International Mathematical Forum, Vol. 16, 2021, no. 1, 19 - 22 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2021.912166

Circulant Hadamard Matrices and Hermitian Circulant Complex Hadamard Matrices

Norichika Matsuki

Japan Tissue Engineering Co., Ltd. 6-209-1 Miyakitadori, Gamagori, Aichi 443-0022, Japan

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2021 Hikari Ltd.

Abstract

We prove that there exists a circulant Hadamard matrix of order n if and only if there exists a Hermitian circulant complex Hadamard matrix of order n and that there does not exist a Butson-type Hermitian circulant complex Hadamard matrix of order n > 4.

Mathematics Subject Classification: 05B20, 15B34, 15B57

Keywords: Circulant Hadamard matrix, Hermitian circulant complex Hadamard matrix, Butson-type Hadamard matrix

1 Introduction

A Hadamard matrix H_n of order n is an $n \times n$ matrix with entries ± 1 such that $H_nH_n^T=nI_n$, where H_n^T is the transpose of H_n and I_n is the identity matrix of order n. A complex Hadamard matrix K_n of order n is an $n \times n$ matrix whose entries are on the complex unit circle and which satisfies $K_nK_n^*=nI_n$, where K_n^* is the conjugate transpose of K_n . In particular, a complex Hadamard matrix whose entries are q-th roots of unity is called a q-Butson Hadamard matrix.

In [5] Ryser conjectured that there is no circulant Hadamard matrix of order n > 4. Turyn [6] proved that, if there exists a circulant Hadamard matrix of order n, then n must be the form $n = 4m^2$ for some odd integer m. Brualdi [1] proved that there is no symmetric circulant Hadamard matrix

20 Norichika Matsuki

of order n > 4. Craigen and Kharaghani [2] generalized Brualdi's theorem to Hermitian circulant 4-Butson Hadamard matrices.

In this paper we prove that there exists a circulant Hadamard matrix of order n if and only if there exists a Hermitian circulant complex Hadamard matrix of order n and generalize Craigen and Kharaghani's theorem to Hermitian circulant q-Butson Hadamard matrices for $q \geq 2$.

2 Equivalency

Denote by $\operatorname{circ}(a_0,\ldots,a_{n-1})$ the circulant matrix whose first row is $(a_0\ldots a_{n-1})$, by $\operatorname{diag}(d_0,\ldots,d_{n-1})$ the diagonal matrix whose i+1-th diagonal element is d_i , and by F_n the $n\times n$ Fourier matrix whose (i+1,j+1)-th entry is ω_n^{ij} , where $\omega_n=e^{2\pi\sqrt{-1}/n}$. Note that $\operatorname{circ}(a_0,a_1,\ldots,a_{n-1})^T=\operatorname{circ}(a_0,a_{n-1},\ldots,a_1)$. It is well-known (e.g. [3]) that a circulant matrix $C_n=\operatorname{circ}(a_0,\ldots,a_{n-1})$ can be expressed as

$$C_n = F_n \operatorname{diag}(d_0, \dots, d_{n-1}) F_n^{-1}$$

$$= \frac{1}{n} \operatorname{circ} \left(\sum_{k=0}^{n-1} d_k \omega_n^{-0k}, \sum_{k=0}^{n-1} d_k \omega_n^{-1k}, \dots, \sum_{k=0}^{n-1} d_k \omega_n^{-(n-1)k} \right),$$

where $d_i = \sum_{k=0}^{n-1} a_k \omega_n^{ik}$ for $0 \le i \le n-1$. We shall require the following lemma.

Lemma 2.1 ([4, Lemma 2.2]). A circulant matrix C_n is a real orthogonal matrix if and only if d_0, \ldots, d_{n-1} satisfy the following conditions:

1.
$$d_0^2 = 1$$
 and $d_i d_{n-i} = 1$ for $1 \le i \le n-1$.

2.
$$d_i = \overline{d_{n-i}}$$
 for $1 \le i \le n-1$.

There exist the following relationships between circulant Hadamard matrices and Hermitian circulant complex Hadamard matrices.

Lemma 2.2. Let H_n be a circulant Hadamard matrix of order n and let $n^{-1/2}H_n = F_n \operatorname{diag}(d_0, \ldots, d_{n-1})F_n^{-1}$. Then $\operatorname{circ}(d_0, d_{n-1}, \ldots, d_1)$ is a Hermitian circulant complex Hadamard matrix.

Proof. By Lemma 2.1, it holds that $d_i\overline{d_i}=1$ for $0 \le i \le n-1$ and $d_i=\overline{d_{n-i}}$ for $1 \le i \le n-1$. Write $K_n=\mathrm{circ}(d_0,d_{n-1},\ldots,d_1)$ and $f(x)=d_0+d_{n-1}x+\cdots+d_1x^{n-1}$. Then we have $K_n^*=\mathrm{circ}(\overline{d_0},\overline{d_1}\ldots,\overline{d_{n-1}})=K_n$. Since the entries of $n^{-1/2}H_n$ are $\pm n^{-1/2}$, namely,

$$\frac{1}{n} \sum_{k=0}^{n-1} d_k \omega_n^{-ik} = \frac{f(\omega_n^i)}{n} = \pm \frac{1}{n^{1/2}}$$

for $0 \le i \le n-1$, we have

$$F_n^{-1}K_nK_n^*F_n = F_n^{-1}K_nK_nF_n = F_n^{-1}\operatorname{circ}(d_0, d_{n-1}, \dots, d_1)^2F_n$$

= diag $(f(\omega_n^0), \dots, f(\omega_n^{n-1}))^2 = nI_n$.

