International Mathematical Forum, Vol. 16, 2021, no. 3, 137 - 146
HIKARI Ltd, www.m-hikari.com
https://doi.org/10.12988/imf.2021.912250

Mathematical Magnitudes

Hristo Manev

University of Architecture, Civil Engineering and Geodesy
bul. Hristo Smirnenski No. 1, Sofia 1164, Bulgaria

This article is distributed under the Creative Commons by-nc-nd Attribution License.
Copyright © 2021 Hikari Ltd.

Abstract

It is shown how the strictly determined countable infinite cardinality
aleph-null ®o of the countable infinite set of the natural numbers N is used as unit
of measurement for determined the cardinality of the different countable infinite
sets. This enable to be proved that the cardinality xq of the set of the rational
numbers Q is bigger than the cardinality &o of the set of the natural numbers N.
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1. Introduction

There are three basic kinds number sets: a) the enumerable finite subsets of
the countable infinite set of the natural numbers N; b) the countable infinite set of
the natural numbers N and its countable infinite proper subsets, as well as the
countable infinite set of the rational numbers Q and its countable infinite proper
subsets; c¢) the one-dimensional uncountable infinite set of the real numbers R and
its uncountable infinite proper subsets, as well as the next two-dimensional, three-
dimensional and in general with a finite number of dimensions uncountable
infinite sets and their respective uncountable infinite proper subsets. Similar to the
physical magnitudes the number sets are mathematical magnitudes, which have
size or theirs measure, called cardinality. Bernard Bolzano measured the
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cardinality of the uncountable infinite sets — see “Paradoxes of the Infinite” [1].
However and up to now there are not well established preliminary chosen units of
measurements for determining the cardinality of the three basic kinds
mathematical magnitudes.

2. Units of measurements

A set may be defined as a mentally created unity which contains well
determined and distinct one from other things, called elements of the set. Main
property of such standardly defined set is the containing of well determined and
distinct one from other elements, which belong to the set according to a chosen by
thinker their property. Since every kind of infinity represents a concrete
determinateness which is idealized as unlimited, and the set N is based on all of
the kinds of the simplest idealized quantitative regularities, therefore the
properties of the standardly defined sets and the properties of their elements are
revealed most easily when the elements of the set are countal (cardinal) natural
numbers, such are the elements of the set N. (The set of ordinal natural numbers
Ne is other kind number set.) Utmost general characteristic of countal number set
X is the quantity of elements belonging to it, called cardinality of the set and
marked with |X|. The set X is countable and infinite when at its juxtaposition with
the countable infinite set N each element from the quantity of elements of the set
X can be paired with exactly one element from the determined by a regularity
infinite quantity of elements of the set N. The set X is enumerable and finite when
at pairing of its quantity of elements through the countal unit 1 with the
determined by a regularity infinite quantity of elements of the set N, the quantity
of elements of the set X is exhausted up to a finite countal number n from the
infinite quantity of elements of the set N. We will call the cardinality of such
enumerable finite set enumerable finite cardinality n.

For creating of enumerable finite number sets it is not necessary to be used
regular connection among the elements of this kind of sets. At juxtaposition
between two such a sets with equal cardinalities, the harmonious combination of
their elements, called bijection, can equivalently be realised unambigasly and
reversibly one-to-one (1-1) by the every possible different ways in the case
(usually many more than two).

Whereas the creating of countable infinite number set is impossible
without the using of strictly determined regular connection among its elements,
which regular connection is idealized as unlimited. Therefore, at the juxtaposition
between two countable infinite sets the harmonious combination of their elements
can be realized only through two essentially different ways: a) by an incompatible
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with their regularities unambiguous and reversible (incongruous mutually
countable) correspondence between their elements — see Fig. 5, and b) by a
conforming with their regularities unambiguous and reversible (congruous
mutually countable) correspondence between their elements — see Fig. 1, Fig. 2
and Fig. 3.

