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Abstract

Parametrizations of 4 x 4 squares which allow to generate individ-
ual examples, using birthdays or other personally preferred numbers
are developed. This will be done for magic squares that are delightful,
perfect, skew symmetric, most perfect and pandiagonal (also called di-
abolic). Furthermore, the parametrizations explain the construction of
famous historical magic squares. Also an idea for an artwork containing
mathematics is given, called MathArt.

Historical Introduction

Magic squares are always of interest to people irrespective of age and their
acquaintance with mathematics. Earlier, magic squares appeared often on
temples, in paintings and on mythological objects.

Magic squares first appeared in ancient China, before they became an active
subject westwards. They played a remarkable role in India, later in the Arabic
world, in medieval Islam and finally in Europe and America.

Legend has it that the first magic square is over 4000 years old. It is said that
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the mystical Emperor Yu in China discovered small black and white circles on
the shell of a turtle that had emerged from the Lo river. The arrangement of
the circles representing the numbers 1 to 9 were structured in a special 3 x 3
square (see [2]).

Here is the modern design of the so-called Lo Shu magic square

41912
3197
8116

with the sum for the rows, columns and diagonals being 15. It was consid-
ered mystical with the magic number 15. The odd numbers forming a cross
were interpreted as Yin, the even ones in the corners as Yang. Yu as a young
man used the Pythagorean triangle for a successful water-control project to
prevent floodings by the Yellow river. This might have played a vital role in
Yu later becoming an emperor (see [6]).

The first indisputable reference to a magic square in China occurs in the
first century AD (see[8]). It assigns numbers to each of the 9 chambers of
the so-called Mingtang Hall. Later in the 10th century, the numbers were
represented in a pseudo archaic form with the small black and white circles in
the Lo Shu magic square mentioned above.

The Sator-Square
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describes a palindrome sentence. It may be read horizontally, vertically
forward and backward. It has the symmetry of the dihedral group D,: Invari-
ance under the two reflections in the diagonals and a rotation by 180°, but
not under the symmetry of the square. It appeared in early Christian and
mythological contexts on stones, wood and in handwritten books in monas-
teries. The oldest datable representation was found in the ruins of Pompeji,
covered by the eruption of the Vesuvius vulcano in the year
AD 79. Since the medieval age, Sator-squares have also been present in Amer-
ica.
At a young age, Ramanujan was already very interested in magic squares.
Here is a statement in his first famous notebook: In a 3 x 3 magic square, the
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elements in the middle row, middle column and diagonals are in arithmetic
progression(see [3]).

2 Delightful Magic Squares DMS

We deal with the most popular size of 4 x 4 magic squares and start with the
following four fundamental cases:

v =

= oo O
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vo =V vy, v3=H - vy, vy = Rigo - v1, where V, H, Rig9 denote the vertical
reflection, horizontal reflection and the rotation by 180° about the center,
respectively. Note that {I,V, H, Rigo} with I being the identity is the dihedral
group D, which is isomorphic to the Klein Four Group.

The linear combination

avs + bvg + cvy + dvy =
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‘@‘Q@&

‘&@Q@
‘@ QS| O

contains permutations of the four elements in each row and each column
and is therefore an example of a Latin square. The sum M =a+ b+ c+d,
called the Magic Number, is the same for the following cases:

1. each row and each column,

2. the two diagonals,
3. the four corners,
4. the four corners of each 3 x 3 subsquare,

5. the entries of each 2x2 subsquare of the the 4x4 square, considered as
a torus, with the following four exceptions: The 2x2-subsquare formed by the
top left and the top right columns of lengths 2; the 2x2-subsquare formed by
the bottom left and the bottom right columns of lengths 2; the middle 2x2-
subsquares at the top and at the bottom. These exceptions have the sums
2a+2d or 2b+2c, resp.,

6. the two pairs of parallel subdiagonals of length 2.
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Remark: Case 3 is included in case 5, because the four corners also form a
2 x 2 subsquare on the torus.

If we add
01010
1|—1/-3| 3 }
k- 55153 with k € Z
1]-1/11]-1

there is no change in the sum M for all cases 1 to 6 and we get the following
type of so-called Delightful Magic Squares (DMS) with 5 parameters:

a b c d
d+k c—k b—3k | a+ 3k
DMS = b—2k | a+2k | d+2k | ¢c—2k
c+k d—k a+k b—k

It contains the following four sequences of arithmetic progressions:
{a,a+k,a+2k,a+ 3k}, {b—3k,b—2k,b—k,b}, {c—2k,c—k,c,c+k},
{d—Fk,d,d+k,d+ 2k}.

