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Abstract

Conformal mappings are an important object to be investigated in differential ge-

ometry. In the paper, the authors mainly construct conformal mappings concerning

several rotating surfaces and conclude the proportion of the area element between

two surfaces under conformal mapping.
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1. Introduction

Conformal mappings are extremely important in the study of the curved
surface theory. They are widely used in computer graphics, computer vision,
geometric modeling, wireless sensor network, medical image, and other fields.

Qiu and Gu [5] led their team combining basic mathematical disciplines
such as differential geometry and algebraic topology with computer science
and creating a cross-domain discipline, Computational Conformal Geometry,
by using conformal mappings.

In the paper [4], Gu–Luo–Yau expounded the basic concepts and theories
involved in the cross-domain discipline, as well as briefly introduced some
relevant applications in engineering.

In the paper [11], Wu and three coauthors proposed a conformal mapping
method for tongue image alignment. The mapping on the boundary is first
established by the Fourier descriptors, and then the mapping is extended to the
inner region by the Cauchy integrals and finite difference method. This method
not only improves the efficiency of image alignment and feature extraction, but
also improves the accuracy of disease detection.

In the paper [1], Dai and Ben Amar expressed the shape of fresh flat leaves
as a holomorphic function and used conformal mappings to study the complex
morphology of growing leaves. This method can also be used for more two-
dimensional organisms to study their growth patterns. Thus, the comparison
and research between surfaces are of fundamental importance in the medical
field and many projects.

Regarding the examples of conformal mappings, the textbook [2] of dif-
ferential geometry gives the most classical stereographic projection [10], the
mapping between the spherical surface and the plane [9, pp. 121–139], and the
mapping between the spherical surface and the cylindrical surface [2, pp. 115–
120].

In the paper [8], Mo and Ji studied the internal relation between the catenoid
and the helicoid, two famous minimal surfaces. Through the parameter trans-
formation, they found that the relation between the catenoid and the helicoid
with different coefficients can form conformal mapping.

In the paper [6], basing on existing research, Li and six coauthors discussed
the mapping from the ruled surface to the plane, obtained a formula for the
conformal mapping from a special ruled surface to a plane, and presented two
formulas for the conformal mappings from the plane to the elliptical cylinder
and to the hyperbolic cylinder.

In this paper, we mainly aim to construct conformal mappings concerning
several rotating surfaces, to study by using conformal mappings the correspon-
dence of between area elements of surfaces, and extend known results in related
literature.
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2. Elementary knowledge

If a mapping between two surfaces causes the intersection angles of the
corresponding curves on the surface to be equal, then we call it a conformal
mapping [9].

On any surface r(u, v) in R3, the differential of the arc length at some point
is considered to be

d s =
√
E du2 + 2F du d v +G d v2 ,

where

E = E(u, v) = ru(u, v) · ru(u, v),

F = F (u, v) = ru(u, v) · rv(u, v),

G = G(u, v) = rv(u, v) · rv(u, v).

We call the quantity

I(u, v) = d s2 = E du2 + 2F du d v +G d v2

the first fundamental form of a surface and call E,F,G the coefficients of the
first fundamental form of a surface [9].

A mapping between two surfaces is conformal if and only if the first funda-
mental forms of these two surfaces are proportional [2, pp. 115–120]. If taking
the same parameters, then the first fundamental forms of these two surfaces
are

I(u, v) = E du2 + 2F du d v +G d v2

and
I∗(u, v) = E∗ du2 + 2F ∗ du d v +G∗ d v2

respectively. Thus, we acquire the relation I = λ2(u, v)I∗, where λ(u, v) 6= 0.
See [2, pp. 115–120]. When λ2(u, v) = 1, the first fundamental forms of these
two surfaces are equal, so an isometric mapping must be conformal.

Lemma 1 ([6]). Between the hyperbolic cylinder r(u, v) = {secu, tanu, v} and
the plane r∗(x, y) = {x, y, 0}, there exists a conformal mapping.

Lemma 2 ([8]). Between the catenoid

r(u, v) =

{
a cosh

v

a
cosu, a cosh

v

a
sinu, v

}
and the helicoid r∗(ũ, ṽ) = {ũ cos ṽ, ũ sin ṽ, bṽ}, if a 6= b, there exists a confor-
mal mapping such that λ(ũ, ṽ) = 1

b
cos
(
arctan ũ

b

)
cosh ṽ

a
.

