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Abstract

Let ¢ be a positive integer with ¢ > 2. Then we conjecture that the
equation 22 + (4¢)™ = (c + 1)" has only the positive integer solution
(x,m,n) = (¢ —1,1,2) except for the cases ¢ = 5,7,309. In this pa-
per, we verify that this conjecture is true for several cases under some
conditions on c.
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1 Introduction

In 1913, Ramanujan [R] conjectured that the equation 2% + 7 = 2" has only
the positive integer solutions (z,n) = (1,3), (3,4), (5,5), (11,7), (181,15).
In 1960, Nagell [N] resolved Ramanujan’s conjecture. Let b and ¢ be fixed
relatively prime positive integers greater than one. Then the generalized
Ramanujan-Nagell equation

b ="

in positive integers x, m and n has been studied by a number of authors:
(cf. [CD1], [CD2], [DGX], [Lel], [Le2], [Le3], [M], [To2] and [YW])

e (Tanahashi [Ta], Toyoizumi [Tol]) z?+ 7™ =2"

Alter-Kubota [AK], Tanahashi [Ta])  z?+ 11™ = 3"

(

(

(Bugeaud[Bu]) 2?4+ D™ = 2"
(Yaun-Hu[YH]]) 2?4 D™ = p"
(

Terai [Tel], [Te2]) 2?4+ q¢™=p", 22 +q¢™ ="

In the previous paper [Te2], the first author showed that if 2c—1 is a prime
and 2¢ —1 = 3,5 (mod 8), then the equation 2%+ (2c — 1)™ = ¢" has only the
positive integer solution (z,m,n) = (¢ — 1,1, 2), and proposed the following:

Conjecture 1. Let ¢ be a positive integer with ¢ > 2. Then the equation
2?4+ (2 - 1)" =
has only the positive integer solution (x,m,n) = (¢ —1,1,2).

In [Te2], it was verified that if 2 < ¢ < 30 with ¢ # 12,24, then Conjecture
1 is true. The proof is based on elementary methods and a result concerning
n—1
the Diophantine equation w—l = 72 due to Ljunggren. Deng [D1] settled
x p—
the cases ¢ = 12,24 by applying arithmetic properties of real quadratic fields
Q(+v/3) and Q(v/6), respectively. Fujita-Terai [FT] showed that if 2¢ — 1 = 3p'
or 2¢ — 1 = 5p!, then Conjecture 1 is true without any congruence condition
on a prime p.
As an analogue of Conjecture 1, we propose the following:

Conjecture 2. Let ¢ be a positive integer with ¢ > 2. Then the equation

22+ (4¢)™ = (c+ 1)" (1.1)
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has only the positive integer solution (x,m,n) = (¢ — 1,1,2) except for the
cases ¢ = 5,7,309, where equation (1.1) has only the following positive integer
solutions, respectively:

c=5  (z,m,n)=(4,1,2), (14,1,3),
c=T,; (x,m,n)=(6,1,2), (22,1,3), (104, 3,5),
c=300; (z,m.n)=(308,1,2), (5458,1,3).

In this paper, we verify that this conjecture is true for several cases under
some conditions on ¢. Our main result is the following:

Theorem 1. Suppose that at least one of the following conditions is satisfied.

(i) ¢ = 2%, where k is a positive integer.

(i) c=2F—1 (k> 2).

(iii) ¢ = p* — 1, where p is a prime with p =3 (mod 4).

(iv) ¢ = p*, where p is a prime with p =3 (mod 8) and k is odd.
(v) ¢ =2p", where p is a prime with p =1 (mod 4).

(vi) ¢ = 4p*, where p is an odd prime with p* £ 5 (mod 8).
Then Conjecture 2 is true.

The organization of this paper is as follows. In Section 2, we quote results
on the generalized Lebesgue-Ramanujan-Nagell equations 2 + D™ = p" with
p prime and 2% £ 2™ = y", and Zsigmondy’s theorem concerning primitive
prime divisor. In Section 3, by elementary methods, we solve the exponential
Diophantine equations 2! + ¢™ = (2%¢ + 1)" and 2'¢™ + 1 = (2%¢ + 1)" with
a = 1,2 under some conditions. In Section 4, we use Propositions and Lemmas
in Sections 2,3 to show Theorem 1.

