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Abstract 

 

Every coordinate net on a rotating surface is a semi-geodesic coordinate net 

composed of a family of curves of constant geodesic curvature. In this paper, using 

semi-geodesic coordinate nets on special rotating surfaces such as a conical surface, 

a catenoid, and a rotational hyperboloid surface, we give families of curves of 

constant geodesic curvature on some surfaces through isometric mappings. Also, 

with the aid of the software Mathematica, we draw images of the semi-geodesic 

coordinate nets and the family of curves obtained through isometric mappings. 
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1 Introduction 
 

A semi-geodesic coordinate net is a special kind of coordinate net on a surface, 

which is not only a promotion of the polar coordinate net on a plane to a surface but 

also a necessary coordinate tool for studying the properties of the surface. 

Coordinate systems in which one family of coordinate lines represents geodesics 

on generic surfaces play an important role in differential geometry [1]. A semi-

geodesic coordinate net is closely related to geodesics. It is needless to say that 

geodesic curvatures of regular curves are important invariants of curves. Since 

geodesic curvatures of curves are invariant, they play a very important role in  
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studying surfaces from curve theoretic point of view. In the reference [2], by using 

isometries of surfaces in a Euclidean 3-space, we obtained the expressions of 

geodesics, and drew their images. Since geodesics are curves of constant null 

geodesic curvature, our next interest lies on curves of non-null constant geodesic 

curvature. 

In this paper we first show that coordinate nets on rotating surfaces are semi-

geodesic coordinate nets which are composed of geodesics and curves of constant 

geodesic curvature. In order to apply this result, we consider semi-geodesic 

coordinate nets on special rotating surfaces such as a conical surface, a catenoid, 

and a rotational hyperboloid surface. By using isometries of these surfaces [3], we 

obtain semi-geodesic coordinate nets on surfaces which are not rotating surfaces. 

We also draw figures of these semi-geodesic coordinate nets by using the software 

Mathematica. 

 

 

2 Semi-geodesic coordinate nets on rotating surfaces 
 

A coordinate network on a surface is composed of two families u , v  of smooth 

regular curves satisfying the following condition: At each point  0 0 0,P u v  on this 

surface, there is a unique pair 0u u , 0v v  of curves passing through 0P  whose 

tangent vectors at this point are linearly independent. 

Definition 1[4]. A coordinate network on a surface is said to be a semi-geodesic 

coordinate net, if one family is formed by geodesics and the other formed by curves 

which are orthogonal to geodesics in the previous family at their crossing points. 

We denote by , ,E F G  the quantities of the first fundamental form of a surface 

 u,vr r . A coordinate net on a surface  u,vr r  is a semi-geodesic coordinate 

net if and only if 0vE F   [5]. Therefore, a semi-geodesic coordinate net is a 

orthogonal coordinate grid ( 0F  ). 

The method of calculating geodesic curvatures of curves under an orthogonal 

coordinate grid is given as follows.  

Proposition 1[4]. (Liouville formula) When the coordinate net on the surface 

 u,vr r  is an orthogonal coordinate grid, the formula of geodesic curvature 
gk

of the curve c  at a point is 

                              
1 ln 1 ln

cos sin .
2 2

g

d E G
k

ds v uG E


 

 
  

 
                       (1) 

where s  is the parameter of arclength of the curve c ;   represents the angle 

between the tangent vector  c s  and ur . 

If the geodesic curvature of a curve on a surface is constant along this curve, we 

call it a curve of constant geodesic curvature. Geodesics are curves of constant null 

geodesic curvature.  

 

We here study coordinate nets on rotating surfaces.  
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Theorem 1. The coordinate net on a rotating surface 

      cos , sin ,u u u    r  is a semi-geodesic coordinate net composed of 

curves of constant geodesic curvature. Coordinate curves parameterized by u  are 

geodesics, and the geodesic curvature of each coordinate curve parameterized by 

  is given by 

 

     
2 2

.g

u
k

u u u



  




 

 

Proof. Through the parametric equation of the surface, we find that the quantities 

of the first fundamental form for this rotating surface are    
2 2

,E u u     

 
2

0, .F G u  We hence obtain 

0.E F    

That is, the coordinate net on this rotating surface is a semi-geodesic coordinate net.  

For each coordinate curve parameterized by   (and u  is a given constant) on 

this rotating surface, the angle between the tangent vector of this curve and ur  is 

.
2


  Using the Liouville formula (1), we find that the geodesic curvature of this 

coordinate curve is 

 

     
2 2

.g

u
k

u u u



  




 

 

Thus, all coordinate curves parameterized by   are of constant geodesic curvature.  

For each coordinate curve parameterized by u  (and v  is a given constant) on this 

rotating surface, we have 0  . Using the Liouville formula (1), we find that the 

geodesic curvature of this coordinate curve parameterized by u  is 0gk  . 

Therefore, all coordinate curves parameterized by u  are geodesics on this rotating 

surface.  

We hence obtain that the coordinate net on the rotating surface is a semi-geodesic 

coordinate net composed of constant geodesic curvature curves. 

 

 

3 Isometries of rotating surfaces and semi-geodesic coordinate nets 

 
In this section, we apply Theorem 1 to some rotating surfaces to get semi-

geodesic coordinate nets, and study their relationships between isometries. 

 

Example 1. We take a punctured plane  2 0R  , which can be regarded as a 

rotating surface. By Theorem 1, its coordinate  cos , sin ,0   r  ( 0  ) is a 

semi-geodesic coordinate net composed by curves of constant geodesic curvature. 

