
International Mathematical Forum, Vol. 17, 2022, no. 1, 1 - 10
HIKARI Ltd, www.m-hikari.com

https://doi.org/10.12988/imf.2022.912300

On the Generalized Ramanujan-Nagell Equation

x2 + (4c)m = (c + 1)n

Nobuhiro Terai

Division of Mathematical Sciences
Department of Integrated Science and Technology
Faculty of Science and Technology, Oita University

700 Dannoharu, Oita 870–1192, Japan

Saya Nakashiki

Division of Computer Science and Intelligent Systems
Graduate school of Engineering, Oita University

700 Dannoharu, Oita 870–1192, Japan

Yudai Suenaga

Division of Computer Science and Intelligent Systems
Graduate school of Engineering, Oita University

700 Dannoharu, Oita 870–1192, Japan

This article is distributed under the Creative Commons by-nc-nd Attribution License.

Copyright c© 2022 Hikari Ltd.

Abstract

Let c be a positive integer with c ≥ 2. Then we conjecture that the
equation x2 + (4c)m = (c + 1)n has only the positive integer solution
(x,m, n) = (c − 1, 1, 2) except for the cases c = 5, 7, 309. In this pa-
per, we verify that this conjecture is true for several cases under some
conditions on c.
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1 Introduction

In 1913, Ramanujan [R] conjectured that the equation x2 + 7 = 2n has only
the positive integer solutions (x, n) = (1, 3), (3, 4), (5, 5), (11, 7), (181, 15).
In 1960, Nagell [N] resolved Ramanujan’s conjecture. Let b and c be fixed
relatively prime positive integers greater than one. Then the generalized
Ramanujan-Nagell equation

x2 + bm = cn

in positive integers x,m and n has been studied by a number of authors:
(cf. [CD1], [CD2], [DGX], [Le1], [Le2], [Le3], [M], [To2] and [YW])

• (Tanahashi [Ta], Toyoizumi [To1]) x2 + 7m = 2n

• (Alter-Kubota [AK], Tanahashi [Ta]) x2 + 11m = 3n

• (Bugeaud[Bu]) x2 +Dm = 2n

• (Yaun-Hu[YH]]) x2 +Dm = pn

• (Terai [Te1], [Te2]) x2 + qm = pn, x2 + qm = cn

In the previous paper [Te2], the first author showed that if 2c−1 is a prime
and 2c− 1 ≡ 3, 5 (mod 8), then the equation x2 + (2c− 1)m = cn has only the
positive integer solution (x,m, n) = (c− 1, 1, 2), and proposed the following:

Conjecture 1. Let c be a positive integer with c ≥ 2. Then the equation

x2 + (2c− 1)m = cn

has only the positive integer solution (x,m, n) = (c− 1, 1, 2).

In [Te2], it was verified that if 2 ≤ c ≤ 30 with c 6= 12, 24, then Conjecture
1 is true. The proof is based on elementary methods and a result concerning

the Diophantine equation
xn − 1

x− 1
= y2 due to Ljunggren. Deng [D1] settled

the cases c = 12, 24 by applying arithmetic properties of real quadratic fields
Q(
√

3) and Q(
√

6), respectively. Fujita-Terai [FT] showed that if 2c− 1 = 3pl

or 2c − 1 = 5pl, then Conjecture 1 is true without any congruence condition
on a prime p.

As an analogue of Conjecture 1, we propose the following:

Conjecture 2. Let c be a positive integer with c ≥ 2. Then the equation

x2 + (4c)m = (c+ 1)n (1.1)
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has only the positive integer solution (x,m, n) = (c − 1, 1, 2) except for the
cases c = 5, 7, 309, where equation (1.1) has only the following positive integer
solutions, respectively:

c = 5; (x,m, n) = (4, 1, 2), (14, 1, 3),

c = 7; (x,m, n) = (6, 1, 2), (22, 1, 3), (104, 3, 5),

c = 309; (x,m, n) = (308, 1, 2), (5458, 1, 3).

In this paper, we verify that this conjecture is true for several cases under
some conditions on c. Our main result is the following:

Theorem 1. Suppose that at least one of the following conditions is satisfied.

(i) c = 2k, where k is a positive integer.

(ii) c = 2k − 1 (k ≥ 2).

(iii) c = pk − 1, where p is a prime with p ≡ 3 (mod 4).

(iv) c = pk, where p is a prime with p ≡ 3 (mod 8) and k is odd.

(v) c = 2pk, where p is a prime with p ≡ 1 (mod 4).

(vi) c = 4pk, where p is an odd prime with pk 6≡ 5 (mod 8).

Then Conjecture 2 is true.

The organization of this paper is as follows. In Section 2, we quote results
on the generalized Lebesgue-Ramanujan-Nagell equations x2 +Dm = pn with
p prime and x2 ± 2m = yn, and Zsigmondy’s theorem concerning primitive
prime divisor. In Section 3, by elementary methods, we solve the exponential
Diophantine equations 2l + qm = (2αq + 1)n and 2lqm + 1 = (2αq + 1)n with
α = 1, 2 under some conditions. In Section 4, we use Propositions and Lemmas
in Sections 2,3 to show Theorem 1.