2 Preliminaries

In the proof of Theorem 1, we need the following five Propositions concern-
ing the generalized Ramanujan-Nagell equations, Lebesgue-Ramanujan-Nagell
equations and the Primitive Divisor Theorem due to Zsigmondy:
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Proposition 1 (Bugeaud[Bu|). Let D be an odd positive integer. Then the
equation
D" =2"

in positive integers x,m,n has at most one solution (x,m,n), except for the
cases D = 7, 23, 28 — 1 (k > 4), where the equation has only the following
solutions, respectively.

i) e=T7 (z,mn)=(1,1,3),(3,1,4),(51,5),(11,1,7), (181,1,15), (13,3,9).
(i) c¢=23 (z,m,n)=(3,1,5),(45,1,11).
(i) c=2"—1(k>4); (z,m,n)=(308,1,2), (5458,1,3).

Remark 1. In Theorem 3 of Bugeaud[Bu], it was stated that the exceptional
cases are D = 7, 15. But we point out that the ones are D = 7, 23, 28 —1 (k >
4). (cf. Theorem 2 of Beukers|Be].)

Proposition 2 (Bugeaud|Bu], Yaun-Hu[YH]). Let D > 2 be an integer and
let p be an odd prime not dividing D. If (D,p) # (4,5), then the equation

332 4 Dm — pn
has at most two positive integer solutions (x,m,n). If the two solutions are

(x1,m1,m1) and (x9,ma,no), then my # mo (mod 2). The equation x> + 4™ =
5™ has ezxactly three positive integer solutions (x,m,n).

Proposition 3 (Le[Led]). Then the equation
2" =9"  ged(x,y) =1, n >3
has only the positive integer solutions (z,y,m,n) = (5,3,1,3),(7,3,5,4), (11,5, 2, 3).
Proposition 4 (Ivorra[l]). The equation
22" =y ged(x,y) =1, |y >1, m>2, n>3
has only the integer solutions (z,y,m,n) = (£13,-7,9,3), (£71,17,7,3).

Proposition 5 (Zsigmondy [Z]). Let A and B be relatively prime integers with
A> B >1. Let {ar}r>1 be the sequence defined as

ap = Ak—l—Bk

If k > 1, then a, has a prime factor not dividing ajas---ax_1, whenever

(A, B, k) # (2,1,3).
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3 the exponential Diophantine equations

We use the following Lemmas 1, 2 to show Theorem 1 (v),(vi), respectively.

Lemma 1. Let q be an odd integer with q > 3.
(1) If g=1 (mod 4), then the equation
22 g = (2 + 1) (3.1)
has no positive integer solutions (m,n).
(2) If g =1 (mod 4), then the equation
28m=2gm 4 1 = (2¢ + 1)" (3.2)
has only the positive integer solution (m,n) = (1,1).

Proof. (1) Tt is clear that if m = 1, then equation (3.1) has no solutions. We
may thus suppose that m > 1. Taking (3.1) modulo 4 implies that ¢™ = 3"
(mod 4). In view of ¢ = 1 (mod 4), we see that n is even. Then it follows
from Proposition 4 that equation (3.1) has no solutions.

(2) If m = 1, then equation (3.2) has only the solution n = 1. We may
thus suppose that m > 1. Then taking (3.2) modulo 4 implies that 1 = 3"
(mod 4). Hence n is even, say n = 2N. Then

2 12V —1 2 12 —1
(2g+1)2—1 (2g+1)2—1

2m2qm = ((2q+ 1) — 1)

Since ged(q+1, ¢) = 1, the above implies that (g+1)|23™ 72, which is impossible,
since ¢ =1 (mod 4). O

Lemma 2. Let g be an odd integer with ¢ > 3.
(1) If ¢ #5 (mod 8), then the equation
212 4 g™ = (4 +1)" (3.3)
has no positive integer solutions (m,n).

(2) The equation
24m=2gm 4 1 = (4 + 1)" (3.4)

has only the positive integer solution (m,n) = (1,1).
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Proof. (1) It is clear that if m = 1, then equation (3.3) has no solutions. We
may thus suppose that m > 1. Taking (3.3) modulo 8 implies that ¢ = 5"
(mod 8). In view of ¢ # 5 (mod 8), we see that n is even. Then it follows
from Proposition 4 that equation (3.1) has no solutions.

(2) If m = 1, then equation (3.4) has only the solution n = 1. We may
thus suppose that m > 1. Then taking (3.4) modulo 8 implies that 1 = 5"
(mod 8). Hence n is even, say n = 2N. Then

(4 + 1)V —1 (4 + 1)V —1

2020 = (49 +1)* — 1 =4q - (4q+2

Since ged(2g + 1,q) = 1, the above implies that (2¢ + 1)[24™72, which is
impossible. O

4 Proof of Theorem 1

(i) Our assertion follows from Proposition 3.