On the one hand the infinite set N of the natural numbers is in incongruous
mutually countable correspondence with every one of its infinite proper subsets,
as they also are among each other on account of their infinity. That’s why the
incongruous mutually countable correspondence between their elements cannot be
a criterion for the quantity of their elements. On the other hand their quantities of
elements most often are essentially different due to the differences among the
kinds of regularities, which determine the different kinds of countable infinite
sets. For example, without doubt the infinite quantity of the even numbers
represents exactly half from the entire infinite quantity of the elements xo of the
set N, whereas the other half of its infinite quantity of elements is exactly
represented by the infinite quantity of its odd numbers. Note that at the so done
estimating for the relation between the cardinalities of these countable infinite
sets, one uses not the countal unit 1 for enumerable finite cardinality n, which unit
of measurement is inapplicable in the case, but the countable infinite cardinality Xo
as a unit of measurement for cardinality of countable infinite set. Therefore, at the
juxtaposition between two such sets the relation between their countable infinite
cardinalities must be determined not by the indistinguishing them incongruous
mutually countable correspondence between their elements, but by the
distinguishing them congruous mutually countable correspondence. Because of
only uniform quantities may be reasonably compared and their uniformity at this
juncture is determined from the sameness of the kind of regularity. In the general
case, the greater of the two sets does not take part in the correspondence with all
of its elements.

When the cardinalities of two countable infinite number sets are essentially
different, as for example the cardinality Xo of the set N and the cardinality as of the
set of the even numbers, then the harmonious combination between their elements
in the case can be done congruously in three different ways, as described below:

a) Injection first at as < ®o — see Fig. 1. When the determined by the
regularity evenness smaller infinite quantity of elements of the set of the even
numbers are put in congruous mutually countable one-to-one (1-1)
correspondence with the determined by the same regularity infinite quantity of
elements of the proper subset of the even numbers of the set N, at which in the
case, the odd numbers from the set with bigger quantity of elements remain with-
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out correspondence to the elements of the set with the smaller quantity of
elements.

Fig. 1. Hlustration of the congruous mutually countable injection first.

b) Injection second at as < %o — see Fig. 2. When the determined by the
regularity evenness smaller infinite quantity of elements of the set of the even
numbers are put in congruous mutually countable one-to-one (1-1)
correspondence with the determined by the analogical regularity infinite quantity
of elements of the proper subset of the odd numbers of the set N, at which in the
case, the even numbers from the set with bigger quantity of elements remain
without correspondence to the elements of the set with the smaller quantity of
elements.

Fig. 2. lllustration of the congruous mutually countable injection second.

c) Surjection at Xo > as — see Fig. 3. When more than one elements of the
set with the bigger quantity of elements are put in a congruous, in this case two-
to-one (2-1) (responding to the kind of regularities mutually countable)
correspondence with every one of the elements of the set with the smaller quantity
of elements, at which circumstance there are no remaining without
correspondence elements of the set with the bigger quantity of them.



Mathematical magnitudes 141

0122343506 78

VYV

Fig. 3. Hlustration of congruous mutually countable surjection.

When the cardinalities of the two countable infinite number sets are the
same, as in the case of the cardinality as, of the set of the even numbers and the
cardinality as, of the set of the odd numbers, then the harmonious combination
between their elements can be done only in one way, to call it analogically:

d) Bijection at as, = as, — see Fig. 4. When the infinite quantities of
elements of the two sets are put in congruous mutually countable one-to-one (1-1)
correspondence without remainder and without surjection, with which the
equivalence of the cardinalities of two countable infinite sets is proved, similar to
the bijection at the proving the equivalence of the cardinalities of two enumerable
finite sets.

Fig. 4. lllustration of bijection at countable infinite sets.

For a more exact finding of the relation between the cardinality %o of the
set N and the cardinality of any of its infinite proper subsets, as well as the
relation between the cardinalities of any two of its infinite proper subsets, we
should use the foreseen by Bolzano relation between the respective sums of all of
the terms, which are in the scope of a determined distance from the beginning of
the sequence of the natural numbers. For example, the relation between the
cardinality %o of the set N and the cardinality of the set of squares of natural
numbers is found correctly and more and more exactly by the relations of the
successively determined respective sums: 1t01;1+2+3+4=10to5=1+4;1
+2+3+4+5+6+7+8+9=45t014=1+4+9; and so on. In the case these
sums are determined for the distances of which are located several consecutive
initial terms of the sequence of the squares of the natural numbers. Thus on the



142 Hristo Manev

one hand we obtain the sum, presented only by the terms of the sequence of the
squares of the natural numbers for a determined distance from the beginning of
the sequence of the natural numbers. Whereas on the other hand to the same sum
is added the sum, presented by the natural numbers, which are not exact squares
of such numbers for the same distance. The infinite set of the numbers, which are
not exact squares, increases in progressing arithmetic progression, which after the
first step (22 = 4), consists of the numbers 2 and 3, and with every next step of the
sequence of the squares of the natural numbers, the number of the added such
numbers is increased by two, while the numbers in themselves become bigger and
bigger.

