International Mathematical Forum, Vol. 17, 2022, no. 1, 33 - 38 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2022.912303

Hypercyclicity of the Adjoint of Weighted Composition Operators on the Reproducing Kernel Hilbert Spaces

Zhitao Guo

School of Science, Henan Institute of Technology Xinxiang, 453003, China

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2022 Hikari Ltd.

Abstract

The aim of this paper is to study the hypercyclicity of the adjoint of weighted composition operators on the vector-valued analytic reproducing kernel Hilbert spaces.

Mathematics Subject Classification: 47A16, 47B33

Keywords: hypercyclicity, composition operator, reproducing kernel Hilbert space

1 Introduction

Denote by \mathbb{D} the open unit disk in the complex plane \mathbb{C} . Let \mathcal{E} be a Hilbert space and $\mathfrak{L}(\mathcal{E})$ the set of bounded linear operators on \mathcal{E} . An operator-valued function $K: \mathbb{D} \times \mathbb{D} \to \mathfrak{L}(\mathcal{E})$ is called an analytic kernel (cf. [6]) if for any fixed $w \in \mathbb{D}$, the operator-valued function $K(\cdot, w): \mathbb{D} \to \mathfrak{L}(\mathcal{E})$ is analytic, and

$$\sum_{i,j=1}^{n} \left\langle K(w_i, w_j) \eta_j, \eta_i \right\rangle_{\mathcal{E}} \ge 0,$$

for all $\{w_i\}_{i=1}^n \subset \mathbb{D}$, $\{\eta_i\}_{i=1}^n \subset \mathcal{E}$ and $n \in \mathbb{N}^+$. In this case, by the Moore's Theorem ([7]), there exists a Hilbert space $\mathcal{H}_{\mathcal{E}}(K)$ of \mathcal{E} -valued analytic functions on \mathbb{D} such that $\{K(\cdot, w)\eta : w \in \mathbb{D}, \eta \in \mathcal{E}\}$ is a total set in $\mathcal{H}_{\mathcal{E}}(K)$, and we call $\mathcal{H}_{\mathcal{E}}(K)$ the vector-valued analytic reproducing kernel Hilbert spaces.

Let ψ be a multiplier of $\mathcal{H}_{\mathcal{E}}(K)$, i.e., ψ is a complex-valued function on \mathbb{D} satisfying $\psi \cdot \mathcal{H}_{\mathcal{E}}(K) \subset \mathcal{H}_{\mathcal{E}}(K)$. Suppose that φ is an analytic self-map of \mathbb{D} such that $(f \circ \varphi)(z) = f(\varphi(z)) \in \mathcal{H}_{\mathcal{E}}(K)$, then the weighted composition operator $C_{\varphi,\psi}$ is defined by

$$(C_{\varphi,\psi}f)(z) = \psi(z)f(\varphi(z)),$$

for $f \in \mathcal{H}_{\mathcal{E}}(K)$ and $z \in \mathbb{D}$. The closed graph theorem shows that $C_{\varphi,\psi}$: $\mathcal{H}_{\mathcal{E}}(K) \to \mathcal{H}_{\mathcal{E}}(K)$ is bounded, so the adjoint of weighted composition operator $C_{\varphi,\psi}^*$ is also bounded on $\mathcal{H}_{\mathcal{E}}(K)$.

For a Banach space X, an operator $T \in \mathfrak{L}(X)$ is said to be hypercyclic if there exists a vector $x \in X$ such that the orbit of x under T, $Orb(x,T) := \{x, Tx, T^2x, \cdots\}$ is dense in X, and x is called the hypercyclic vector for T. In [2], Bourdon and Shapiro studied thoroughly the hypercyclicity of the composition operator (see also [3]).

Recently, Mundayadan and Sarkar characterized completely the hypercyclicity, as well other dynamic properties of the adjoint of the multiplication operator by the coordinate function on $\mathcal{H}_{\mathcal{E}}(K)$ in [6]. In 2011, Kamali et al. [5] studied the hypercyclicity of $C_{\varphi,\psi}^*$ acting on the scalar-valued reproducing kernel Hilbert space. In this paper, we concentrate on the more general case, namely the vector-valued analytic reproducing kernel Hilbert spaces $\mathcal{H}_{\mathcal{E}}(K)$.

