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Abstract

According to current research, both stochastic differential equations
(SDEs) and uncertain differential equations (UDEs) are adopted on
modeling asset prices in financial markets. When applying SDEs we
often rely on theories such as Itô calculus, martingale theory, etc. But
for UDEs we usually need to start from the α-paths. Despite the ob-
vious differences, is there a connection between the two methods? We
compared the SDEs with UDEs of similar forms, thereby a connection
is found: when α takes 0.5, under certain conditions the value of this
special α-path of a UDE equals to the expectation of the correspond-
ing SDE’s solution at any moment. This connection gives us a deeper
understanding of non-deterministic processes described by UDEs and
the Yao-Chen formula helps us explain that the expectation of a SDE’s
solution is exactly the “prospect” that people expect for the process.
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1 Introduction

Currently there exist at least two ways to describe non-deterministic processes:
one is to use stochastic differential equations (SDEs) and the other is to use
uncertain differential equations (UDEs). They are all applied to financial
modeling. The stochastic finance theory has a longer history, Bachelier [1]
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pioneered the quantitative work in this area. The research results of Black
and Scholes [2], Merton [3] are widely accepted.,

In 2008, Liu [4] proposed the UDE based on uncertainty theory. In un-
certain finance theory, the basic assumption is that the stock price follows a
geometric Liu process. Based on this, European option [5], American option [6]
and Asian option [7, 8] pricing formulas are derived. Furthermore, there are
other UDE models applied to finance, such as mean-reverting model [9] and
exponential Ornstein-Uhlenbeck model [10, 11, 12].

But it is worth noting that there is a problem with UDEs: over time, it may
not be able to calculate the expected values of their solutions. For instance [13],
the expected value of the geometric Liu process dYt = eYtdt+ σYtdCt is:

E[Yt] =
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Once t increases beyond a certain value determined by the parameters, the
expected value tends to infinity. Or if it is required to calculate the expected
value within a certain period of time, then the volatility needs to meet certain
conditions. However, as a comparison, the expectation of geometric Wiener
process can be calculated in any finite time. This problem cannot be ignored
when applying UDEs. For a fixed strike price K, the above problem will
cause us not always being able to calculate European options’ price which
is Pcall = e−rtE[(Yt − K)+]. For other UDEs, there is no guarantee that
this phenomenon will not occur. The root cause is that the variance of Liu
process increases extremely fast with time. So we turn to focus on the α-paths
of UDEs, then found a connection between the 0.5-path of a UDE and the
expectation of the corresponding SDE. Through this relationship, we have a
deeper understanding to the shape of the UDE’s solution: it is more suitable
for describing peoples subjective expectations rather than objective changes in
the processes.

The content of this paper is arranged as follows: Some basic theorems
are introduced in section 2; Linear SDEs and similarly structured UDEs are
compared in section 3; The connection is examined in a more general situation
in section 4; Section 5 is the conclusion.

2 Preliminary

In this paper, we focus on Itô SDEs of the form:

dXt = f(t,Xt)dt+ g(t,Xt)dWt, X0 = x0, (1)
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and UDEs of the form:

dYt = f(t, Yt)dt+ g(t, Yt)dCt, Y0 = y0, (2)

where f, g : [0,+∞)×R→ R are Borel-measurable functions, Wt is a Wiener
process and Ct is a Liu process. Set X0 = Y0 = c, c ∈ R.

Suppose that the functions f , g satisfy the Lipschitz and linear growth
conditions:

|f(t, x)− f(t, y)|+ |g(t, x)− g(t, y)| ≤ K|x− y|,∀x, y ∈ R, t ≥ 0, (3)

|f(t, x)|+ |g(t, x)| ≤ K(1 + |x|),∀x ∈ R, t ≥ 0, (4)

whereK is a positive constant. Then there exists a continuous, adapted process
Xt which is the unique strong solution of (1).

Theorem 2.1 (Chen and Liu [14]) The UDE (2) has a unique solution if
the coefficients f(t, x) and g(t, x) satisfy the Lipschitz condition (3) and linear
growth condition (4).