(i) Let (z,m,n) be a solution of equation (1.1). Suppse that our assumptions
are all satisfied.
We first note that that n > m from (1.1). Indeed,

(c+1)" =2+ (40)™ > (40)™ > (c+ 1)™.

Since x is even, we put = 2%x; with a > 1 and x; odd. Then equation (1.1)
leads to
2202 4 92mem — okn, (4.1)

We want to show that o = m. If @ > m, then equation (4.1) implies that
22m(22a72mx% 4 Cm) —_ 2kn,

so 2m = kn > 2m from k£ > 2 and n > m, which is impossible. If a < m,
then equation (4.1), as above, implies that 2o = kn, so 2m > 2a = kn > 2m,
which is impossible. Consequently we obtain a« = m. Dividing both sides of
(4.1) by 22™ yields

22 4 (28 — 1)™ = okn—2m,

Then our assertion easily follows from Proposition 1.

(iii) In view of p = 3 (mod 4), we see that m is odd. Then our assertion follows
from Proposition 2.

(iv) Let (z,m,n) be a solution of equation (1.1). Suppse that our assumptions
are all satisfied.
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Put ¢ = p* with p = 3 (mod 8) and k odd. Since ¢ = 3 (mod 8), we can
put ¢+ 1 = 22d with d odd. From equation (1.1), z is even, say x = 2%z; with
a > 1 and x; odd. Then equation (1.1) leads to

220} + 227 = 22", (4.2)

Note that n > m as before. We want to show that a = m. If a > m, then
equation (4.3) implies that n = m, which contradicts the fact that n > m. If
a < m, then equation (4.3) implies that n = o < m, which contradicts the
fact that n > m. Hence we obtain a = m, so

z? 4 ¢m = 2n=mgn. (4.3)

Then it follows that n —m = 1, since 23 +¢™ =1+ 3™ £ 0 (mod 8). From
(4.3), we see that 1 4+ 3™ =4 (mod 8), so m is odd. Therefore equation (4.3)
can be written as

" = <2me+1 + I1> (2me+1 — x1> .

Since two factors of the right hand side of the above are relatively prime and
c = p*, we obtain the following:

{ 24" +x; = A"

m—+1

2d 2 —x; = 1.
Adding these two equations yields
"1 =4d" (4.4)
From definition of d, we have
c+1=4d.

If m > 1, then it follows from Proposition 5 that equation (4.4) has no solu-
tions. Consequently we obtain m =1, n=2and z =c — 1.

(v) Let (z,m,n) be a solution of equation (1.1). Suppse that our assumptions
are all satisfied.

Put ¢ = p* with p =1 (mod 4)and C = 2¢+1. Then taking equation (1.1)
modulo 4 implies that 1 = 3" (mod 4), so n is even, say n = 2N. From (1.1),
we have

(23)™ = (CN 4 z)(CN — ).
Since ged(CN + 2, CN — 1) = 2 and ¢ = p*, we obtain the following two cases:

{CNix = 2im-1
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or

(4.6)

C’Nj:x — 23m—1qm
CNxzx = 2.

First consider case (4.5). Adding these two equations yields
272 g™ = (2¢ + 1)7,

which has no solutions by Lemma 1, (1).
Next consider case (4.6). Adding these two equations yields

25m2gm 41 = (2 + 1),

which has only the solution (m, N) = (1,1) by Lemma 1, (2). Hence equation
(1.1) has only the solution (z,m,n) = (¢ —1,1,2).

(vi) Let (z,m,n) be a solution of equation (1.1). Suppse that our assumptions
are all satisfied.

Put ¢ = p* with p* £ 5 (mod 8) and C = 4¢ + 1. Then taking equation
(1.1) modulo 8 implies that 1 = 5" (mod 8), so n is even, say n = 2N. From
(1.1), we have

2'q)™ = (ON + z)(CN —2).

Since ged(CN 4z, CN — ) = 2 and ¢ = p*, we obtain the following two cases:

CN+ap = 24mt
or N 4m—1
CV+tax = 2'migm
{ CNxzx = 2. (4.8)

First consider case (4.7). Adding these two equations yields
24m—2 +qm — (4q+ 1)N’

which has no solutions by Lemma 2, (1).
Next consider case (4.8). Adding these two equations yields

2 4 1= (4g + 1),

which has only the solution (m, N) = (1,1) by Lemma 2, (2). Hence equation
(1.1) has only the solution (z,m,n) = (¢ —1,1,2). This completes the proof
of Theorem 1.
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