2 Preliminaries

In the proof of Theorem 1, we need the following five Propositions concern-
ing the generalized Ramanujan-Nagell equations, Lebesgue-Ramanujan-Nagell
equations and the Primitive Divisor Theorem due to Zsigmondy:
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Proposition 1 (Bugeaud[Bu]). Let D be an odd positive integer. Then the
equation

x2 +Dm = 2n

in positive integers x,m, n has at most one solution (x,m, n), except for the
cases D = 7, 23, 2k − 1 (k ≥ 4), where the equation has only the following
solutions, respectively.

(i) c = 7; (x,m, n) = (1, 1, 3), (3, 1, 4), (5, 1, 5), (11, 1, 7), (181, 1, 15), (13, 3, 9).
(ii) c = 23; (x,m, n) = (3, 1, 5), (45, 1, 11).
(iii) c = 2k − 1 (k ≥ 4); (x,m, n) = (308, 1, 2), (5458, 1, 3).

Remark 1. In Theorem 3 of Bugeaud[Bu], it was stated that the exceptional
cases are D = 7, 15. But we point out that the ones are D = 7, 23, 2k−1 (k ≥
4). (cf. Theorem 2 of Beukers[Be].)

Proposition 2 (Bugeaud[Bu], Yaun-Hu[YH]). Let D > 2 be an integer and
let p be an odd prime not dividing D. If (D, p) 6= (4, 5), then the equation

x2 +Dm = pn

has at most two positive integer solutions (x,m, n). If the two solutions are
(x1,m1, n1) and (x2,m2, n2), then m1 6≡ m2 (mod 2). The equation x2 + 4m =
5n has exactly three positive integer solutions (x,m, n).

Proposition 3 (Le[Le4]). Then the equation

x2 + 2m = yn, gcd(x, y) = 1, n ≥ 3

has only the positive integer solutions (x, y,m, n) = (5, 3, 1, 3), (7, 3, 5, 4), (11, 5, 2, 3).

Proposition 4 (Ivorra[I]). The equation

x2 − 2m = yn, gcd(x, y) = 1, |y| > 1, m ≥ 2, n ≥ 3

has only the integer solutions (x, y,m, n) = (±13,−7, 9, 3), (±71, 17, 7, 3).

Proposition 5 (Zsigmondy [Z]). Let A and B be relatively prime integers with
A > B ≥ 1. Let {ak}k≥1 be the sequence defined as

ak = Ak +Bk.

If k > 1, then ak has a prime factor not dividing a1a2 · · · ak−1, whenever
(A,B, k) 6= (2, 1, 3).
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3 the exponential Diophantine equations

We use the following Lemmas 1, 2 to show Theorem 1 (v),(vi), respectively.

Lemma 1. Let q be an odd integer with q ≥ 3.

(1) If q ≡ 1 (mod 4), then the equation

23m−2 + qm = (2q + 1)n (3.1)

has no positive integer solutions (m,n).

(2) If q ≡ 1 (mod 4), then the equation

23m−2qm + 1 = (2q + 1)n (3.2)

has only the positive integer solution (m,n) = (1, 1).

Proof. (1) It is clear that if m = 1, then equation (3.1) has no solutions. We
may thus suppose that m > 1. Taking (3.1) modulo 4 implies that qm ≡ 3n

(mod 4). In view of q ≡ 1 (mod 4), we see that n is even. Then it follows
from Proposition 4 that equation (3.1) has no solutions.

(2) If m = 1, then equation (3.2) has only the solution n = 1. We may
thus suppose that m > 1. Then taking (3.2) modulo 4 implies that 1 ≡ 3n

(mod 4). Hence n is even, say n = 2N . Then

23m−2qm = ((2q + 1)2 − 1)
(2q + 1)2N − 1

(2q + 1)2 − 1
= 2q · (2q + 2)

(2q + 1)2N − 1

(2q + 1)2 − 1
.

Since gcd(q+1, q) = 1, the above implies that (q+1)|23m−2, which is impossible,
since q ≡ 1 (mod 4).

Lemma 2. Let q be an odd integer with q ≥ 3.

(1) If q 6≡ 5 (mod 8), then the equation

24m−2 + qm = (4q + 1)n (3.3)

has no positive integer solutions (m,n).

(2) The equation

24m−2qm + 1 = (4q + 1)n (3.4)

has only the positive integer solution (m,n) = (1, 1).
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Proof. (1) It is clear that if m = 1, then equation (3.3) has no solutions. We
may thus suppose that m > 1. Taking (3.3) modulo 8 implies that qm ≡ 5n

(mod 8). In view of q 6≡ 5 (mod 8), we see that n is even. Then it follows
from Proposition 4 that equation (3.1) has no solutions.

(2) If m = 1, then equation (3.4) has only the solution n = 1. We may
thus suppose that m > 1. Then taking (3.4) modulo 8 implies that 1 ≡ 5n

(mod 8). Hence n is even, say n = 2N . Then

24m−2qm = ((4q + 1)2 − 1)
(4q + 1)2N − 1

(4q + 1)2 − 1
= 4q · (4q + 2)

(4q + 1)2N − 1

(4q + 1)2 − 1
.

