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Abstract

The aim of this paper is to study the hypercyclicity of the adjoint
of weighted composition operators on the vector-valued analytic repro-
ducing kernel Hilbert spaces.
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1 Introduction

Denote by D the open unit disk in the complex plane C. Let £ be a Hilbert
space and £(€) the set of bounded linear operators on £. An operator-valued
function K : Dx D — £(€) is called an analytic kernel (cf. [6]) if for any fixed
w € D, the operator-valued function K (-,w) : D — £(€) is analytic, and

ij=1
for all {w;}?, C D, {n;}?-, C € and n € N*. In this case, by the Moore’s
Theorem ([7]), there exists a Hilbert space Hge(K) of E-valued analytic func-
tions on D such that {K(-,w)n :w € D,n € £} is a total set in He(K), and
we call Hg(K) the vector-valued analytic reproducing kernel Hilbert spaces.
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Let 1 be a multiplier of He(K), ie., ¥ is a complex-valued function on
D satisfying ¢ - He(K) C He(K). Suppose that ¢ is an analytic self-map of
D such that (f o ¢)(z) = f(¢(z)) € He(K), then the weighted composition
operator C,, , is defined by

(Cowf)(2) = ¥(2)f (2(2)),

for f € He(K) and z € D. The closed graph theorem shows that C,, :
He(K) — He(K) is bounded, so the adjoint of weighted composition operator
C} ., is also bounded on He(K).

For a Banach space X, an operator T' € £(X) is said to be hypercyclic if
there exists a vector x € X such that the orbit of x under T, Orb(z,T) :=
{x,Tx,Tzas, x } is dense in X, and z is called the hypercyclic vector for
T. In [2], Bourdon and Shapiro studied thoroughly the hypercyclicity of the
composition operator (see also [3]).

Recently, Mundayadan and Sarkar characterized completely the hyper-
cyclicity, as well other dynamic properties of the adjoint of the multiplication
operator by the coordinate function on Hg(K) in [6]. In 2011, Kamali et al.
[5] studied the hypercyclicity of C';. acting on the scalar-valued reproducing
kernel Hilbert space. In this paper, we concentrate on the more general case,
namely the vector-valued analytic reproducing kernel Hilbert spaces He(K).

2 Main Results

In this section, we use the following Hypercyclicity Criterion to give the suffi-
cient conditions for C7, , : He(K) — He(K) to be hypercyclic.

Theorem 2.1. [1] Let X be a Banach space and T € £(X). Suppose that
there are dense subsets D1, Dy C X, an increasing sequence (ng)ken of positive
integers, and maps Sy, : Dy — X such that for any v € Dy, y € Dy,

(i) T™x — 0, as k — oo,
(i1) Sn,y — 0, as k — oo,
(iii) T™ S,y — y, as k — oo.

Then T is hypercyclic.

By [8, Proposition 3.2.], we know that if C; , is hypercyclic on He(K),
then ¢ must be an automorphism. Recall that a sequence {c¢;};en of complex
numbers is not a Blaschke sequence, if there exists iy € N such that |¢;| < 1 for
i >igand > - (1—]|¢;|) = co. Moreover, for every z € D, the linear evaluation
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map E, : He(K) — € given by E, f = f(z) is bounded and so E,oE : £ — &
is a bounded linear map. It is easy to verify that K(z,w) = E, o E and

(F K wn)yy, e = (Buwfin),- (1)
Theorem 2.2. Let ¢ be a disk automorphism such that the sets
P={weD:{¢(pn(w))},, isnota Blaschke sequence}
and
Q={veD: {(Y(p_n(v) "}, isnot a Blaschke sequence}

have limit points in D. If for each w € P and each v € @ the sequence
{K(-,gpn(w))n}n>l and {K(-, go_n(v))n}n>l are bounded for alln € &, where
& is a dense subset of £. Then Cop 18 hypercyclic on He(K).

Proof. Claim: The sets

Mp = span{ K (-,w)n:w € P,n € &}
and

Mg =span{K(-,v)n:veQ,n <&}

are dense in He(K).
Indeed, suppose that f € He(K) and f L K(-,w)n for all w € P and
n € &. Then

0={(f, K(',w)T]>Hg(K) = (f(w),n)e.

We have f(w) =0 as & is dense in €. Since P have a limit point in D, from
the identity theorem it follows that f = 0. Hence Mp is dense in He(K).
Similarly, My is also dense in He(K).

For any f € He(K), by (1),

Thus we obtain
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Inductively,

(K Hw () K (-, on(w)) .

For w € P, {1/1(% )} is not a Blaschke sequence and we have

(1 el w)]) = oo

7j=1
which is equivalent to

n—1

1 [0 ) =0
j=0
On the other hand, {K(-, On (w))n}n>1 is bounded, then we have

lim C3 (K(-,w)n) = 0.

n—o0

Therefore lim C77,f = 0 for any f € Mp.

n—oo
Now suppose that {K v v € QN € 80} is linearly independent. In
this case, we can define a hnear map

S MQ — MQ
by extending the definition
——1
S(K G vm) = v~ () K( e ()

linearly to Mg. Since ¢ *(v) € Q whenever v € Q, S(K(-,v)n) € Mg, and
we can define S™ for all n > 1. It is easy to see that

Since { (¢ (p-—; (U)))_l}j is not a Blaschke sequence, we can obtain

. - —— !
ggglld%wﬂvﬂ =0.
For v € Q, {K(, go,n(v))n}nzl is bounded. It follows that

lim S™(K(-,v)n) = 0.

n—oo
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Hence lim S™f =0 for any f € My.

n—oo

Moreover, if v € @), then

CoyS(K( ) = Cp (97 (v) K (9 (v)n
= 0(e(v) (e ) K (- (e @)
= K('av)na

ie., C; S =1 on Mg. We can conclude that C} , is hypercyclic on He(K)
by the Hypercyclicity Criterion

In the case {K vn:vEQR,nE 80} is linearly dependent. We adopt the
same method in [4, Theorem 4.5] due to Godefroy and Shapiro. Enumerate
a countable dense subset Q1 = {v, : n > 1} of @, and inductively choose a
subsequence {g,}, as follows. Take g; = vy,

Q2 = Ql\{v €Q: K(,vne span{K(-,gl)n}}-
Denote the first element of (5 by g, and let

Q3 = Q2\{V €Q2: K(,v)ne Span{K('791)7I>K('792)77}}-

Let g3 be the first element of ()3 and continue this process we get a subset
R ={g, :n > 1} of @ such that the set

{K(-,9)n:9€G,ne&}

is linearly independent and
Mg = span{K (-, g)n: g € G,n € &} = span{K(-,v)n: v € Q1,n € &}

is dense in Hg(K). Define S : Mg — Mg as above. Similarly, we also
have C7 ,S = I on Mg and S" — 0 pointwise on Mg. Therefore C7,, is
hypercychc on He(K) and the proof is completed.
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