2 Main Results

In this section, we use the following Hypercyclicity Criterion to give the sufficient conditions for $C^*_{\varphi,\psi}:\mathcal{H}_{\mathcal{E}}(K)\to\mathcal{H}_{\mathcal{E}}(K)$ to be hypercyclic.

Theorem 2.1. [1] Let X be a Banach space and $T \in \mathfrak{L}(X)$. Suppose that there are dense subsets $\mathcal{D}_1, \mathcal{D}_2 \subset X$, an increasing sequence $(n_k)_{k \in \mathbb{N}}$ of positive integers, and maps $S_{n_k} : \mathcal{D}_2 \to X$ such that for any $x \in \mathcal{D}_1$, $y \in \mathcal{D}_2$,

- (i) $T^{n_k}x \to 0$, as $k \to \infty$,
- (ii) $S_{n_k}y \to 0$, as $k \to \infty$,
- (iii) $T^{n_k}S_{n_k}y \to y$, as $k \to \infty$.

Then T is hypercyclic.

By [8, Proposition 3.2.], we know that if $C_{\varphi,\psi}^*$ is hypercyclic on $\mathcal{H}_{\mathcal{E}}(K)$, then φ must be an automorphism. Recall that a sequence $\{c_i\}_{i\in\mathbb{N}}$ of complex numbers is not a Blaschke sequence, if there exists $i_0 \in \mathbb{N}$ such that $|c_i| < 1$ for $i \geq i_0$ and $\sum_{i=1}^{\infty} (1-|c_i|) = \infty$. Moreover, for every $z \in \mathbb{D}$, the linear evaluation

map $E_z : \mathcal{H}_{\mathcal{E}}(K) \to \mathcal{E}$ given by $E_z f = f(z)$ is bounded and so $E_z \circ E_w^* : \mathcal{E} \to \mathcal{E}$ is a bounded linear map. It is easy to verify that $K(z, w) = E_z \circ E_w^*$ and

$$\langle f, K(\cdot, w)\eta \rangle_{\mathcal{H}_{\mathcal{E}}(K)} = \langle E_w f, \eta \rangle_{\mathcal{E}}.$$
 (1)

Theorem 2.2. Let φ be a disk automorphism such that the sets

$$P = \left\{ w \in \mathbb{D} : \left\{ \psi \big(\varphi_n(w) \big) \right\}_{n=0}^{\infty} \text{ is not a Blaschke sequence} \right\}$$

and

$$Q = \left\{v \in \mathbb{D} : \left\{\left(\psi(\varphi_{-n}(v))\right)^{-1}\right\}_{n=1}^{\infty} \text{ is not a Blaschke sequence}\right\}$$

have limit points in \mathbb{D} . If for each $w \in P$ and each $v \in Q$ the sequence $\{K(\cdot, \varphi_n(w))\eta\}_{n\geq 1}$ and $\{K(\cdot, \varphi_{-n}(v))\eta\}_{n\geq 1}$ are bounded for all $\eta \in \mathcal{E}_0$, where \mathcal{E}_0 is a dense subset of \mathcal{E} . Then $C^*_{\varphi,\psi}$ is hypercyclic on $\mathcal{H}_{\mathcal{E}}(K)$.

Proof. Claim: The sets

$$\mathcal{M}_P = \operatorname{span}\{K(\cdot, w)\eta : w \in P, \eta \in \mathcal{E}_0\}$$

and

$$\mathcal{M}_Q = \operatorname{span}\{K(\cdot, v)\eta : v \in Q, \eta \in \mathcal{E}_0\}$$

are dense in $\mathcal{H}_{\mathcal{E}}(K)$.

Indeed, suppose that $f \in \mathcal{H}_{\mathcal{E}}(K)$ and $f \perp K(\cdot, w)\eta$ for all $w \in P$ and $\eta \in \mathcal{E}_0$. Then

$$0 = \langle f, K(\cdot, w) \eta \rangle_{\mathcal{H}_{\mathcal{E}}(K)} = \langle f(w), \eta \rangle_{\mathcal{E}}.$$

We have f(w) = 0 as \mathcal{E}_0 is dense in \mathcal{E} . Since P have a limit point in \mathbb{D} , from the identity theorem it follows that $f \equiv 0$. Hence \mathcal{M}_P is dense in $\mathcal{H}_{\mathcal{E}}(K)$. Similarly, \mathcal{M}_Q is also dense in $\mathcal{H}_{\mathcal{E}}(K)$.