Bolzano’s mentioned work shows that the relation between the
cardinalities of the proper subsets of the uncountable infinite one-dimensional,
two-dimensional and three-dimensional number sets is determined by the relation
between the sizes of lengths, areas, and volumes, which they cover respectively
over, on or in the proportionate to them extent: line, surface or three-dimensional
space. At that each of them is comparable according to cardinality only with a
cardinality of a set with dimension as is its. Therefore, the Archimedean property
for comparability between the sizes of two such mathematical magnitudes, as are
the sets, is valid only at availability of uniform unit of measurement for the
guantities of elements and of the two magnitudes. In conjunction with this we
must distinguish the unambiguous and reversible correspondence between the
sizes of the different uncountable infinite sets, such as are: the set of points in the
interval from O to 1 and the set of points over an infinite number line or the set of
points in some other finite interval of it; the set of points over an infinite number
line and the set of points on an infinite surface; the set of points on an infinite
surface and the set of points in an infinite three-dimensional space; and as well as
at the remaining cases for every space with more finite dimensions.

From the considered examples with countable infinite number sets it
follows that their initial comparing according to cardinality is based on the kind of
regularity, which determines them in relation to the chosen for unit of
measurement countable infinite cardinality Xo. The countable infinite cardinality
Xo IS incomparable with an enumerable finite cardinality n of any enumerable
finite set, similar of the incomparable with a finite sum 1 + 1 + 1 + ... < ®
hyperreal numbers in contemporary non-standard analysis. Generally because the
essential difference among the properties of the enumerable finite sets, of the
countable infinite sets and of the uncountable infinite sets, their cardinalities are
measured respectively by incomparable with each other units of measurements,
namely: with the countal unit 1, with the countable infinite cardinality Xo, and,
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with the uncountable infinite cardinality of the chosen for unit of measurement
with a respective dimention spatial extent.

0 1 2 3 4
0 2 4 6 8B
Fig. 5. lllustration of incongruous mutually countable correspondence.
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Fig. 6. Hllustration of incorrectly understood bijection.

Of Fig. 5 is shown the incongruous mutually countable correspondence
between the elements of the whole set of the natural numbers N with the elements
of its proper subset of the even numbers. Of Fig. 6 the same correspondence is
illustrated as a unilateral pairing of the elements of the whole set N with the
elements of its proper subset E. The presented of Fig. 6 incongruous mutually
countable correspondence between the elements of the sets N and E is now given
as an example for bijection, that is, as a criterion for equivalence between infinite
quantities of their elements. However the definition for proper subset states that
all elements of the proper subset X should belong to the whole set Y and the
proper subset X should be different from the whole set Y, i.e.
(XcY)< (WX(xe X > xeY)A(X #Y). From this it follows, that the proper
subset X must have smaller quantity of elements than the quantity of elements of
the whole set Y. In this instance the subset E of the even numbers should have a
smaller quantity of elements than the whole quantity of elements of the set N. In
this way one reaches to the obvious contradiction (x A—x) that the sets N and E

now have an equal quantity of elements, now that one of them has smaller
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quantity of elements than the other. That is why it is incorrectly to accept for
bijection the depicted of Fig. 6 incongruous mutually countable correspondence
between the elements of the sets N and E. Besides, above already is shown a
definition for bijection at the countable infinite sets which is similar to the
definition for bijection at the enumerable finite sets. Because of the indicated
existing hitherto absurdity it is incorrectly considered, that each one of the
countable infinite proper subsets of the set N has the same cardinality as N. From
here also follows the incorrect definition: one set is infinite if it has a proper
subset with the same cardinality, instead of the correct definition: if it is in
incongruous mutually countable correspondence with a proper subset.

Paradoxically in the case is how it is possible up to now to be neglected
the congruous mutually countable correspondence at determining the cardinality
of the countable infinite sets, even after strictly determining of the countable
infinite cardinality &o of the set of the countable infinite natural numbers N. For
the set N consists of an infinite many countable infinite proper subsets, which
because of the determining them different kinds of regularities may contain as
many as we want of more and more smaller part of the countable infinite
cardinality ®o of the set N. An example for such countable infinite proper subsets
of the set N are the subsets being presented by the sequences with gradually
decreasing countable infinite cardinality:

a) 1,2,3,...,n, ... No

a2)2,4,6,...,2n, ... No/2
a)3,6,9,...,3n,... Ro/3
ax) k, k2, k3, ..., kn, Ro/k

where K is a natural number bigger than unit.