Clearly, each coordinate cure parameterized by   has a constant geodesic curvature 

1  , and coordinate curves parameterized by  are geodesics. 
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Example 2. We take a conical surface   cos , sin , 0u v u v u u r and omit its 

vertex. By Theorem 1, its coordinate net is a semi-geodesic coordinate net of 

constant geodesic curvature. Each coordinate curve parameterized by v  is a curve 

of constant geodesic curvature 
2

2
gk

u
 , and coordinate curves parameterized by 

u  are geodesics. 

We can study Example 2 also by use of an isometry.  

Lemma 1[6]. We consider a bijection of a plane  cos , sin ,0   r to a 

conical surface  cos , sin ,u v u v ur defined by 
2

,
2

u v   . If we omit their 

origins, its restriction on to the punctured plane is an isometry. 

Through the isometry given in Lemma 1, the curve  0 0cos , sin ,0      is 

mapped to the curve 0 0 0

2 2 2
cos , sin ,

2 2 2
     

  
  

  
. Hence, we find that 

the coordinate   cos , sin , 0u v u v u u r  is a semi-geodesic coordinate net of 

constant geodesic curvature. Each coordinate curve parameterized by v  has 

constant geodesic curvature 
2

1
2u

  . 

The following shows the isometric transformation of the semi-geodetic 

coordinate net on a punctured plane to a conical surface. Here, red curves are of 

curves of non-zero constant geodesic curvature and blue curves are geodesics. 

 

Fig. 1 Isometric transformation of a semi-geodetic coordinate net on a 

 plane to that on a conical surface 

 

Example 3. By Theorem 1, we find that the coordinate on a catenoid 

 cosh cos ,cosh sin ,t t t r is a semi-geodesic coordinate net. Each coordinate 

curve parameterized by   has constant geodesic curvature 
tanh

cosh
g

t
k

t
 , hence 

0gk  if and only if 0t  . For this curve, the angle  between its tangent vector  
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and tr is 
2


. On the other hand, each coordinate curve parameterized by t  is a 

geodesic and has 0  . 

By using the above semi-geodesic coordinate net on a catenoid, we give a semi-

geodesic coordinate net on a positive spiral surface.   

Lemma 2[4]. The map of a catenoid  cosh cos ,cosh sin ,t t t r  to a positive 

spiral surface  cos , sin ,u v u v vr  defined by sinh ,u t v    is an isometry. 

Theorem 2. On a positive spiral surface  cos , sin ,u v u v vr , the coordinate is 

a semi-geodesic coordinate net. Every coordinate curve parameterized by u  is a 

geodesic, and each coordinate curve parameterized by v  has constant geodesic 

curvature 
2 1

g

u
k

u



. 

Proof. Through the isometry defined in Lemma 2, the curve cosh cos ,t   

cosh sin ,t t is mapped to a curve  sinh cos ,sinh sin ,v t v t v v . Hence, its 

geodesic curvature is  2 2sinh cosh 1t t u u  . 

The following is a figure of the isometric transformation of the semi-geodetic 

coordinate net on a catenoid to that on a positive spiral surface. Red curves have 

non-zero constant geodesic curvature, and blue curves are geodesics. 

 

Fig. 2 Isometric transformation of a semi-geodetic coordinate net on  

a catenoid to that on a positive spiral surface 

 

 

Example 4. We take a rotational hyperbolic surface 

  2, , 1, 02 2S= x y z x +y z z   . Its coordinate  cosh cos ,cosh sin ,sinht t t r  

is a semi-geodesic coordinate net by Theorem 1. All coordinate curves 

parameterized by t  are geodesics, and each coordinate curve parameterized by   

has constant geodesic curvature  2sinh cosh 2sinh 1t t t  . 

 

By using the above semi-geodesic coordinate net on a rotational hyperbolic 

surface, we give a semi-geodesic coordinate net on a spiral surface. 
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Lemma 3[7]. The map of an open part of a rotational hyperbolic surface 

  cosh cos ,cosh sin ,sinh 0,0 2t t t t      r to a spiral surface 

 cos , sin ,u v u v u v r defined by  sinh , arctan sinhu t v t    is an isometry. 

Theorem 3. The coordinate net  

    cos arctan , sin arctan , arctanu s u u s u s u u    r  

on a spiral surface is a semi-geodesic coordinate net. Every coordinate curve 

parameterized by u  is a geodesic, and each coordinate curve parameterized by s  

has constant geodesic curvature   2 21 2 1u u u  . 

Proof. Through the isometry defined in Lemma 3, the curve 

 cosh cos ,cosh sin ,sinht t t    is mapped to a curve  

        sinh cos arctan sinh ,sinh sin arctan sinh , sinh arctan sinh .s t s t t s t s t t      

Its geodesic curvature is   2 2 2sinh cosh 2sinh 1 1 2 1t t t u u u    . 

The following is a figure of the isometric transformation of the semi-geodetic 

coordinate net on a rotational hyperbolic surface to a spiral surface. Red curves 

have non-zero constant geodesic curvature, and blue curves are geodesics. 

 

Fig. 3 Isometric transformation of a semi-geodetic coordinate net on a  

rotational hyperbolic surface to that on a spiral surface 

 

 

Our technique guarantees that we can get many other semi-geodesic coordinate 

nets on some surfaces formed by geodesics and curves of non-zero constant 

geodesic curvature through isometries of rotating surfaces.   
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