Since gcd(2q + 1, q) = 1, the above implies that (2q + 1)|24m−2, which is
impossible.

4 Proof of Theorem 1

(i) Our assertion follows from Proposition 3.

(ii) Let (x,m, n) be a solution of equation (1.1). Suppse that our assumptions
are all satisfied.

We first note that that n > m from (1.1). Indeed,

(c+ 1)n = x2 + (4c)m > (4c)m > (c+ 1)m.

Since x is even, we put x = 2αx1 with α ≥ 1 and x1 odd. Then equation (1.1)
leads to

22αx21 + 22mcm = 2kn. (4.1)

We want to show that α = m. If α > m, then equation (4.1) implies that

22m(22α−2mx21 + cm) = 2kn,

so 2m = kn > 2m from k ≥ 2 and n > m, which is impossible. If α < m,
then equation (4.1), as above, implies that 2α = kn, so 2m > 2α = kn > 2m,
which is impossible. Consequently we obtain α = m. Dividing both sides of
(4.1) by 22m yields

x21 + (2k − 1)m = 2kn−2m.

Then our assertion easily follows from Proposition 1.

(iii) In view of p ≡ 3 (mod 4), we see that m is odd. Then our assertion follows
from Proposition 2.

(iv) Let (x,m, n) be a solution of equation (1.1). Suppse that our assumptions
are all satisfied.
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Put c = pk with p ≡ 3 (mod 8) and k odd. Since c ≡ 3 (mod 8), we can
put c+ 1 = 22d with d odd. From equation (1.1), x is even, say x = 2αx1 with
α ≥ 1 and x1 odd. Then equation (1.1) leads to

22αx21 + 22mcm = 22ndn. (4.2)

Note that n > m as before. We want to show that α = m. If α > m, then
equation (4.3) implies that n = m, which contradicts the fact that n > m. If
α < m, then equation (4.3) implies that n = α < m, which contradicts the
fact that n > m. Hence we obtain α = m, so

x21 + cm = 22(n−m)dn. (4.3)

Then it follows that n −m = 1, since x21 + cm ≡ 1 + 3m 6≡ 0 (mod 8). From
(4.3), we see that 1 + 3m ≡ 4 (mod 8), so m is odd. Therefore equation (4.3)
can be written as

cm =
(

2d
m+1

2 + x1

)(
2d

m+1
2 − x1

)
.

Since two factors of the right hand side of the above are relatively prime and
c = pk, we obtain the following:{

2d
m+1

2 + x1 = cm

2d
m+1

2 − x1 = 1.

Adding these two equations yields

cm + 1 = 4d
m+1

2 . (4.4)

From definition of d, we have

c+ 1 = 4d.

If m > 1, then it follows from Proposition 5 that equation (4.4) has no solu-
tions. Consequently we obtain m = 1, n = 2 and x = c− 1.

(v) Let (x,m, n) be a solution of equation (1.1). Suppse that our assumptions
are all satisfied.

Put q = pk with p ≡ 1 (mod 4)and C = 2q+1. Then taking equation (1.1)
modulo 4 implies that 1 ≡ 3n (mod 4), so n is even, say n = 2N . From (1.1),
we have

(23q)m = (CN + x)(CN − x).

Since gcd(CN + x,CN − x) = 2 and q = pk, we obtain the following two cases:{
CN ± x = 23m−1

CN ∓ x = 2qm
(4.5)
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or {
CN ± x = 23m−1qm

CN ∓ x = 2.
(4.6)

First consider case (4.5). Adding these two equations yields

23m−2 + qm = (2q + 1)N ,

which has no solutions by Lemma 1, (1).
Next consider case (4.6). Adding these two equations yields

23m−2qm + 1 = (2q + 1)N ,

which has only the solution (m,N) = (1, 1) by Lemma 1, (2). Hence equation
(1.1) has only the solution (x,m, n) = (c− 1, 1, 2).

(vi) Let (x,m, n) be a solution of equation (1.1). Suppse that our assumptions
are all satisfied.

Put q = pk with pk 6≡ 5 (mod 8) and C = 4q + 1. Then taking equation
(1.1) modulo 8 implies that 1 ≡ 5n (mod 8), so n is even, say n = 2N . From
(1.1), we have

(24q)m = (CN + x)(CN − x).

Since gcd(CN + x,CN − x) = 2 and q = pk, we obtain the following two cases:{
CN ± x = 24m−1

CN ∓ x = 2qm
(4.7)

or {
CN ± x = 24m−1qm

CN ∓ x = 2.
(4.8)

First consider case (4.7). Adding these two equations yields

24m−2 + qm = (4q + 1)N ,

which has no solutions by Lemma 2, (1).
Next consider case (4.8). Adding these two equations yields

24m−2qm + 1 = (4q + 1)N ,

which has only the solution (m,N) = (1, 1) by Lemma 2, (2). Hence equation
(1.1) has only the solution (x,m, n) = (c − 1, 1, 2). This completes the proof
of Theorem 1.
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