For any $f \in \mathcal{H}_{\mathcal{E}}(K)$, by (1),

$$\begin{split} \left\langle C_{\varphi,\psi}^* \big(K(\cdot,w) \eta \big), f \right\rangle_{\mathcal{H}_{\mathcal{E}}(K)} &= \left\langle K(\cdot,w) \eta, \psi \cdot (f \circ \varphi) \right\rangle_{\mathcal{H}_{\mathcal{E}}(K)} \\ &= \left\langle \eta, \psi(w) f \big(\varphi(w) \big) \right\rangle_{\mathcal{E}} \\ &= \left\langle \overline{\psi(w)} K \big(\cdot, \varphi(w) \big) \eta, f \right\rangle_{\mathcal{H}_{\mathcal{E}}(K)}. \end{split}$$

Thus we obtain

$$C_{\alpha,\psi}^*(K(\cdot,w)\eta) = \overline{\psi(w)}K(\cdot,\varphi(w))\eta. \tag{2}$$

Inductively,

$$C_{\varphi,\psi}^{*n}(K(\cdot,w)\eta) = \prod_{j=0}^{n-1} \overline{\psi(\varphi_j(w))} K(\cdot,\varphi_n(w))\eta.$$

For $w \in P$, $\{\psi(\varphi_j(w))\}_i$ is not a Blaschke sequence and we have

$$\sum_{j=1}^{\infty} (1 - |\psi(\varphi_j(w))|) = \infty,$$

which is equivalent to

$$\lim_{n \to \infty} \prod_{j=0}^{n-1} \overline{\psi(\varphi_j(w))} = 0.$$

On the other hand, $\{K(\cdot,\varphi_n(w))\eta\}_{n\geq 1}$ is bounded, then we have

$$\lim_{n \to \infty} C_{\varphi,\psi}^{*n} (K(\cdot, w)\eta) = 0.$$

Therefore $\lim_{n\to\infty} C_{\varphi,\psi}^{*n} f = 0$ for any $f \in \mathcal{M}_P$.

Now suppose that $\{K(\cdot, v)\eta : v \in Q, \eta \in \mathcal{E}_0\}$ is linearly independent. In this case, we can define a linear map

$$S:\mathcal{M}_O\to\mathcal{M}_O$$

by extending the definition

$$S(K(\cdot, v)\eta) = \overline{\psi(\varphi^{-1}(v))}^{-1}K(\cdot, \varphi^{-1}(v))\eta$$

linearly to \mathcal{M}_Q . Since $\varphi^{-1}(v) \in Q$ whenever $v \in Q$, $S(K(\cdot, v)\eta) \in \mathcal{M}_Q$, and we can define S^n for all $n \geq 1$. It is easy to see that

$$S^{n}(K(\cdot,v)\eta) = \prod_{j=1}^{n} \overline{\psi(\varphi_{-j}(v))}^{-1} K(\cdot,\varphi_{-n}(v))\eta.$$

Since $\{(\psi(\varphi_{-j}(v)))^{-1}\}_j$ is not a Blaschke sequence, we can obtain

$$\lim_{n \to \infty} \prod_{j=1}^{n} \overline{\psi(\varphi_{-j}(v))}^{-1} = 0.$$

For $v \in Q$, $\{K(\cdot, \varphi_{-n}(v))\eta\}_{n\geq 1}$ is bounded. It follows that

$$\lim_{n \to \infty} S^n \big(K(\cdot, v) \eta \big) = 0.$$

Hence $\lim_{n\to\infty} S^n f = 0$ for any $f \in \mathcal{M}_Q$. Moreover, if $v \in Q$, then

$$\begin{split} C_{\varphi,\psi}^* S \big(K(\cdot,v) \eta \big) &= C_{\varphi,\psi}^* \overline{\psi \big(\varphi^{-1}(v) \big)}^{-1} K \big(\cdot, \varphi^{-1}(v) \big) \eta \\ &= \overline{\psi \big(\varphi^{-1}(v) \big)}^{-1} \overline{\psi \big(\varphi^{-1}(v) \big)} K \big(\cdot, \varphi(\varphi^{-1}(v)) \big) \eta \\ &= K(\cdot,v) \eta, \end{split}$$

i.e., $C_{\varphi,\psi}^*S = I$ on \mathcal{M}_Q . We can conclude that $C_{\varphi,\psi}^*$ is hypercyclic on $\mathcal{H}_{\mathcal{E}}(K)$ by the Hypercyclicity Criterion.