Every point on any surface has a neighbourhood where one can establish
a conformal mapping with a region of the Euclidean plane [2, pp. 115–120],
that is, a conformal mapping between a surface and a plane can be established
locally. Moreover, it can also be established between the whole surface. In
addition to the stereographic projection, the mapping between the spherical
surface and the plane or the mapping between the spherical surface and the
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cylindrical surface given in the textbook, a conformal mapping can also be
established between a rotating surface and a cylinder [7, p. 26]. The proof
of establishing conformal mappings between a rotating surface and a cylinder
and between rotating surfaces are given as follows.

3. Conformal mappings between surfaces

We now start out to establish conformal mappings between surfaces.

Theorem 1. There exists a conformal mapping between the catenoid

r(u, v) =

{
a cosh

u

a
cos v, a cosh

u

a
sin v, u

}
, 0 < v < 2π, u ∈ R

and the cylinder

r∗(u, v) = {a cos v, a sin v, u}, u, v ∈ R,

where a > 0 is a constant.

Proof. For the catenoid r(u, v), a straightforward computation gives

E1(u, v) = sinh2 u

a
+ 1 = cosh2 u

a
, F1(u, v) = 0, G1(u, v) = a2 cosh2 u

a
.

The first fundamental form of the catenoid r(u, v) is

I1(u, v) = cosh2
u

a
du2 + a2 cosh2

u

a
d v2 = cosh2

u

a

(
du2 + a2 d v2

)
.

For the cylinder r∗(u, v), a direct calculation gives

E2(u, v) = 1, F2(u, v) = 0, G2(u, v) = a2.

The first fundamental form of the cylinder r∗(u, v) is

I2(u, v) = du2 + a2 d v2.

Therefore, we derive the relation I1(u, v) = cosh2 u
a
I2(u, v). Hence, we can

obtain λ(u, v) = cosh u
a
, which indicates that a conformal mapping can be

established between the catenoid r(u, v) and the cylinder r∗(u, v). The proof
of Theorem 1 is complete. �

Theorem 2. There exists a conformal mapping between the uniparted hyper-
boloid

r(u, v) = {coshu cos v, coshu sin v, sinhu}, 0 < v < 2π, u ∈ R

and the cylinder

r∗(ũ, ṽ) = {cos ṽ, sin ṽ, ũ}, ũ, ṽ ∈ R.

Proof. It is easy to see that,
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(1) for the cylinder r∗(ũ, ṽ), we have

E3(ũ, ṽ) = 1, F3(ũ, ṽ) = 0, G3(ũ, ṽ) = 1.

Then the first fundamental form of the cylinder r∗(ũ, ṽ) is

I3(ũ, ṽ) = d ũ2 + d ṽ2.

(2) for the uniparted hyperboloid r(u, v) considered in [3], we have

ru(u, v) = (sinhu cos v, sinhu sin v, coshu),

rv(u, v) = (− coshu sin v, coshu cos v, 0),

and

E4(u, v) = sinh2 u+ cosh2 u, F4(u, v) = 0, G4(u, v) = cosh2 u.

Then the first fundamental form of the uniparted hyperboloid r(u, v)
is

I4(u, v) =
(
sinh2 u+ cosh2 u

)
du2 + cosh2 u d v2.

Performing the parameter transformation u = arcsinhα and v = δ leads to

∂(u, v)

∂(α, δ)
=

∣∣∣∣ 1√
α2+1

0

0 1

∣∣∣∣ =
1√

α2 + 1
6= 0,

where α ∈ R. Then we have

I4(α, δ) = (α2 + 1)

[
2α2 + 1

α2 + 1
d(arcsinhα)2 + d δ2

]
= (α2 + 1)

[
2α2 + 1

(α2 + 1)2
dα2 + d δ2

]
.

Taking the parameter transformation α =
√
2
2

tan β and δ = η results in

∂(α, δ)

∂(β, η)
=

∣∣∣∣ √22 cos2 β
0

0 1

∣∣∣∣ =

√
2

2 cos2 β
6= 0,

where β 6= π
2

+ kπ. Then we acquire

I4(β, η) =

(
1

2
tan2 β + 1

)[
tan2 β + 1(

1
2

tan2 β + 1
)2 d

(√
2

2
tanβ

)2

+ d η2

]

=

(
1

2
tan2 β + 1

)[
sec4 β(tan2 β + 1)

2
(
1
2

tan2 β + 1
)2 d β2 + d η2

]

=

(
1

2
tan2 β + 1

)[
2 cos2 β

(sin2 β − 2)2(sin2 β − 1)2
d β2 + d η2

]
.

