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Abstract

Many integrals can be solved in an elementary way. However, the
overwhelming majority of functions cannot be integrated via one of the
elementary integration techniques. Moreover, their antiderivative is not
expressible in terms of elementary functions. In this note an alternative
approach for the solution of a countable set of non-elementary integrals
is provided. This approach involves the use of algebraic manipulation
and an integral form of the Zeta function.
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1 Introduction

Integration and differentiation are the most important operations in calculus.
Many integrals can be solved in an elementary way, or by applying a combi-
nation of elementary techniques such as integration by parts, substitution or
the reverse chain rule. Also performing partial fraction expansion to express
the integrand as a sum of integrands can be a viable tool to simplify compu-
tations. Similarly, if convergent, the integral can be described by the integral
over its Taylor series expansion. The overwhelming majority of functions how-
ever cannot be integrated via one of the elementary integration techniques.
Their antiderivative is not expressible in terms of elementary functions.

Nevertheless, at least in a few cases, it is possible to express definite solu-
tions in terms of known and well defined functions. In spite of todays possibility
to perform calculations by computer, interest and curiosity for formulae ex-
pressing the solution of non-elementary integrals are still well alive. In support
of this statement, we recall here e.g. the recent publication of the books [1]
and [2]. In the preface of both of them the authors write that following the
publication of previous editions, they have been receiving letters and mails and
comments from a large number of readers.

2 Preliminary Notes

A simple example of a function whose antiderivative is not expressible in terms
of elementary functions is

f(x) =
ex

x
. (1)

This is quite common for expressions containing both exponential and rational
functions. Another example is the solution to the infinite (uncountable) set of
definite integrals

∫ ∞
0

xν−1

eµx + 1
dx =

1

µν
(1− 21−ν)Γ(ν)ζ(ν), [Re(µ) > 0, Re(ν) > 0] (2)

where Γ(x) and ζ(x) are the Gamma- and Riemann Zeta functions respectively.
Notice that there is no step by step procedure or technique to derive such
equivalences by integration. And it is worth mentioning that integrals of this
form are often found in quantum statistics, see e.g. [3]. It has been further
shown (see e.g. [4]) that, by letting ν = 2n, where n ∈ N , the solution in (2)
simplifies to ∫ ∞

0

xν−1

epx + 1
dx =

(
2π

p

)ν
(1− 21−ν)

|Bν |
2ν

, (3)
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where |Bν | is the absolute value of the ν-th Bernoulli number.
Bernoulli numbers are in fact known since the time of Ada Lovelace, who

in 1842 developed what is considered to be the first algorithm in informatics
to calculate them. We point out in this connection that a fascinating essay on
the life of Ada, whose true surname was Byron (she was the daughter of the
poet Lord Byron), and on the birth and development of mechanical calculators
and the computational approach in a historical perspective can be found in
[5].

The goal of this paper is to provide an alternative approach to calculate
explicit solutions for the set of integrals in (3) when p = π. The derivation
is based solely on simple algebra and on a well known result related to the
Riemann Zeta function.

3 Main Results

All solutions of integrals in (3) when p = π lie in the set of rational numbers.
Consider the Riemann Zeta function given in the integral form (see e.g. [6])

ζ(s) =
2s−1

s− 1
− 2s

∫ ∞
0

sin(s arctan(x))

(1 + x2)
s
2 (eπx + 1)

dx. (4)

Note that applying the Euler formula on the numerator of the integrand in (4)
we have

sin(s arctan(x)) =
i

2

(
e−is arctan(x) − eis arctan(x)

)
=
i

2

[
e−is
(
i
2
ln
(

1−ix
1+ix

))
− eis

(
i
2
ln
(

1−ix
1+ix

))]

=
i

2

[(
1− ix
1 + ix

) s
2

−
(

1− ix
1 + ix

)− s
2

]
. (5)

In view of (5) the integrand in (4) simplifies to

sin(s arctan(x))

(1 + x2)
s
2 (eπx + 1)

=

i
2

[(
1−ix
1+ix

) s
2 −

(
1−ix
1+ix

)− s
2

]
((1 + ix)(1− ix))

s
2 (eπx + 1)

=

i
2

[(
1 + ix

)−s − (1− ix)−s]
eπx + 1

. (6)

Thus, an alternative expression of the Riemann zeta function in (4) is
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ζ(s) =
2s−1

s− 1
− 2s−1i

∫ ∞
0

(
1 + ix

)−s − (1− ix)−s
eπx + 1

dx. (7)

It is time now to make use of the fact that the trivial zeros of the Riemann
Zeta function lie at the even negative integers. Albeit not trivial to be verified
when the Zeta function is expressed in one of the forms (4) or (7) above, this
fact becomes immediately evident when the Zeta function is written in a form
containing factor sin(πs/2).

Evaluating (7) at s = −2 yields

ζ(−2) = − 1

24
− i

8

∫ ∞
0

(1 + 2ix− x2)− (1− 2ix− x2)
eπx + 1

dx

= − 1

24
+

1

2

∫ ∞
0

x

eπx + 1
dx = 0, (8)

which implies ∫ ∞
0

x

eπx + 1
dx =

1

12
. (9)

Similarly, substituting s = −4 in ((7)) yields

ζ(−4) = − 1

160
+

1

4

∫ ∞
0

x− x3

eπx + 1
dx = 0, (10)

from which, by using (9) one also gets∫ ∞
0

x3

eπx + 1
dx = − 1

40
+

∫ ∞
0

x

eπx + 1
dx =

7

120
. (11)

Solutions of subsequent integrals can be obtained recursively by continuing
to substitute the negative even integers into (7) and solving for the integral
whose integrand is of highest order in the numerator. By making use of Pascal’s
triangle, this process can be generalized as follows:

ζ(−2n)

2−2n−1
= − 1

2n+ 1

+ 2

∫ ∞
0

p2n,2x− p2n,4x3 + p2n,6x
5 − ...− (−1)np2n,2nx

2n−1

eπx + 1
dx = 0, (12)

where p2n,j is the j-th entry from the left in the (2n + 1)-th row of Pascal’s
triangle. Note that index j takes on only even values in the integrand, as the
odd values cancel out. The imaginary terms appear twice with equal signs,
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yielding the factor of two in front of the definite integral. The solution to the
integral in (12) with the highest order integrand is then expressed as

∫ ∞
0

x2n−1

eπx + 1
dx =

1
4n+2

+
∑n−1

k=1

[
(−1)kp2n,2k

∫∞
0

x2k−1

eπx+1
dx
]

(−1)n+1p2n,2n
, n ∈ N. (13)

Thus, it is a simple scaled linear combination of all lower order integrals added
to some offset.
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