enter the scene because we have that

n∏
j=1

(1− jx) =
n∑

m=0

(−1)mσm(1, 2, . . . , n)xm, (5)
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with σ0 = 1. In view of (3) and (5), it is clear that, by symmetry, Pn(x) must
be of the form

Pn(x) =
n−1∑
m=0

Cn,m(−1)mσm(1, 2, . . . , n)xm,

for certain positive integer coefficients Cn,m. Indeed, it can be seen that

Pn,0 = n,

Pn,1 = (n− 1)(−1)(1 + 2 + · · ·+ n) = (n− 1)(−1)σ1(1, 2, . . . , n),

Pn,2 = (n− 2)(1 · 2 + 1 · 3 + · · ·+ (n− 1)n) = (n− 2)σ2(1, 2, . . . , n),

and, in general,

Pn,m =
n
(
n−1
m

)(
n
m

) (−1)mσm(1, 2, . . . , n) = (n−m)(−1)mσm(1, 2, . . . , n),

so that Cn,m = n−m, for m = 0, 1, . . . , n− 1.
Therefore, recalling (4), and invoking the well-known relationship σm(1, 2, . . . , n) =[

n+1
n+1−m

]
(see, e.g., [6, Equation (2.6)]), we get (1).

3 A refinement of Lang’s formula

Having considered Lang’s original formula for the sum of powers of integers,
we show that this formula can be simplified somewhat. To see this, we write
(1) in the equivalent form

Sk(n) = n

min (k,n)∑
m=0

(−1)m
[

n+ 1

n+ 1−m

]{
n+ k −m

n

}

+

min (k,n)∑
m=1

(−1)m−1m

[
n+ 1

n+ 1−m

]{
n+ k −m

n

}
,

where the second summation on the right-hand side is zero when k = 0 or, in
other words, it applies for the case that k ≥ 1. Regarding the first summation,
it turns out that

min (k,n)∑
m=0

(−1)m
[

n+ 1

n+ 1−m

]{
n+ k −m

n

}
= δk,0, (6)

where δk,0 is the Kronecker’s delta. This is so because(∑
i≥0

(−1)i
[

n+ 1

n+ 1− i

]
xi

)(∑
j≥0

{
n+ j

n

}
xj

)
= 1.
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Consequently, Lang’s original formula (1) can be reduced to

Sk(n) = n δk,0 +

min (k,n)∑
m=1

(−1)m−1m

[
n+ 1

n+ 1−m

]{
n+ k −m

n

}
, (7)

which holds for any integers n ≥ 1 and k ≥ 0, and where, as noted above,
the summation on the right-hand side is zero when k = 0. Moreover, for the
general case where k ≥ 1, formula (7) can in turn be expressed without loss of
generality as

Sk(n) =
k∑

m=1

(−1)m−1m

[
n+ 1

n+ 1−m

]{
n+ k −m

n

}
, k ≥ 1, (8)

assuming the natural convention that
[

n+1
n+1−m

]
= σm(1, 2, . . . , n) = 0 whenever

m > n.

4 Connection with the Newton-Girard identi-

ties

As we shall presently see, the refined Lang’s formula for Sk(n) in equation
(8) can be readily obtained from the Newton-Girard identities (cf. Exercise 2
of [3]). Let {x1, x2, . . . , xn} denote a (possibly infinite) set of variables and
let σm(x1, x2, . . . , xn) denote the corresponding elementary symmetric func-
tion. Generally speaking, the Newton-Girard identities are, within the ring
of symmetric functions, the connection formulas between the generating sets
{σm(x1, x2, . . . , xn)}km=1 and {pm(x1, x2, . . . , xn)}km=1, where k stands for any
fixed positive integer and the pm’s stand for the power sums pm(x1, x2, . . . , xn) =
xm1 + xm2 + · · ·+ xmn .

For our purposes here, we focus on the case where xi = i, ∀i. Also, to
abbreviate the notation, in what follows we write σm(1, 2, . . . , n) in the short-
ened form σm(n). Then, for any given positive integer m, the Newton-Girard
identities can be formulated as follows (see, e.g., [5, Equation (5)] and [15,
Theorem 1.2])

m−1∑
j=1

σm−j(n)Sj(n) + Sm(n) +mσm(n) = 0, m ≥ 1, (9)

where σj(n) = (−1)jσj(n), and where the summation on the left-hand side is
zero when m = 1. Thus, letting successively m = 1, 2, 3, . . . , k in (9) gives rise
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to the following system of k equations in the unknowns S1(n), S2(n), . . . , Sk(n):

S1(n) = −σ1(n),

σ1(n)S1(n) + S2(n) = −2σ2(n),

σ2(n)S1(n) + σ1(n)S2(n) + S3(n) = −3σ3(n),
...