Making the parameter transformation β = arcsin γ and η = ε arrives at

∂(β, η)

∂(γ, ε)
=

∣∣∣∣∣
1√
1−γ2

0

0 1

∣∣∣∣∣ =
1√

1− γ2
6= 0,
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where −1 < γ < 1. Then we gain

I4(γ, ε) =
2− γ2

2(1− γ2)

[
2

(2− γ2)2(1− γ2)2
d γ2 + d ε2

]
=

2− γ2

2(1− γ2)

[
d

(
1

2
ln

∣∣∣∣γ −√2

γ +
√

2

∣∣∣∣+

√
2

2
ln

∣∣∣∣γ + 1

γ − 1

∣∣∣∣+ C

)2

+ d ε2
]
,

where C is a constant. Finally, carrying out the substitutionũ =
1

2
ln

∣∣∣∣γ −√2

γ +
√

2

∣∣∣∣+

√
2

2
ln

∣∣∣∣γ + 1

γ − 1

∣∣∣∣+ C

ṽ = ε

results in the relation

I4 =
2− γ2

2(1− γ2)
(
d ũ2 + d ṽ2

)
=

2− γ2

2(1− γ2)
I3,

where γ =
√
2 sinhu√

2 sinh2 u+1
, which can be written as I4 =

(
cosh2 u

)
I3. Accordingly,

we obtain the equation λ(u, v) = coshu, which indicates that a conformal map-
ping is established between the uniparted hyperboloid r(u, v) and the cylinder
r∗(ũ, ṽ). The proof of Theorem 2 is complete. �

Theorem 3. There exists a conformal mapping between the catenoid

r(u, v) = {cosh v cosu, cosh v sinu, v}, 0 < u < 2π, v ∈ R
and the uniparted hyperboloid

r∗(ũ, ṽ) = {sec ũ cos ṽ, sec ũ sin ṽ, tan ũ}, 0 < ṽ < 2π,−π
2
< ũ <

π

2
.

Proof. For the catenoid r(u, v), by simple differentiation, it follows that

E5(u, v) = cosh2 v, F5(u, v) = 0, G5(u, v) = sinh2 v + 1 = cosh2 v.

Thus, the first fundamental form of the catenoid r(u, v) is

I5(u, v) = cosh2 v du2 + cosh2 v2 d v2 = cosh2 v
(
du2 + d v2

)
.

The first fundamental form of the plane rp(x, y) = {x, y, 0} is

Ip(x, y) = dx2 + d y2.

Carrying out the parametric transform x = u and y = v reveals

I5(u, v) = cosh2 v
(
dx2 + d y2

)
= cosh2 vIp(x, y).

For the uniparted hyperboloid r∗(ũ, ṽ), it is easy to obtain

r∗ũ =
(
sec ũ tan ũ cos ṽ, sec ũ tan ũ sin ṽ, sec2 ũ

)
,

r∗ṽ = (− sec ũ sin ṽ, sec ũ cos ṽ, 0),

and

E6(ũ, ṽ) = sec2 ũ tan2 ũ+ sec4 ũ, F6(ũ, ṽ) = 0, G6(ũ, ṽ) = sec2 ũ.



Construction of conformal mappings between rotating surfaces 105

Hence, the first fundamental form of the uniparted hyperboloid r∗(ũ, ṽ) is

I6(ũ, ṽ) =
(
sec2 ũ tan2 ũ+ sec4 ũ

)
d ũ2 + sec2 ũ d ṽ2.

Replacing the parameters ũ = arcsinα and ṽ = δ gives

∂(ũ, ṽ)

∂(α, δ)
=

∣∣∣∣ 1√
1−α2 0

0 1

∣∣∣∣ =
1√

1− α2
6= 0,

where −1 < α < 1. So, we attain

I6(α, δ) =
1

1− α2

[(
α2

1− α2
+

1

1− α2

)
d(arcsinα)2 + d δ2

]
=

1

1− α2

[(
α2 + 1

1− α2

1

1− α2

)
dα2 + d δ2

]
.

Making the substitution α = tan β and δ = η results in

∂(α, δ)

∂(β, η)
=

∣∣∣∣ 1
cos2 β

0

0 1

∣∣∣∣ =
1

cos2 β
6= 0,

where β 6= π
2

+ kπ. Consequently, we acquire

I6(β, η) =
cos2 β

cos 2β

[(
cos2 β

cos 2β
sec2 β

cos2 β

cos 2β

)
d(tan β)2 + d η2

]
=

cos2 β

cos 2β

[(
cos2 β

cos 2β
sec2 β

cos2 β

cos 2β
sec4 β

)
d β2 + d η2

]
=

cos2 β

cos 2β

[(
1

cos 2β

1

cos2 β

1

cos 2β

)
d β2 + d η2

]
.

