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Abstract

In this study, we present the function H(x), based on P,(x,a) introduced by
Lehmer. H(x), denotes the number of numbers that are not divisible by prime
numbers < p but are divisible by p. Herein, we show that H(x),, can be obtained
only using g We also present our own prime counting function based on H(x),,

that is, =.
3
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1 Introduction

A prime counting function represents the number of primes below a certain limit.
Py (x,a) denotes the number of products < x of k primes, each greater than p,.
Therefore, the difference between H(x), and Py (x, a) is that P, (x, a) only takes
primes greater than p, while H (x),, takes primes greater than or equal to p,, where
P 1S required to be in the product [1-2].
ps represents the prime in the position s.

For every natural number a, prime number ¢, and composite number b, we have
the following definitions:

Definitions.
H(x), = #[ aps < x|p < ps t a] 1)
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Rs (pis) = #[ cps < x|ps < c]. )

This indicates that R, (pis) =1 (i) —s+1

Tp () = #[bps < x|p <p; T b]. @)

Form the previous definitions,

H(x), = R, (pi) +T, (pi) +1. 4

Therefore, H(x),, satisfices
1+ Xs1 H(x), = x. ®)

In the next chapter, we present I(x), where, for x real,
I(x) =1+ Xs=3 H(x),. (6)

2 Obtaining I(x)

Lemma 2.1 From equation 6 and taking 3|x,

§ = I(x). (7
Proof:
For 2|x,
X
He0, =5 ®)
and

H(x); = g - ;—3 Therefore,
H(x); == )

-
For 6|x, we obtain,

x X X
X—H(X)Z—H(X)3—X—E—g—§.

Theorem 2. 1 From lemma 2.1 and x as a positive natural number,
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||x+1|| if 3txand 3|x+1 (10)
I(x) = ||x+2|| if 2,31 xand 3|x + 2.
k ”g” otherwise
Proof:
Consider a natural number c.
Every number— where ¢ € I71(x) is between and = therefore lor2 must be

added to ¢ such that the result is the next number d|V|3|bIe by 3. For example, < T €
1(x) or% € I(x).

3 Functions involving I(x)

Here, we introduce T(x), which defines the number of composite numbers that are
not divisible by 2 and 3 up to x, and R(x), where R(x) = m(x) — 2 for 3 < «x.
Therefore,

R(x)+T(x)+1=1I(x). (11)

Lemma 3.1 From equations 2 and 3 and the definition of T'(x),

T(x) = Yeo3 R, ( )+T (p) (12)

Proof:

T (Z _ H(x)p) ~H(x), — H(x)s =
(5 @) )- ()6
_(R3(%)+T3<%)+1) -

14+ Xs=31) +Xs=3Ry ( )+T (ps)

(ZS=31 ) = R(%)

where

and
T() = BesRs (2) + T ().

Lemma 3.2 Consider equation 2 and the definition of R(x). Then,
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(-1 ()53 ®

Proof:
We know that R, (pis) = n(i) —s+1and R(pis) = n(pis) -2

RE) -1 (2) = (r(2)-2) - (n(2) -5 1) =53
Lemma 3.3 Consider equations 12 and 3. The difference between them is
PG - () =T G, -1 o

Ps

Proof:
In this case, p; is constant for every prime p;, where 3 < k < s — 1.
k

X X X
T(5)= 2R () + 5 (o)
Ds =3 PkDPs PrDs

Equation 15 shows that, for all the primes p,, we obtain numbers divisible by
primes < ps; therefore, to obtain T, (pi) we must eliminate all those numbers,
N

(15)

meaning

(2 sn () -1=1()

p

From lemmas 3.1, 3.2, and 3.3, we obtain

1w = (R(E)+7(E)-s+3-a)

i=3

(16)

and YiZ3 H (;—k)p — 1 = d, for a reduction in the computing.

4 %and (x)

Theorem 4.1
For a natural x,

T(x) = Xi-s <(1 (pi)— 1)—s+3—d>. 1
Proof:

From equation 11, we replace R(x) + T (x) for I(x) — 1 and obtain equation 17.
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Then, by reducing the equation, we obtain

(I(Pisk)_l)_sk-l_S:zzi=3<(1(i)—1)—s+3—d>, (18)

where the subscripts represent positions. For example, if we have p, and

H( ad ) — 1, which we must eliminate in relation to p,. Then
DaP3/ 5

x = (1(X)=1) =
H (p4p3)5 —1=(1 (m) 1) =55 +3.
Theorem 4.2 The prime counting function (x) is given by

m(x) = I(x) — <(1 (pi) - 1) — 5+ 3) +1.

sk

(19)

Proof:

From equation 11 and the definition of R(x),

m(x) =1(x) —T(x)+ 1.

Therefore, from theorem 4.1, we obtain theorem 4.2.

Example:
x = 100
caom <[54 - a2
rao0 = ((1(2)-1)-3+2)+ (1(2) 1) 443 -
’ 19 + 24 14 +1
(1RO -D)+ (14 -1 —-1= 3+t —3 -3=9

w(100) =33 —9 + 1 = 25,

Note:

In I(x) — T(x), all the composite numbers are eliminated from a set of numbers,
which is the same as the Eratosthenes algorithm. Thus, when we use T(x), we
obtain the Eratosthenes algorithm. [3]

Conclusion

We have shown a prime number counting function and presented the function
H(x), that has a simple relation with §
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