Definition 2.2 (Yao and Chen [15]) Let α be a number with 0 < α < 1.
UDE (2) is said to have an α-path Xα

t if it solves the corresponding ordinary
differential equation (ODE):

dXα
t = f(t,Xα

t )dt+ |g(t,Xα
t )|Φ−1(α)dt, (5)

where Φ−1(α) is the inverse standard normal uncertainty distribution, i.e.,

Φ−1(α) =

√
3

π
ln

α

1− α
.

Theorem 2.3 (Yao-Chen Formula [15]) Let Xt and Xα
t be the solution and

α-path of (2) respectively. Then

M{Xt ≤ Xα
t ,∀t} = α, M{Xt > Xα

t , ∀t} = 1− α.

3 Linear differential equation

Let the functions f , g in (1) or (2) satisfy conditions (3) and (4). Then it is
ensured that each of (1) and (2) has its own unique solution.

Consider a linear stochastic differential equation (LSDE) of the form:

dXt = [A(t)Xt + a(t)]dt+ [S(t)Xt + σ(t)]dWt, (6)
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where X0 = x0, and A(t), a(t), S(t), σ(t) are Borel-measurable functions
bounded on every finite interval [0,T] without indeterminacy. The coefficients
satisfy (3) and (4), thus the equation (6) has an unique solution Xt.

The expectation of the solution E[Xt] can be found without solving the
LSDE itself, only by using the properties of stochastic integrals:∫ t

0

[S(u)Xu + σ(u)]dWu

is a martingale, so we have

E

[∫ t

0

[S(u)Xu + σ(u)]dWu

]
= 0.

Take the expectations of both sides of the integral form of equation (6):

Xt = x0 +

∫ t

0

[A(u)Xu + a(u)]du+

∫ t

0

[S(u)Xu + σ(u)]dWu.

Then

E[Xt] = x0 + E

[∫ t

0

[A(u)Xu + a(u)]du

]
= x0 +

∫ t

0

[A(u)E[Xu] + a(u)]du.

By differentiating we get the ODE:

dE[Xt]

dt
= A(t)E[Xt] + a(t), E[X0] = X0 = c. (7)

And the solution of (7) is:

E[Xt] = exp

[∫ t

0

A(u)du

]{
c+

∫ t

0

a(u) exp

[
−
∫ u

0

A(s)ds

]
du

}
, t ≥ 0. (8)

Similarly, consider UDEs of the form:

dYt = [A(t)Yt + a(t)]dt+ [S(t)Yt + σ(t)]dCt, (9)

as counterparts of LSDEs, where Y0 = c. An α-path Y α
t of (9) solves the

following ODE by (5):

dY α
t = [A(t)Y α

t + a(t)]dt+ |S(t)Yt + σ(t)|Φ−1(α)dt. (10)

Let α = 0.5, then Φ−1(α) = 0, so this 0.5-path of Yt solves:

dY α=0.5
t = [A(t)Y α=0.5

t + a(t)]dt. (11)
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Remeber that Y α=0.5
0 = Y0 = c, we have

Y α=0.5
t = exp

[∫ t

0

A(u)du

]{
c+

∫ t

0

a(u) exp

[∫ u

0

−A(s)ds

]
du

}
, t ≥ 0.

(12)
For Y α=0.5

t , according to the Yao-Chen formula, we also know that it has the
following property:

M{Yt ≤ Y α=0.5
t ,∀t} =M{Yt > Y α=0.5

t ,∀t} = 0.5.

From the perspective of belief degree, someone would believe Yt ≤ Y α=0.5
t and

Yt > Y α=0.5
t to the same degree if he use (9) to describe Yt. We would like to

call Y α=0.5
t “the prospect” of Yt, and write it as Y P

t to avoid confusion.

Theorem 3.1 If an LSDE (6) and an UDE (9) satisfy conditions (3), (4)
and X0 = Y0 = c, c ∈ R, then

E[Xt] = Y P
t , t ≥ 0.

Proof. It comes from (8) and (12) directly.

Example 3.2 Consider geometric Wiener process dXt = µXtdt+ σXtdWt

and geometric Liu process dYt = µYtdt + σYtdCt, X0 = Y0 = c, c ∈ R. We
have

E[Xt] = Y P
t = ceµt, t ≥ 0.