Thus K_n is a Hermitian circulant complex Hadamard matrix.

Lemma 2.3. Let K_n be a Hermitian circulant complex Hadamard matrix of order n and let $n^{-1/2}K_n = F_n \operatorname{diag}(d_0, \ldots, d_{n-1})F_n^{-1}$. Then $\operatorname{circ}(d_0, d_{n-1}, \ldots, d_1)$ is a circulant Hadamard matrix.

Proof. Since

$$F_n^{-1}K_nK_n^*F_n = F_n^{-1}K_nK_nF_n = n \operatorname{diag}(d_0, \dots, d_{n-1})^2 = nI_n,$$

it holds that $d_i^2 = 1$ for $0 \le i \le n-1$. Write $H_n = \text{circ}(d_0, d_{n-1}, \dots, d_1)$, $g(x) = d_0 + d_{n-1}x + \dots + d_1x^{n-1}$, and $h(x) = d_0 + d_1x + \dots + d_{n-1}x^{n-1}$. Since the absolute values of entries of $n^{-1/2}K_n$ are $n^{-1/2}$, namely,

$$\frac{1}{n^2} \left(\sum_{k=0}^{n-1} d_k \omega_n^{-ik} \right) \overline{\left(\sum_{k=0}^{n-1} d_k \omega_n^{-ik} \right)} = \frac{g(\omega_n^i) \overline{g(\omega_n^i)}}{n^2} = \frac{g(\omega_n^i) h(\omega_n^i)}{n^2} = \frac{1}{n}$$

for $0 \le i \le n-1$, we have

$$F_n^{-1}H_nH_n^TF_n = \operatorname{diag}\left(g(\omega_n^0), \dots, g(\omega_n^{n-1})\right)\operatorname{diag}\left(h(\omega_n^0), \dots, h(\omega_n^{n-1})\right)$$
$$= nI_n.$$

Thus H_n is a circulant Hadamard matrix.

From Lemmas 2.2 and 2.3, we obtain immediately the following theorem.

Theorem 2.4. There exists a circulant Hadamard matrix of order n if and only if there exists a Hermitian circulant complex Hadamard matrix of order n.

3 Hermitian circulant q-Butson Hadamard matrices

Craigen and Kharaghani [2, Lemma 4] proved the following result.

Lemma 3.1 (Craigen-Kharaghani). Let H_n be a circulant Hadamard matrix of order n satisfying $H_n^m = n^{m/2}I_n$ for some m > 0. Then $n \le 4$.

Using this result, we prove nonexistence of Hermitian circulant q-Butson Hadamard matrices.

22 Norichika Matsuki

Theorem 3.2. Let $q \ge 2$ and n > 4. Then there is no Hermitian circulant q-Butson Hadamard matrix of order n.

Proof. Suppose that K_n is a Hermitian circulant q-Butson Hadamard matrix matrix of order n > 4. Let $n^{-1/2}K_n = F_n \operatorname{diag}(d_0, \ldots, d_{n-1})F_n^{-1}$. By Lemma 2.3, $H_n = \operatorname{circ}(d_0, d_{n-1}, \ldots, d_1)$ is a circulant Hadamard matrix. Since the entries of K_n are q-th roots of unity, namely,

$$\frac{1}{n^{q/2}} \left(\sum_{k=0}^{n-1} d_k \omega_n^{-ik} \right)^q = 1$$

for $0 \le i \le n-1$, we have

$$F_n^{-1}H_n^q F_n = \text{diag}(g(\omega_n^0), \dots, g(\omega_n^{n-1}))^q = n^{q/2}I_n.$$

However, this contradicts Lemma 3.1.

References

- [1] R.A. Brualdi, A note on multipliers of difference sets, J. Res. Nat. Bur. Standards Sect.B Math. and Math. Phys., 69 (1965), 87 89. https://doi.org/10.6028/jres.069b.008
- [2] R. Craigen and H. Kharaghani, On the nonexistence of Hermitian circulant complex Hadamard matrices, *Australas. J. Combin.*, **7** (1993), 225 227.
- [3] P.J. Davis, Circulant matrices, Chelsea, New York, 1994.
- [4] N. Matsuki, A note on symmetric orthogonal circulant matrices, Int. Math. Forum, 14 (2019), 263 266.
 https://doi.org/10.12988/imf.2019.91141
- [5] H.R. Ryser, Combinatorial mathematics, Wiley, New York, 1963. https://doi.org/10.5948/upo9781614440147
- [6] R. Turyn, Character sums and difference sets, Pacific J. Math., 15 (1965),
 319 346. https://doi.org/10.2140/pjm.1965.15.319

Received: January 2, 2021; Published: January 15, 2021