International Mathematical Forum, Vol. 16, 2021, no. 3, 101 - 106 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2021.912244

Prime Counting Function in Base of $\frac{x}{3}$

Israel Ramirez Nuñez

High School, Universidad del Valle de México (Campus Chihuahua), Mexico

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2021 Hikari Ltd.

Abstract

In this study, we present the function $H(x)_p$ based on $P_k(x,a)$ introduced by Lehmer. $H(x)_p$ denotes the number of numbers that are not divisible by prime numbers < p but are divisible by p. Herein, we show that $H(x)_p$ can be obtained only using $\frac{x}{3}$. We also present our own prime counting function based on $H(x)_p$, that is, $\frac{x}{3}$.

Mathematics Subject Classification: 11A41, 11N05

Keywords: Prime numbers, prime counting function, integer sequences, arithmetic functions

1 Introduction

A prime counting function represents the number of primes below a certain limit. $P_k(x,a)$ denotes the number of products $\leq x$ of k primes, each greater than p_a . Therefore, the difference between $H(x)_p$ and $P_k(x,a)$ is that $P_k(x,a)$ only takes primes greater than p_a while $H(x)_p$ takes primes greater than or equal to p_a , where p_a is required to be in the product [1–2].

 p_s represents the prime in the position s.

For every natural number a, prime number c, and composite number b, we have the following definitions:

Definitions.

$$H(x)_{p} \coloneqq \#[ap_{s} \le x | p < p_{s} \uparrow a] \tag{1}$$

$$R_{s}\left(\frac{x}{p_{s}}\right) \coloneqq \#[cp_{s} \le x | p_{s} \le c]. \tag{2}$$

This indicates that $R_s\left(\frac{x}{p_s}\right) = \pi\left(\frac{x}{p_s}\right) - s + 1$

$$T_p(\frac{x}{p_s}) := \#[bp_s \le x | p < p_s + b]. \tag{3}$$

Form the previous definitions,

$$H(x)_p = R_p\left(\frac{x}{p_s}\right) + T_p\left(\frac{x}{p_s}\right) + 1. \tag{4}$$

Therefore, $H(x)_p$ satisfices

$$1 + \sum_{S=1} H(x)_p = x. (5)$$

In the next chapter, we present I(x), where, for x real,

$$I(x) := \mathbf{1} + \sum_{s=3} H(x)_{p}. \tag{6}$$

2 Obtaining I(x)

Lemma 2.1 From equation 6 and taking 3|x,

$$\frac{x}{3} = I(x). \tag{7}$$

Proof:

For 2|x,

$$H(x)_2 = \frac{x}{2} \tag{8}$$

and

$$H(x)_3 = \frac{x}{3} - \frac{x}{2*3}.$$
 Therefore,

$$H(x)_3 = \frac{x}{6}.$$
 (9)

For 6|x, we obtain,

$$x - H(x)_2 - H(x)_3 = x - \frac{x}{2} - \frac{x}{6} = \frac{x}{3}$$
.

Theorem 2. 1 From lemma 2.1 and x as a positive natural number,

$$I(x) = \begin{cases} \left\| \frac{x+1}{3} \right\| & \text{if } 3 \dagger x \text{ and } 3 | x+1 \\ \left\| \frac{x+2}{3} \right\| & \text{if } 2,3 \dagger x \text{ and } 3 | x+2. \\ \left\| \frac{x}{3} \right\| & \text{otherwise} \end{cases}$$
(10)

Proof:

Consider a natural number c.

Every number $\frac{c}{3}$, where $c \in I^{-1}(x)$ is between $\frac{x}{3}$ and $\frac{x+3}{3}$; therefore, 1 or 2 must be added to c such that the result is the next number divisible by 3. For example, $\frac{c+1}{3} \in I(x)$ or $\frac{c+2}{3} \in I(x)$.

3 Functions involving I(x)

Here, we introduce T(x), which defines the number of composite numbers that are not divisible by 2 and 3 up to x, and R(x), where $R(x) = \pi(x) - 2$ for $3 \le x$. Therefore,

$$R(x) + T(x) + 1 = I(x).$$
 (11)

Lemma 3.1 From equations 2 and 3 and the definition of T(x),

$$T(x) = \sum_{s=3} R_p \left(\frac{x}{p_s}\right) + T_p \left(\frac{x}{p_s}\right). \tag{12}$$

Proof:

$$1 + \left(\sum_{s=1} H(x)_{p}\right) - H(x)_{2} - H(x)_{3} = 1 + \left(\sum_{s=1} R_{p}\left(\frac{x}{p_{s}}\right) + T_{p}\left(\frac{x}{p_{s}}\right) + 1\right) - \left(R_{2}\left(\frac{x}{p_{1}}\right) + T_{2}\left(\frac{x}{p_{1}}\right) + 1\right) - \left(R_{3}\left(\frac{x}{p_{2}}\right) + T_{3}\left(\frac{x}{p_{2}}\right) + 1\right) = 1 + \left(\sum_{s=3} 1\right) + \sum_{s=3} R_{p}\left(\frac{x}{p_{s}}\right) + T_{p}\left(\frac{x}{p_{s}}\right),$$

where

$$\left(\sum_{S=3} 1\right) = R(x)$$

and

$$T(x) = \sum_{s=3} R_s \left(\frac{x}{p_s}\right) + T_p \left(\frac{x}{p_s}\right)$$

