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Abstract

The aim of this paper is to study the hypercyclicity of the adjoint
of weighted composition operators on the vector-valued analytic repro-
ducing kernel Hilbert spaces.
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1 Introduction

Denote by D the open unit disk in the complex plane C. Let E be a Hilbert
space and L(E) the set of bounded linear operators on E . An operator-valued
function K : D×D→ L(E) is called an analytic kernel (cf. [6]) if for any fixed
w ∈ D, the operator-valued function K(·, w) : D→ L(E) is analytic, and

n∑
i,j=1

〈
K(wi, wj)ηj, ηi

〉
E ≥ 0,

for all {wi}ni=1 ⊂ D, {ηi}ni=1 ⊂ E and n ∈ N+. In this case, by the Moore’s
Theorem ([7]), there exists a Hilbert space HE(K) of E-valued analytic func-
tions on D such that {K(·, w)η : w ∈ D, η ∈ E} is a total set in HE(K), and
we call HE(K) the vector-valued analytic reproducing kernel Hilbert spaces.



34 Zhitao Guo

Let ψ be a multiplier of HE(K), i.e., ψ is a complex-valued function on
D satisfying ψ · HE(K) ⊂ HE(K). Suppose that ϕ is an analytic self-map of
D such that

(
f ◦ ϕ

)
(z) = f

(
ϕ(z)

)
∈ HE(K), then the weighted composition

operator Cϕ,ψ is defined by(
Cϕ,ψf

)
(z) = ψ(z)f

(
ϕ(z)

)
,

for f ∈ HE(K) and z ∈ D. The closed graph theorem shows that Cϕ,ψ :
HE(K)→ HE(K) is bounded, so the adjoint of weighted composition operator
C∗ϕ,ψ is also bounded on HE(K).

For a Banach space X, an operator T ∈ L(X) is said to be hypercyclic if
there exists a vector x ∈ X such that the orbit of x under T , Orb(x, T ) :={
x, Tx, T 2x, · · ·

}
is dense in X, and x is called the hypercyclic vector for

T . In [2], Bourdon and Shapiro studied thoroughly the hypercyclicity of the
composition operator (see also [3]).

Recently, Mundayadan and Sarkar characterized completely the hyper-
cyclicity, as well other dynamic properties of the adjoint of the multiplication
operator by the coordinate function on HE(K) in [6]. In 2011, Kamali et al.
[5] studied the hypercyclicity of C∗ϕ,ψ acting on the scalar-valued reproducing
kernel Hilbert space. In this paper, we concentrate on the more general case,
namely the vector-valued analytic reproducing kernel Hilbert spaces HE(K).

2 Main Results

In this section, we use the following Hypercyclicity Criterion to give the suffi-
cient conditions for C∗ϕ,ψ : HE(K)→ HE(K) to be hypercyclic.

Theorem 2.1. [1] Let X be a Banach space and T ∈ L(X). Suppose that
there are dense subsets D1,D2 ⊂ X, an increasing sequence (nk)k∈N of positive
integers, and maps Snk

: D2 → X such that for any x ∈ D1, y ∈ D2,

(i) T nkx→ 0, as k →∞,

(ii) Snk
y → 0, as k →∞,

(iii) T nkSnk
y → y, as k →∞.

Then T is hypercyclic.

By [8, Proposition 3.2.], we know that if C∗ϕ,ψ is hypercyclic on HE(K),
then ϕ must be an automorphism. Recall that a sequence {ci}i∈N of complex
numbers is not a Blaschke sequence, if there exists i0 ∈ N such that |ci| < 1 for
i ≥ i0 and

∑∞
i=1(1−|ci|) =∞. Moreover, for every z ∈ D, the linear evaluation
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map Ez : HE(K)→ E given by Ezf = f(z) is bounded and so Ez ◦E∗w : E → E
is a bounded linear map. It is easy to verify that K(z, w) = Ez ◦ E∗w and〈

f,K(·, w)η
〉
HE(K)

=
〈
Ewf, η

〉
E . (1)

Theorem 2.2. Let ϕ be a disk automorphism such that the sets

P =
{
w ∈ D :

{
ψ
(
ϕn(w)

)}∞
n=0

is not a Blaschke sequence
}

and

Q =
{
v ∈ D :

{(
ψ(ϕ−n(v))

)−1}∞
n=1

is not a Blaschke sequence
}

have limit points in D. If for each w ∈ P and each v ∈ Q the sequence{
K
(
·, ϕn(w)

)
η
}
n≥1 and

{
K
(
·, ϕ−n(v)

)
η
}
n≥1 are bounded for all η ∈ E0, where

E0 is a dense subset of E. Then C∗ϕ,ψ is hypercyclic on HE(K).

Proof. Claim: The sets

MP = span
{
K(·, w)η : w ∈ P, η ∈ E0

}
and

MQ = span
{
K(·, v)η : v ∈ Q, η ∈ E0

}
are dense in HE(K).