σk−1(n)S1(n) + σk−2(n)S2(n) + · · ·+ σ1(n)Sk−1(n) + Sk(n) = −kσk(n),

which can be expressed in matrix form as

1 0 0 · · · 0

σ1(n) 1 0
. . . 0

σ2(n) σ1(n) 1
. . . 0

...
...

. . . . . . 0

σk−1(n) σk−2(n) · · · σ1(n) 1





S1(n)

S2(n)

S3(n)
...

Sk(n)

 =



−σ1(n)

−2σ2(n)

−3σ3(n)
...

−kσk(n)

 .

On the other hand, it is easily seen that the orthogonality relation in equation
(6) is equivalent to the matrix identity

1 0 0 · · · 0

σ1(n) 1 0
. . . 0

σ2(n) σ1(n) 1
. . . 0

...
...

. . . . . . 0
σk−1(n) σk−2(n) · · · σ1(n) 1



−1

=


1 0 0 · · · 0

h1(n) 1 0
. . . 0

h2(n) h1(n) 1
. . . 0

...
...

. . . . . . 0
hk−1(n) hk−2(n) · · · h1(n) 1

 ,

where hk(n) =
{
n+k
n

}
and h0(n) = 1. Hence, it follows that

S1(n)

S2(n)

S3(n)
...

Sk(n)

 =


1 0 0 · · · 0

h1(n) 1 0
. . . 0

h2(n) h1(n) 1
. . . 0

...
...

. . . . . . 0
hk−1(n) hk−2(n) · · · h1(n) 1





−σ1(n)

−2σ2(n)

−3σ3(n)
...

−kσk(n)

 .

Finally, solving for Sk(n), we obtain

Sk(n) = −
k∑

m=1

mσm(n)hk−m(n),

which is just equation (8).
We conclude this section with the following two remarks.



62 J. L. Cereceda

Remark 4.1. The Newton-Girard identities (9) can equally be written as
the recurrence formula

Sm(n) = (−1)m−1mσm(n)−
m−1∑
j=1

(−1)jσj(n)Sm−j(n), m ≥ 1,

giving Sm(n) in terms of σ1(n), σ2(n), . . . , σm(n) and the earlier power sums
Sj(n), j = 1, 2, . . . ,m− 1. This recurrence formula may be compared with the
following one appearing in [3, Remark 3]:

Sm(n) = m!

(
n+m

m+ 1

)
−

m−1∑
j=1

σj(m− 1)Sm−j(n), m ≥ 1.

Remark 4.2. It is to be noted that the formula for Sk(n) in equation (8)
was (re)discovered by Merca in [8, Theorem 1] by manipulating the formal
power series for the Stirling numbers.

5 Generalized Lang’s formula

The proof given in the preceding section of formula (8) naturally generalizes
to arbitrary elementary symmetric functions σm(x1, x2, . . . , xn), complete ho-
mogenous symmetric functions hm(x1, x2, . . . , xn), and associated power sums
pm(x1, x2, . . . , xn) as follows

pk(x1, x2, . . . , xn) =
k∑

m=1

(−1)m−1mσm(x1, x2, . . . , xn)hk−m(x1, x2, . . . , xn),

(10)
which becomes equation (8) when xi = i, ∀i. The generalized Lang’s formula
(10) constitutes a well-known result in the theory of symmetric functions (see,
e.g., [4, Proposition 3.2] and [9, Lemma 2.1] for two recent proofs of formula
(10)). Next, we briefly discuss some other applications of it.

Consider first the case in which xi = 1, ∀i. Then, recalling that σm(1, 1, . . . , 1) =(
n
m

)
and hm(1, 1, . . . , 1) =

(
n+m−1

m

)
, from (10) we obtain the identity

k∑
m=1

(−1)m−1m

(
n

m

)(
n+ k −m− 1

k −m

)
= n,

which holds for any integers k, n ≥ 1. On the other hand, for integers 1 ≤ r ≤
n, it turns out that the r-Stirling numbers of the first kind are the elementary
symmetric functions of the numbers r, r+1, . . . , n, that is,