A similar type to DM S, but with 4 parameters, can be found in [1].
Let us construct an example with primes only. For k£ = 6, the smallest
sequences of primes in consecutive arithmetic progressions of length > 4 are

{5, 11, 17, 23, 29},
{251, 257, 263, 269},

{41, 47, 53, 59},
{601, 607, 613, 619},

{61, 67, 73, 79},
{1091, 1097, 1103, 1109}.

There exists no sequence of length larger than 4, except the first one. A
calculation shows that there are 24 sequences with numbers < 10%.

If we take any four different sequences, then the magic square consists of
four disjoint sets of consecutive primes in arithmetic progression.

The choice a =5, b =59, ¢ =73, d = 257 results in the example with the
smallest possible primes and the magic number M = 394:

2 |99
263| 67 | 41
47 117|269
79 |251] 11

73 (257
23
61 [

23
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3 Perfect Magic Squares PMS

To increasee the number of parameters, we add the following fundamental cases
under the rotation about an angle of 90°:  w; = Ryq - v;, where ¢ = 1,2, 3, 4.

Together with the v;, there are 8 vectors of dimension 16. Gaussian elim-
ination shows, that they span a vector space of dimension 7. The linear de-
pendence can be verified with > v; = > w; = magic square with all 16 entries
being 1.

We consider the linear combination zv; + Tows + T3ws + T4Vs + Txvs +
TeW1 + TrWy:

T7  |To + x4|T1 + Tg|T3 + T5
Ty + Tg|T1 + T3|Tg + T7|  Xo
T3+ Ty| Tg |To+ T5|T1 4+ T7
Ty + T2|T5 + 27| Tz |T4+ T

It has the same sum M = > x; for all cases 1, 2, 3 4, and 6 with the
following modified case 5: there are four additional 2 x 2 subsquares, which
do not have the sum M in general, caused by the rotation Ry of the 4 described
exceptions.

The geometrical pattern of all cases with sum M has the symmetry of
the square (dihedral group Dy): It is invariant under its 8 transformations (4
rotations and 4 reflections). Let us change to the following 7 new parameters:

The top row shall be a,b,c,d as before and e = w9, f = x4, g = 3.
Therefore,

7 = a

Tot+axs=b=>z4=b—c¢
rntrg=c=>r1=c—f
r3trs=d=x5=d—g

leads to the type of the so-called Perfect Magic Squares (PMS) with 7
parameters:

a b c d
d+f—g c+g—f a+b—e e
PMS =
b+g—e f d+e—yg c+a—f
cte—f a+d—g g b+ f—e

The Indian number theorist from Kerala, C.S.Venkatraman (1918-1994),
honored Ramanujan in 1976 with the following personalized magic square of
type PM S by using his birth date in the top row and choosing e = 2, f = 16,
g=282:
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2212|1887
2184132 2
92116| 7 |24
4 127|82126

In [1], a parametrization is given with 8 parameters describing all magic
squares where in general only the rows, columns and the two diagonals have
the same sum.

4 Skew Symmetric Magic Squares

To obtain the general parametrization of the skew symmetric square of type
PMS, we consider the two corners with entries a and b+ f — e

at+b+c+d M —a—b+c+d

a+(b+f—e) = 5 5 5

€.

Adding of the two values in the positions (2,1) and (3,4) yields

at+b+c+d M a—b+c+d
@+f—g)+(cta—f)="T2T 00—y S 0T2TCTE

2 2 2
Substituting f and g in PMS leads to the type PM S;,,, of skew symmetric

Perfect Magic Squares with the 5 parameters a, b, ¢, d, e:

a b c d
d—a+e a+c—e a+b—e e
PMS,y, =
a+b+c+d —a—b+c+d —a+b—c+d 3a+b+c—d
5 —e 5 +e 5 +e 5 —e
at+b+c—d at+b—ct+d a—b+ct+d —a+b+ct+d
2 2 2 2

The magic square depicted in the famous painting by Albrecht Drer from
1514 entitled Melancholia’ can be obtained by choosing a = 4, b = 15, ¢ =
14, d =1, e = 12, followed by the reflection of the square about the horizontal
symmetry axis:

16| 3213
10]11| 8
712
151141

| ©| Ot
D
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It is indeed skew symmetric 6+11 = 4413 = ... = 17 and it contains all
numbers from
1 to 16.