Indeed, suppose that f ∈ HE(K) and f ⊥ K(·, w)η for all w ∈ P and
η ∈ E0. Then

0 = 〈f,K(·, w)η〉HE(K) = 〈f(w), η〉E .

We have f(w) = 0 as E0 is dense in E . Since P have a limit point in D, from
the identity theorem it follows that f ≡ 0. Hence MP is dense in HE(K).
Similarly, MQ is also dense in HE(K).

For any f ∈ HE(K), by (1),〈
C∗ϕ,ψ

(
K(·, w)η

)
, f
〉
HE(K)

=
〈
K(·, w)η, ψ · (f ◦ ϕ)

〉
HE(K)

=
〈
η, ψ(w)f

(
ϕ(w)

)〉
E

=
〈
ψ(w)K

(
·, ϕ(w)

)
η, f
〉
HE(K)

.

Thus we obtain

C∗ϕ,ψ
(
K(·, w)η

)
= ψ(w)K

(
·, ϕ(w)

)
η. (2)
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Inductively,

C∗nϕ,ψ
(
K(·, w)η

)
=

n−1∏
j=0

ψ
(
ϕj(w)

)
K
(
·, ϕn(w)

)
η.

For w ∈ P ,
{
ψ
(
ϕj(w)

)}
j

is not a Blaschke sequence and we have

∞∑
j=1

(
1−

∣∣ψ(ϕj(w)
)∣∣) =∞,

which is equivalent to

lim
n→∞

n−1∏
j=0

ψ
(
ϕj(w)

)
= 0.

On the other hand,
{
K(·, ϕn

(
w)
)
η
}
n≥1 is bounded, then we have

lim
n→∞

C∗nϕ,ψ
(
K(·, w)η

)
= 0.

Therefore lim
n→∞

C∗nϕ,ψf = 0 for any f ∈MP .

Now suppose that
{
K(·, v)η : v ∈ Q, η ∈ E0

}
is linearly independent. In

this case, we can define a linear map

S :MQ →MQ

by extending the definition

S
(
K(·, v)η

)
= ψ

(
ϕ−1(v)

)−1
K
(
·, ϕ−1(v)

)
η

linearly to MQ. Since ϕ−1(v) ∈ Q whenever v ∈ Q, S
(
K(·, v)η

)
∈ MQ, and

we can define Sn for all n ≥ 1. It is easy to see that

Sn
(
K(·, v)η

)
=

n∏
j=1

ψ
(
ϕ−j(v)

)−1
K
(
·, ϕ−n(v)

)
η.

Since
{(
ψ(ϕ−j(v))

)−1}
j

is not a Blaschke sequence, we can obtain

lim
n→∞

n∏
j=1

ψ
(
ϕ−j(v)

)−1
= 0.

For v ∈ Q,
{
K(·, ϕ−n

(
v)
)
η
}
n≥1 is bounded. It follows that

lim
n→∞

Sn
(
K(·, v)η

)
= 0.
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Hence lim
n→∞

Snf = 0 for any f ∈MQ.

Moreover, if v ∈ Q, then

C∗ϕ,ψS
(
K(·, v)η

)
= C∗ϕ,ψψ

(
ϕ−1(v)

)−1
K
(
·, ϕ−1(v)

)
η

= ψ
(
ϕ−1(v)

)−1
ψ
(
ϕ−1(v)

)
K
(
·, ϕ(ϕ−1(v))

)
η

= K(·, v)η,

i.e., C∗ϕ,ψS = I on MQ. We can conclude that C∗ϕ,ψ is hypercyclic on HE(K)
by the Hypercyclicity Criterion.

In the case
{
K(·, v)η : v ∈ Q, η ∈ E0

}
is linearly dependent. We adopt the

same method in [4, Theorem 4.5] due to Godefroy and Shapiro. Enumerate
a countable dense subset Q1 = {vn : n ≥ 1} of Q, and inductively choose a
subsequence {gn}n as follows. Take g1 = v1,

Q2 = Q1

∖{
v ∈ Q1 : K(·, v)η ∈ span{K(·, g1)η}

}
.

Denote the first element of Q2 by g2 and let

Q3 = Q2

∖{
ν ∈ Q2 : K(·, v)η ∈ span{K(·, g1)η,K(·, g2)η}

}
.

Let g3 be the first element of Q3 and continue this process we get a subset
R = {gn : n ≥ 1} of Q such that the set

{K(·, g)η : g ∈ G, η ∈ E0}

is linearly independent and

MG = span{K(·, g)η : g ∈ G, η ∈ E0} = span{K(·, v)η : v ∈ Q1, η ∈ E0}

is dense in HE(K). Define S : MG → MG as above. Similarly, we also
have C∗ϕ,ψS = I on MG and Sn → 0 pointwise on MG. Therefore C∗ϕ,ψ is
hypercyclic on HE(K) and the proof is completed.
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