[
n+1

n+1−m

]
r

= σm(r, r+
1, . . . , n); and the r-Stirling numbers of the second kind are the complete
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symmetric functions of the numbers r, r+1, . . . , n, that is,
{
n+m
n

}
r

= hm(r, r+
1, . . . , n) (see [2, Section 5]). Therefore, from (10), we deduce that

rk + (r + 1)k + · · ·+ nk =
k∑

m=1

(−1)m−1m

[
n+ 1

n+ 1−m

]
r

{
n+ k −m

n

}
r

,

where
[

n+1
n+1−m

]
r

= σm(r, r + 1, . . . , n) = 0 whenever m > n + 1 − r. Clearly,
the last equation reduces to (8) when r = 1. A further generalization of (8) in
terms of the r-Whitney numbers of both kinds and the Bernoulli polynomials
can be found in [10].

As another application of equation (10), we can evaluate the sum of even
powers of the first n positive integers by using the fact that (see [11])

u(n+ 1, n+ 1−m) = (−1)mσm(12, 22, . . . , n2),

and
U(n+m,n) = hm(12, 22, . . . , n2),

where u(n, k) [respectively, U(n, k)] are the central factorial numbers of the
first [respectively, second] kind with even indices. Therefore, we have [11,
Theorem 1.1]

12k + 22k + · · ·+ n2k = −
k∑

m=1

mu(n+ 1, n+ 1−m)U(n+ k −m,n).

Likewise, noting that (see [11])

v(n, n−m) = (−1)mσm(12, 32, . . . , (2n− 1)2),

and
V (n− 1 +m,n− 1) = hm(12, 32, . . . , (2n− 1)2),

where v(n, k) [respectively, V (n, k)] are the central factorial numbers of the
first [respectively, second] kind with odd indices, we can evaluate the sum of
even powers of the first n odd integers as follows

12k + 32k + · · ·+ (2n− 1)2k = −
k∑

m=1

mv(n, n−m)V (n− 1 + k −m,n− 1).

Remark 5.1. Incidentally, the above power sum can alternatively be ex-
pressed as the following polynomial in n:

12k + 32k + · · ·+ (2n− 1)2k =
22k

2k + 1

k∑
j=0

(
2k + 1

2j + 1

)
B2k−2j

(1

2

)
n2j+1,

where Bk(
1
2
) denotes the Bernoulli polynomial Bk(x) evaluated at x = 1

2
.



64 J. L. Cereceda

n\ j 0 1 2 3 4 5 6 7
0 1
1 0 1
2 0 −2 1
3 0 12 −8 1
4 0 −144 108 −20 1
5 0 2880 −2304 508 −40 1
6 0 −86400 72000 −17544 1708 −70 1
7 0 3628800 −3110400 808848 −89280 4648 −112 1

Table 1: The LS numbers of the first kind, Ps
(j)
n , up to n = 7.

Our next application concerns the so-called Legendre-Stirling (LS) numbers

of the first and second kind, which, following [1], we denote by Ps
(j)
n and PS

(j)
n ,

respectively. It is assumed that n and j are non-negative integers fulfilling
0 ≤ j ≤ n. Table 1 (2) displays the first few LS numbers of the first (second)
kind. The LS numbers of the first kind are the elementary symmetric functions
of the numbers 2, 6, . . . , n(n+ 1), i.e.

Ps
(n+1−k)
n+1 = (−1)kσk(2, 6, . . . , n(n+ 1)),

whereas the LS numbers of the second kind are the complete symmetric func-
tions of the numbers 2, 6, . . . , n(n+ 1), i.e.

PS
(n)
n+k = hk(2, 6, . . . , n(n+ 1)).

Equivalently, the above two expressions can be written as

Ps
(n+1−k)
n+1 = (−1)k2kσk(T1, T2, . . . , Tn),

and

PS
(n)
n+k = 2khk(T1, T2, . . . , Tn),

n\ j 0 1 2 3 4 5 6 7
0 1
1 0 1
2 0 2 1
3 0 4 8 1
4 0 8 52 20 1
5 0 16 320 292 40 1
6 0 32 1936 3824 1092 70 1
7 0 64 11648 47824 25664 3192 112 1

Table 2: The LS numbers of the second kind, PS
(j)
n , up to n = 7.
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respectively, where Tn = 1
2
n(n + 1) is the n-th triangular number. Therefore,

we conclude from (10) that

T k1 + T k2 + · · ·+ T kn = − 1

2k

k∑
m=1

mPs
(n+1−m)
n+1 PS

(n)
n+k−m. (11)

In particular, for k = 1, we have

T1 + T2 + · · ·+ Tn =

(
n+ 2

3

)
= −1

2
Ps

(n)
n+1.