Let us further specialize by requesting that all 2 x 2 subsquares of the torus
have the same sum M. The condition for the 2 x 2 subsquare at the top in the
middle must be

20 +2b+2c—2e=a+b+c+d=e=(a+b+c—d)/2

Substituting e into PM S, leads to the type M PM S, of skew symmet-
ric Most Perfect Magic Squares with 4 parameters

S

Q| X

MPMS,ym =

QO | S

Q| | Q!
SIS OO

Ql

where a +a=b+b=c+c=d+d= M/2.

Here is an example featuring Evariste Galois‘s birth date with M = 64:

25101811
7122|1421
1118|1025
2114122 7

5 Most Perfect Pandiagonal Magic Squares

Now we give up skew symmetry, but realize the property that all 2 x 2 sub-
squares of the torus of the type PM.S have the same sum M =a+ b+ c+d.
For the middle low subsquare, we get the restriction

f+(d+e—g)+(d+a—-g)+g=a+b+c+d= f=b+c—d—e+y.

For the right middle subsquare, we get the restriction

(a+b—e)+e+(d+e—g)+(cta—f)=a+b+c+d= f=a+e—q.
Adding or subtracting the two expressions for f leads to

a+b+c—d a—b—c+d

5 + e, respectively.
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a b c d
b+c—e d—b+e | a+b—e¢ e
MPPMS =
a+b—c+d a+b+c—d —a+b+c+d a—b+c+d
2 2 2 2
—a—b2+c+d +e a-‘rb-é—c—i—d —e a—bgc-I—d +e a+3b;-c—d —e

Therefore, the two parameters f and g in PMS have to be replaced and we
get the following type of Most Perfect Pandiagonal Magic Square MPPMS,
also called Diabolic Square, with 5 parameters and the magic number M =
a+b+c+d:

The Pandiagonality can be described as follows: If we consider two identical
MPPMS which are put side by side, then all the 8 diagonals (4 going up and
4 going down) sum up to M.

The following properties, also described in [10], can be verified with MPPMS:

P1

P2

P3
P4

P5

P6

P7

Rows, columns and all 8 diagonals have the sum M (pandiagonality).

All 2x2 subsquares of the torus, including the 4 corners, have the sum

M.
The corners of all 3 x 3 subsquares have the sum M.

The sum of two entries on any diagonal of length 3 or 4 with distance 2,

so-called corresponding cells, is %

If M is even, all entries are integers. If M is odd, the entries in the lower
half square are half-integers.

The following transformations and their compositions transform a di-
abolic square into a diabolic square: Cyclic permutations of rows and
columns, exchanging rows 1 and 3, rows 2 and 4, columns 1 and 3,
columns 2 and 4, the 4 reflections and 4 rotations (including the iden-
tity) that leave the square invariant (dihedral groupDy).

If four identical diabolic squares are fillerd into an 8 x 8 square, then each
4 x 4 subsquare is also a diabolic square. This is a consequence of the
fact, that cyclic permutations of rows and columns transform a diabolic
square into a diabolic square (see also [11]).

It follows from the pandiagonality P1 that the 4 diagonals of length 3 plus
to corner opposite have the sum of M as well as the two parallel pairs of
diagonals of length 2.

Here, Einstein is honored with a piece of MathArt, with his birth date in
the top row of a MPPMS, integrated in a paper cutting.
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i

A

It is not possible to avoid negative integers because 79 > 14 + 3 + 18.

The silhouette with the four seasons was created by Dora Erny-Eglin, living
in the Engadine, an area in the south-east of Switzerland. The geometric
elements, called Sgraffittis, are found on the walls of traditional houses.

Winter and summer are symmetric, but spring and autumn are not. The
frame has the symmetry of a rectangle (dihedral group D,): it is invariant
under vertical and horizontal reflection as well as under the rotation about
180°.

The most perfect pandiagonal magic square for Ramanujan’s birth date
contains half integers in the lower half and two negative entries:

22| 12 | 18 | 87
291 76 |33 ] 1

51.5|—17.547.5|57.5
36.5| 68.5 [40.5|—6.5

Choosinga=n—3,b=1,¢c=n—06,d =8, e = 2, we get the famous
historical work (from the second century AD) of the Buddhist philosopher
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n—3 1 [n—6| 8

n—"7 9 n—4| 2
6 In—8 3 [n—1
4 In—=2 7 |In—9

Nagarjuna, called Kaksaputa, with M = 2n and corresponding cells with sum
n:
Finally, let us investigate skew symmetric MPPMS. The two equations