In the case $\{K(\cdot,v)\eta:v\in Q,\eta\in\mathcal{E}_0\}$ is linearly dependent. We adopt the same method in [4, Theorem 4.5] due to Godefroy and Shapiro. Enumerate a countable dense subset $Q_1=\{v_n:n\geq 1\}$ of Q, and inductively choose a subsequence $\{g_n\}_n$ as follows. Take $g_1=v_1$,

$$Q_2 = Q_1 \setminus \{ v \in Q_1 : K(\cdot, v) \eta \in \operatorname{span}\{K(\cdot, g_1)\eta\} \}.$$

Denote the first element of Q_2 by g_2 and let

$$Q_3 = Q_2 \setminus \{ \nu \in Q_2 : K(\cdot, \nu) \eta \in \operatorname{span} \{ K(\cdot, g_1) \eta, K(\cdot, g_2) \eta \} \}.$$

Let g_3 be the first element of Q_3 and continue this process we get a subset $R = \{g_n : n \ge 1\}$ of Q such that the set

$$\{K(\cdot,g)\eta:g\in G,\eta\in\mathcal{E}_0\}$$

is linearly independent and

$$\mathcal{M}_G = \operatorname{span}\{K(\cdot, g)\eta : g \in G, \eta \in \mathcal{E}_0\} = \operatorname{span}\{K(\cdot, v)\eta : v \in Q_1, \eta \in \mathcal{E}_0\}$$

is dense in $\mathcal{H}_{\mathcal{E}}(K)$. Define $S: \mathcal{M}_G \to \mathcal{M}_G$ as above. Similarly, we also have $C_{\varphi,\psi}^*S = I$ on \mathcal{M}_G and $S^n \to 0$ pointwise on \mathcal{M}_G . Therefore $C_{\varphi,\psi}^*$ is hypercyclic on $\mathcal{H}_{\mathcal{E}}(K)$ and the proof is completed.

Acknowledgements. This work was supported by the National Natural Science Foundation of China (No. 12101188) and Doctoral Fund of Henan Institute of Technology (No. KQ2003).

References

- [1] J. Bès, A. Peris, Hereditarily hypercyclic operators, *J. Funct. Anal.*, **167** (1999), 94 112. https://doi.org/10.1006/jfan.1999.3437
- P.S. Bourdon, J.H. Shapiro, Cyclic phenomena for composition operators, *Mem. Amer. Math. Soc.*, 125 (1997), 105. https://doi.org/10.1090/memo/0596

38 Zhitao Guo

[3] E.A. Gallardo-Gutiérrez, A. Montes-Rodríguez, The role of the spectrum in cyclic behavior of composition operators, *Mem. Amer. Math. Soc.*, **167** (2004), 81. https://doi.org/10.1090/memo/0791

- [4] G. Godefroy, J.H. Shapiro, Operators with dense, invariant cyclic vector manifolds, J. Funct. Anal., 98 (1991), 229 - 269. https://doi.org/10.1016/0022-1236(91)90078-j
- [5] Z. Kamali, B.K. Robati, K. Hedayatian, Cyclicity of the adjoint of weighted composition operators on the Hilbert space of analytic functions, *Czechoslovak Math. J.*, 61 (2011), 551 - 563. https://doi.org/10.1007/s10587-011-0074-2
- [6] A. Mundayadan, J. Sarkar, Linear dynamics in reproducing kernel Hilbert spaces, Bull. Sci. Math., 159 (2020), 102826. https://doi.org/10.1016/j.bulsci.2019.102826
- [7] V.I. Paulsen, M. Raghupathi, An Introduction to the Theory of Reproducing Kernel Hilbert Spaces, Cambridge Studies in Advanced Mathematics, 152 (2016), 182. https://doi.org/10.1017/cbo9781316219232
- [8] H. Rezaei, Notes on dynamics of the adjoint of a weighted composition operator, *Taiwanese J. Math.*, 14 (2010), 1377 1384.
 https://doi.org/10.11650/twjm/1500405954

Received: January 23, 2022; Published: February 6, 2022