Further making a substitution β = arcsin γ and η = ε leads to

∂(β, η)

∂(γ, ε)
=

∣∣∣∣∣
1√
1−γ2

0

0 1

∣∣∣∣∣ =
1√

1− γ2
6= 0,

where −
√
2
2
< γ <

√
2
2

. Accordingly, we deduce

I6(γ, ε) =
1− γ2

1− 2γ2

[
1

(1− 2γ2)2
1

(1− γ2)2
d γ2 + d ε2

]
=

1− γ2

1− 2γ2

[
d

(
1

2
ln

∣∣∣∣γ − 1

γ + 1

∣∣∣∣− √2

2
ln

∣∣∣∣√2 γ − 1√
2γ + 1

∣∣∣∣+ C

)2

+ d ε2
]
,

where C is constant. Taking the replacementx =
1

2
ln

∣∣∣∣γ − 1

γ + 1

∣∣∣∣− √2

2
ln

∣∣∣∣√2 γ − 1√
2 γ + 1

∣∣∣∣+ C

y = ε

for C being a constant yields

I6 =
1− γ2

1− 2γ2
(
dx2 + d y2

)
=

1− γ2

1− 2γ2
Ip,
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which can be reformulated as

I5 =
1− 2γ2

1− γ2
cosh2 yI6 = cos2 ũ cosh2 ṽI6,

where γ = sin ũ√
sin2 ũ+1

. This means that λ(ũ, ṽ) = cos ũ cosh ṽ, which indicates

that a conformal mapping between the catenoid r(u, v) and the uniparted
hyperboloid r∗(ũ, ṽ) has been established. The proof of Theorem 3 is complete.

�

Remark 1. Theorems 2 and 3 tell us that conformal mappings can be estab-
lished for the same surface with different parametric equations.

4. A relation between area elements of surfaces and examples

In this section, we pay our attention on finding a relation between area
elements of surfaces and taking several examples.

Theorem 4. The area elements of two surfaces under a conformal mapping
are proportional.

Proof. If a mapping between two surfaces satisfies that the first fundamen-
tal forms of the corresponding surfaces are proportional, then the mapping
between them is a conformal mapping. Thus, we obtain

dσ =
√
EG− F 2 du d v =

√
λ2E∗λ2G∗ − (λ2F ∗)2 du d v

=
√
λ4[E∗G∗ − (F ∗)2] du d v = λ2 dσ∗.

The proof of Theorem 4 is complete. �

Example 1. The relation between area elements of the hyperbolic cylinder

r(u, v) = {secu, tanu, v}
and the plane r∗(x, y) = {x, y, 0} is d σ = dσp.

Proof. According to Lemma 1, the first fundamental forms of the hyperbolic
cylinder r(u, v) and the plane r∗(x, y) have the relation I = Ip. Therefore, the
relation between area elements of these two surfaces is

dσ =
√
EG− F 2 du d v =

√
λ2Epλ2Gp du d v =

√
EpGp du d v = dσp. �

Example 2. The relation between area elements of the catenoid

r(u, v) =

{
a cosh

v

a
cosu, a cosh

v

a
sinu, v

}
and the plane r∗(x, y) = {x, y, 0} is d σ = cosh2 v

a
dσp.

Proof. According to Lemma 2, the first fundamental forms of the catenoid
r(u, v) and the plane r∗(x, y) satisfy the relation I = cosh2 v

a
Ip. Therefore, the

relation between area elements of these two surfaces is
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dσ =
√
EG− F 2 du d v =

√
λ2Epλ2Gp du d v

= λ2
√
EpGp du d v = cosh2 v

a
dσp. �

Example 3. The relation between area elements of the helicoid

r(ũ, ṽ) = {ũ cos ṽ, ũ sin ṽ, bṽ}
and the plane r∗(x, y) = {x, y, 0} is

dσ =
b2

cos2
(
arctan ũ

b

) dσp.