Lemma 3.2 Consider equation 2 and the definition of R(x). Then,

$$R\left(\frac{x}{p_c}\right) - R_p\left(\frac{x}{p_c}\right) = s - 3. \tag{13}$$

Proof:

We know that
$$R_p\left(\frac{x}{p_s}\right) = \pi\left(\frac{x}{p_s}\right) - s + 1$$
 and $R\left(\frac{x}{p_s}\right) = \pi\left(\frac{x}{p_s}\right) - 2$
 $R\left(\frac{x}{p_s}\right) - R_p\left(\frac{x}{p_s}\right) = \left(\pi\left(\frac{x}{p_s}\right) - 2\right) - \left(\pi\left(\frac{x}{p_s}\right) - s + 1\right) = s - 3.$

Lemma 3.3 Consider equations 12 and 3. The difference between them is $T\left(\frac{x}{p_s}\right) - T_p\left(\frac{x}{p_s}\right) = \sum_{i=3}^{s-1} H\left(\frac{x}{p_k}\right)_p - 1. \tag{14}$

Proof:

In this case, p_s is constant for every prime p_k , where $3 \le k \le s - 1$.

$$T\left(\frac{x}{p_s}\right) = \sum_{i=3}^{k} R_p\left(\frac{x}{p_k p_s}\right) + T_p\left(\frac{x}{p_k p_s}\right)$$
(15)

Equation 15 shows that, for all the primes p_k , we obtain numbers divisible by primes $\langle p_s \rangle$; therefore, to obtain $T_p\left(\frac{x}{p_s}\right)$, we must eliminate all those numbers, meaning

$$T\left(\frac{x}{p_s}\right) - \sum_{i=3}^{s-1} H\left(\frac{x}{p_k}\right)_p - 1 = T_p\left(\frac{x}{p_s}\right).$$

From lemmas 3.1, 3.2, and 3.3, we obtain

$$T(x) = \sum_{i=3}^{s} \left(R\left(\frac{x}{p_s}\right) + T\left(\frac{x}{p_s}\right) - s + 3 - d \right)$$
 (16)

and $\sum_{i=3}^{s-1} H\left(\frac{x}{p_k}\right)_p - 1 = d$, for a reduction in the computing.

$4 \frac{x}{3}$ and $\pi(x)$

Theorem 4.1

For a natural x,

$$T(x) = \sum_{i=3}^{s} \left(\left(I\left(\frac{x}{p_s}\right) - 1 \right) - s + 3 - d \right). \tag{17}$$

Proof:

From equation 11, we replace R(x) + T(x) for I(x) - 1 and obtain equation 17.

Then, by reducing the equation, we obtain

$$\left(I\left(\frac{x}{p_{sk}}\right) - 1\right) - s_k + 3 \coloneqq \sum_{i=3} \left(\left(I\left(\frac{x}{p_s}\right) - 1\right) - s + 3 - d\right), \tag{18}$$

where the subscripts represent positions. For example, if we have p_4 and $H\left(\frac{x}{p_4p_3}\right)_5 - 1$, which we must eliminate in relation to p_4 . Then

$$H\left(\frac{x}{p_4p_3}\right)_5 - 1 \coloneqq \left(I\left(\frac{x}{p_{43}}\right) - 1\right) - s_3 + 3.$$

Theorem 4.2 The prime counting function $\pi(x)$ is given by

$$\pi(\mathbf{x}) = \mathbf{I}(\mathbf{x}) - \left(\left(I\left(\frac{\mathbf{x}}{p_{sk}}\right) - 1 \right) - s_k + 3 \right) + 1.$$
 (19)

Proof:

From equation 11 and the definition of R(x),

$$\pi(x) = I(x) - T(x) + 1.$$

Therefore, from theorem 4.1, we obtain theorem 4.2.

Example:

$$I(100) = \left\| \frac{99 + 1}{3} \right\| = \frac{99}{3} = 33$$

$$T(100) = \left(\left(I\left(\frac{x}{p_3}\right) - 1 \right) - 3 + 3 \right) + \left(I\left(\frac{x}{p_4}\right) - 1 \right) - 4 + 3 = \left((I(20) - 1) \right) + (I(14) - 1) - 1 = \frac{19 + 2}{3} + \frac{14 + 1}{3} - 3 = 9$$

$$\pi(100) = 33 - 9 + 1 = 25.$$

Note:

In I(x) - T(x), all the composite numbers are eliminated from a set of numbers, which is the same as the Eratosthenes algorithm. Thus, when we use T(x), we obtain the Eratosthenes algorithm. [3]

Conclusion

We have shown a prime number counting function and presented the function $H(x)_p$ that has a simple relation with $\frac{x}{3}$.

References

- [1] Lehmer, D. H.: On the exact number of primes less than a given limit, Illinois J. Math., **3** (3) (1959), 381-388. https://doi.org/10.1215/ijm/1255455259 https://projecteuclid.org/euclid.ijm/1255455259
- [2] Weisstein, Eric W., Prime Counting Function, from: MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/PrimeCountingFunction.html
- [3] Khairina, N.: The Comparison of Methods for Generating Prime Numbers between The Sieve of Eratosthenes, Atkins, and Sundaram, *SinkrOn*, 3 (2) (2019), 293. https://doi.org/10.33395/sinkron.v3i2.10129

Received: March 17, 2021; Published: April 8, 2021