Example 3.3 Consider the LSDE dXt = (m− αXt)dt + σXtdWt and the
UDE dYt = (m− αYt)dt+ σYtdCt, X0 = Y0 = c, c ∈ R. We have

E[Xt] = Y P
t =

m

α
+ e−αt(c− m

α
), t ≥ 0.

For more details of these two models, see Peng and Yao [9], Black and Karasin-
ski [16].

4 Generalization

Now we try to generalize Theorem 3.1 to a more general situation.

Theorem 4.1 If a SDE (1) and a UDE (2) satisfy conditions (3), (4),
E[f(t,Xt)] = f(t, E[Xt]) under probability measure, and X0 = Y0 = c, c ∈ R,
then

E[Xt] = Y P
t , t ≥ 0.
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Proof. First of all, it is easier to calculate the α-path of a UDE of the form
(2). Let α = 0.5, then

dY P
t = f(t, Y P

t )dt. (13)

Next we need to calculate the expectation of the corresponding SDE’s so-
lution. We have

Xt = x0 +

∫ t

0

f(u,Xu)du+

∫ t

0

g(u,Xu)dWu, (14)

and the term ∫ t

0

g(u,Xu)dWu

in (14) is also a martingale. Then

E[Xt] = x0 + E

[∫ t

0

f(u,Xu)du

]
= x0 +

∫ t

0

E[f(u,Xu)]du. (15)

Differentiate time on both sides:

dE[Xt]

dt
= E[f(t,Xt)]. (16)

If the following formula can still be satisfied:

E[f(t,Xt)] = f(t, E[Xt]), (17)

then both of E[Xt] and Y P
t will satisfy the same ODE by (13), (16) and (17),

meanwhile E[X0] = X0 = Y P
0 = Y0 = c, so we have E[Xt] = Y P

t . The theorem
is proved.

Example 4.2 Consider the SDE dXt = (a−bXt)dt+σ
√
XtdWt (see Cox et

al. [17], CIR model) and the UDE dYt = (a− bYt)dt+σ
√
YtdCt, X0 = Y0 = c,

c ∈ R. We have

E[Xt] = Y P
t =

a

b
+ e−bt(c− a

b
), t ≥ 0.

Example 4.3 Consider the SDE dXt = µ(1−k lnXt)dt+σXtdWt and the
UDE dYt = µ(1− k lnYt)dt+ σYtdCt (see Dai et al. [10], Sun et al. [11], Gao
et al. [12], Exponential Ornstein-Uhlenbeck model), X0 = Y0 = c, c ∈ R. We
have

E[Xt] = exp

{
ln(c) exp(−µkt) + (µ− 1

2
σ2)

∫ t

0

e−µkudu+
1

2
σ2

∫ t

0

e−2µkudu

}
6= exp{ln(c) exp(−µkt) +

1

k
[1− exp(−µkt)]} = Y P

t ,∀t > 0.

Notice that E[µ(1− k lnXt)] 6= µ(1− k lnE[Xt]).
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5 Conclusion

Since sometimes we cannot obtain the expected value of an UDE’s solution,
we turn to the α-path as an alternative. With the study of α-paths, we can
explore the shape of the solution effectively. There is a special α-path where
the α is equal to 0.5. When we compare UDEs with SDEs of similar forms, a
connection appears. If the two equations satisfy certain conditions, then the
0.5-path of the UDE will be equal to the expectation of corresponding SDE’s
solution.

For this particular path, it has another noteworthy property: M{Yt ≤
Y P
t ,∀t} = M{Yt > Y P

t ,∀t} = 0.5. This is also why we would like to call it
“the prospect” of a UDE. If there exists a number A such thatM{Yt ≤ A} <
M{Yt > A}, it means that someone is more willing to believe Yt > A rather
than Yt ≤ A, since the uncertain measure is used to handle belief degrees. In
other words, he will think that A is smaller than the prospect of Yt as long as
he uses the UDE to describe Yt. Therefore, we suggest UDEs are suitable for
describing people’s views on a dynamic process.
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