Proof. According to Lemma 2, the relation between the first fundamental forms
of the helicoid r(ũ, ṽ) and the plane r∗(x, y) is I = b2

cos2(arctan ũ
b
)
Ip. Therefore,

the relation between area elements of these two surfaces is

dσ =
√
EG− F 2 d ũ d ṽ =

√
λ2Epλ2Gp d ũ d ṽ

= λ2
√
EpGp d ũ d ṽ =

b2

cos2
(
arctan ũ

b

) dσp. �

Example 4. For a 6= b, the relation between area elements of the catenoid

r(u, v) =

{
a cosh

v

a
cosu, a cosh

v

a
sinu, v

}
and the helicoid r∗(ũ, ṽ) = {ũ cos ṽ, ũ sin ṽ, bṽ} is

dσ =
cos2

(
arctan ũ

b

)
b2

cosh2 ṽ

a
dσ∗.

Proof. From Lemma 2, it is immediate that

I =
cos2

(
arctan ũ

b

)
b2

cosh2 ṽ

a
I∗.

Therefore, we acquire

dσ =
√
EG− F 2 du d v =

√
λ2E∗λ2G∗ du d v

= λ2
√
E∗G∗ du d v =

cos2
(
arctan ũ

b

)
b2

cosh2 ṽ

a
dσ∗. �

Example 5. The relation between area elements of the cylinder

r(u, v) = {a cos v, a sin v, u}
and the plane r∗(x, y) = {x, y, 0} is d σ2 = dσp.

Proof. According to Theorem 1, the first fundamental form of the cylinder
r(u, v) is

I2(u, v) = du2 + a2 d v2 = du2 + d(av)2.

Letting x = u and y = av leads to

I2(u, v) = du2 + d(av)2 = dx2 + d y2 = Ip(x, y).
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This implies that λ(u, v) = 1. Accordingly, the relation between area elements
of these two surfaces is

dσ2 =
√
E2G2 − F 2

2 du d v =
√
λ2Epλ2Gp du d v =

√
EpGp du d v = dσp.

�

Example 6. The relation between area elements of the catenoid

r(u, v) =

{
a cosh

u

a
cos v, a cosh

u

a
sin v, u

}
and the cylinder r∗(u, v) = {a cos v, a sin v, u} is d σ1 = cosh2 u

a
dσ2.

Proof. From Theorem 1, it is immediate that I1(u, v) = cosh2 u
a
I2(u, v). There-

fore, it follows that

dσ1 =
√
E1G1 − F 2

1 du d v =
√
λ2E2λ2G2 du d v

= λ2
√
E2G2 du d v = cosh2 u

a
dσ2. �

Similarly, using Theorems 2 and 3, we can obtain the following examples.

Example 7. The relation between area elements of the uniparted hyperboloid

r(u, v) = {coshu cos v, coshu sin v, sinhu}
and the cylinder r∗(ũ, ṽ) = {cos ṽ, sin ṽ, ũ} is d σ4 = cosh2 u dσ3.

Example 8. The relation between area elements of the uniparted hyperboloid

r(ũ, ṽ) = {sec ũ cos ṽ, sec ũ sin ṽ, tan ũ}
and the plane r∗(x, y) = {x, y, 0} is d σ6 = 1

cos2 ũ
dσp.

Example 9. The relation between area elements of the catenoid

r(u, v) = {cosh v cosu, cosh v sinu, v}
and the uniparted hyperboloid

r∗(ũ, ṽ) = {sec ũ cos ṽ, sec ũ sin ṽ, tan ũ}
is d σ5 = cos2 ũ cosh2 ṽ dσ6.

5. Declarations

Authors’ Contributions. All authors contributed equally to the manuscript
and read and approved the final manuscript.
Funding. This work is partially supported by the National Natural Science
Foundation of China (Grant No. 11661062), by the Natural Science Founda-
tion of Inner Mongolia (Grant No. 2022MS01015 ), and by the Young Talents
of Science and Technology at Universities of Inner Mongolia Autonomous Re-
gion (Grant No. NJYT-19-A09), China.
Institutional Review Board Statement. Not applicable.



Construction of conformal mappings between rotating surfaces 109

Informed Consent Statement. Not applicable.
Ethical Approval. The conducted research is not related to either human or
animal use.
Availability of Data and Material. Data sharing is not applicable to this
article as no new data were created or analyzed in this study.
Acknowledgements. Not applicable.
Competing Interests. The authors declare that they have no any conflict of
competing interests.

References

[1] A. Dai and M. Ben Amar, Minimizing the elastic energy of growing leaves by conformal
mapping, Phys. Rev. Lett. 129 (2022), no. 21, Paper No. 218101, 6 pages. https:

//doi.org/10.1103/physrevlett.129.218101 100
[2] M. P. do Carmo, Differential Geometry of Curves and Surfaces, Translated from the

Portuguese. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976. 100, 101
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