M/2—e+c=M/2=e=c
b —d
a+b—e+%:M/2:>e:a+b—d
lead to the condition a + b = ¢ + d with 3 parameters and the magic number
M =2(a+b) =2(c+d).
The solution is the Latin Square

alblc|d
blal|d|c )
MPPMSgym = witha+b=c+d.
dlcl|bl|a
cld|lalb

6 Euler Squares for the Entries 1 to 16

At this stage one might wonder how to generate magic squares with the entries
1,2,3,...,16 and sum M = 34. The Swiss mathematician Leonhard Euler (1707-
1783) worked on this problem and came up with the idea of merging two Latin
squares into a so-called Graeco-Latin square, or Euler square (ES):

ac | b6 | ¢f | dv
dg | ¢y | ba | ad
by | af | do | ca
cd | da | ay | bS

ES1 =

It has the characteristics of the Delightful Magic Squares DM S which
means, that any four entries of the cases 1 to 6 are composed of all 4 latin
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letters as well as all 4 greek letters. The square with the latin letters and the
square with the greek letters are said to be orthogonal, because all 16 orderded
pairs in the Euler square have latin letters in the first and greek letters in the
second positions.
Let us consider the bottom left corner and the opposite diagonal of length
3. The sufficient and necessary conditions for most perfect pandiagonal Euler
squares are
2c+2b=a+b+c+dand 26 + 2o = a + S + v+ 9, which can be directly
verified in ES1 using the simplified conditions b+c=a+d and S +~v = a+d.
The use of the numbers 0, 1, 2, 3 for the latin and greek letters implies

b+c=a+d=0F+7=a+6=3
with the following 8% = 64 possibilities for the choices of (abed) and (379) :

a |0 0 1 2 2 1 3 3

gl1 2 0 0 3 3 1 2
c v/2 1 3 3 0 0 2 1
d /3 3 2 1 1 200

To get a Most Perfect Pandiagonal Euler square with the properties P1 to
P6 and entries 0,1,2,...,15, we represent them to the base 4. Then, we increase
all entries by 1 to get the entries 1,2,3,..., 16. Corresponding cells always have
the sum of M/2 =34/2 = 17.

To honor the universal genius Nicolaus Cusanus (1401-1464), who worked in
such different fields as theology, philosophy and mathematics, we create an
example with the decimal numbers 14 and 01 in the top center. To get 13
and 0, it follows that b = 3, = 1,¢ = f = 0. Choice: (abed) = (2301) ;
(afpyd) = (2031).

22 131100113 11114011 8

10103]32121 514 |15 10
Nicolaus Cusanus: >

33120111102 161 9|6 | 3

011223130 2 17 112113

To the left are the representations of the numbers to the base 4, to the
right the corresponding decimal representations increased by 1.
Here is another Euler square with the same top row as ES1 (from [13]):
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aa | b | ¢B | dv
ey | dB | ad | ba
dd | ca | by | af
bp | ay | da | cd

ES2 =

There are hundreds of Euler squares: Two independently chosen permuta-
tions of the 4 latin and greek letters transform an Euler square into an Euler
square. Because ES1 and ES2 have identical top rows, they cannot be trans-
formed with such permutations. They form two different classes.

The permutations (abcd) — (abed) and (afv0) — (aydB) of ES2 lead to
a diabolic square with top row (acx bf ¢y do).

The construction and enumeration of all diabolic squares is given in [9]. It
is proven in [5], that there exists exactly 3 mutually orthogonal latin squares
(MOLS) with common first row.

A beautiful historical example is the Jaina Square, created in the 10th
Century on the Parshvanath temple in Khajuraho. It can be generated, using
the Euler square £S2 with (abed) = (1203) and («af57yd) = (2013) :

71211 |14

2 (13| 8|11
J =

16| 3 |10| 5

916|154

Let us calculate skew symmetric ES1 with entries 0 to 15 (therefore not
pandiagonal):

The two conditions ¢+ d = 3 and v+ 0 = 3 for skew symmetry have to be
respected.

Here is an example obtained by choosing (abcd) = (1230) and (afvd) =
(3012):

71101121
013/11|6
914 2|15

14131518
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Remark: The Diirer square D cannot be generated with an Euler square,

because the neighbors 15 and 14, reduced by 1, are 14 and 13. But in the
base 4, the first digit for both is 3. However, all the neighbors (horizontally
or vertically) need to have different Latin and greek letters. Only a subset of
diabolic squares with elements 1 to 16 can be generated with Euler squares.
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