Let us observe that the sum of the k-th powers of the first n triangular numbers
can also be expressed as

T k1 + T k2 + · · ·+ T kn =
1

2k

k∑
j=0

(
k

j

)
Sk+j(n)

=
1

2k

k∑
j=0

(
k

j

)
Bk+j+1(n+ 1)−Bk+j+1(1)

k + j + 1
. (12)

Moreover, Merca showed that, see [12, Corollary 1.1] (in our notation)

−
k∑

m=1

mPs
(n+1−m)
n+1 PS

(n)
n+k−m =

(−1)k

(k + 1)
(
2k+2
k+1

) +
k∑
j=0

(
k

j

)
Bk+j+1(n+ 1)

k + j + 1
. (13)

Hence, combining (11) and (13), and taking into account (12), we obtain the
identity

k∑
j=0

(−1)j
(
k

j

)
Bk+j+1

k + j + 1
=

1

(k + 1)
(
2k+2
k+1

) , k ≥ 1,

where the Bk are the Bernoulli numbers.
Our last application of the generalized Lang’s formula (10) involves the

Riemann zeta function at positive even integer arguments, ζ(2k). According
to [13, Equations (2.1) and (3.1)], we have

σk

( 1

12
,

1

22
,

1

32
, . . .

)
=

π2k

(2k + 1)!
, (14)

and

hk

( 1

12
,

1

22
,

1

32
, . . .

)
=

22k − 2

22k−1 ζ(2k), k ≥ 1. (15)
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Thus, noting that ζ(2k) =
∑∞

n=1
1
n2k = pk

(
1
12
, 1
22
, 1
32
, . . .

)
, the substitution of

relations (14) and (15) into equation (10) yields the recursive formula

ζ(2k) = (−1)k−1
k ·π2k

(2k + 1)!
+

k−1∑
m=1

(−1)m−1
2m · π2m

(2m+ 1)!

(
1− 22(m−k)+1

)
ζ(2k − 2m),

(16)
with k ≥ 1, and where the summation on the right-hand side is zero when
k = 1.

We end this section with the following observations regarding equation (16).

Remark 5.2. The recursive formula (16) was obtained by Merca in [13,
Corollary 4.2] by considering the formal power series associated with the sym-
metric functions (14) and (15). See also [14] for a systematic derivation of
linear recurrence relations for ζ(2k).

Remark 5.3. Since σ1(x1, x2, . . . ) = h1(x1, x2, . . . ), from (14) and (15) we
readily obtain that ζ(2) = π2

6
. Of course, this result also follows by setting

k = 1 in equation (16).

Remark 5.4. The recursive formula (16) can be correspondingly expressed
in terms of the Bernoulli numbers as follows (cf. [13, Corollary 5.2])

B2k =
2

2k + 1

k∑
j=1

j

(
2k + 1

2j + 1

)(
1

22k−1 −
1

22j

)
B2k−2j, k ≥ 1.

6 Conclusion

In this paper, we have brought to light an outstanding (though largely un-
noticed) contribution of W. Lang to the subject of the sums of powers of
integers, namely, his formula for Sk(n) stated in equation (1). We have shown
that Lang’s original formula (1) can be slightly refined so that the integer vari-
able n can be effectively removed from the factor (n −m), as can be seen by
looking at formula (7). Furthermore, we have shown that the refined Lang’s
formula for Sk(n) in equation (8) follows straightforwardly from the Newton-
Girard identities formulated in equation (9). Finally, to broaden the scope of
the present paper, we have examined several extensions of formula (8) achieved
by Merca [9, 10, 11, 12, 13].

Additionally, it should be mentioned that, by considering certain symmet-
ric triples of power series, O’Sullivan [16] provided a natural framework for
studying systematically a variety of combinatorial and number theoretic se-
quences (see, in particular, [16, Example 5.4], where the formula in equation
(8) is obtained by considering a specific symmetric triple).
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[15] M. Mossé, Newton’s identities, online note (2019), available at
https://web.stanford.edu/~marykw/classes/CS250_W19/Netwons_Identities.pdf

[16] C. O’Sullivan, Symmetric functions and a natural framework for com-
binatorial and number theoretic sequences, preprint (2022), available at
https://arxiv.org/abs/2203.03023v1

Received: April 11, 2023; Publsihed: May 1, 2023