With using of &g as a unit of measurement for countable infinite cardinality
of the countable infinite sets, now we can without a problem determine as the
faster decreasing countable infinite cardinality of the sets, being presented by the
sequences with equal powers of the natural numbers, at the infinite succession of
their increasing powers:

a) 12,2232 ... n% ..

b) 13,23, 33, ...,n%, ...

c) 14,24, 3% ... 0n% ...

so and the more faster decreasing countable infinite cardinality of the sets, being
presented by the sequences with increasing powers of the prime numbers, at the
infinite succession of these numbers:
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d)2t, 22,28 ... 2" .
e) 3%, 32 33 .., 3" ...
f) 5L, 52,55, ..., 5", ...

Contemporary factual logic indisputably establishes that at every finding
of size xu of determined quantity y = xu of physical magnitude Y, where X is
measure number, and u is a preliminary chosen for unit of measurement other
determined quantity of the same magnitude Y, the determinateness of the measure
number x always is limited. In physics this limitedness is expressed by the finite
number m of its reliably determined digits, which begin with its first most reliably
determined different from zero digit and end with its last reliably-enough
determined digit, called the significant digits of the measure number. Idealizing as
unlimited the processes with numbers increases the quantity of their determinable
digits. The process of division, for example, finishes in some cases without
remainder after a finite number of steps, at which the obtained number is
presented with a finite quantity of determinable digits. In other cases, however,
this process cannot be finished due to obtaining a remainder which is periodically
reiterating. Therefore the obtained number is presented with its unlimited
prolongation of infinite quantity of predictably distributed determinable digits of
this remainder. We can call completed the first kind rational numbers as distinct
from the second kind of uncompleted rational numbers. At many other kinds of
processing with numbers, as for example at some root extractions, are obtained
the so-called irrational numbers with infinite quantity of unpredictably distributed
determinable digits. The first big shock in formal logic happens at the discovery
of the incommensurability of the diagonal of the ideal square with its side, which
is an example of an irrational number.

The infinite set Q of the rational numbers is presented in a positional
numeral system by two qualitatively different infinite proper subsets: a) by a
proper subset gc of the completed numbers, which is countable and with finite
quantity of predictably distributed digits of this numbers due to the regularity of
successive alternation of a finite quantity of distinct one from other digit marks
when adding a unit to every such preceding number, as is and at the countable
infinite set N, and b) by a proper subset qu of the uncompleted numbers, which is
countable and with infinite quantity of predictably distributed digits of these
numbers, which are formed of the eventualy unperiodically reiterating digits of
these numbers unlimited prolongated with their periodically reiterating
remainders. Therefore the infinite set Q of the rational numbers as a whole is also
countable. However between the infinite quantity of elements of the set N and the
infinite quantity of elements of the proper subset gc of the completed rational
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numbers of the set Q there is a determined by the same regularity congruous
mutually countable one-to-one (1-1) correspondence, whereas the elements of the
proper subset qu of the uncompleted rational numbers of the set Q remain without
such a correspondence with the elements of the set N. Therefore the infinite
cardinality &q of the set Q, as a sum of the infinite cardinalities of the two kinds of
its countable infinite proper subsets, is bigger than the infinite cardinality &o of the
set N. The very proper subset qu of the uncompleted numbers of the set Q is an
infinite set composed by the all sorts of terms of the infinite set of its proper
subset qc of completed numbers, every one of which is consecutively reproduced
with the unlimited prolongations of all sorts of the periodically reiterating
remainders. With this in mind the set Q represents a countable infinite set with the
possibly greatest countable infinite cardinality &q. Cantor incorrectly accepts the
incongruous mutual countability as a criterion for the same cardinality at the
countable infinite sets and presents uniformly the two kinds subsets of the rational
numbers through the relation %, in contrast to their evident presentation as

different kinds in a positional numeral system. Thus, by the proved by him
incongruous mutual countability of the set Q of the rational numbers with the set
N of the natural numbers, is concealed the bigger countable infinite cardinality Rq
of the set Q than the countable infinite cardinality xo of the set N.

3. Inference

The finding of Xo as natural unit of measure for cardinality of the countable
infinite countal sets open the way for unambiguous solving of the continuum
hypothesis, shown in the paper “The logical paradoxes” [2].
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