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Abstract

We shall apply the results that Radford has achieved in order to
characterize the automorphisms of the biproducts to Taft algebras and
compute the concrete automorphisms of Taft algebras.
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1 Introduction

Biproducts have a well-established position in the theory of Hopf algebras over
a field k. They play a central role in the classification of pointed Hopf algebras
[1] and arise quite often in the classification of semisimple Hopf algebras. Given
a biproduct B x H, its structure is determined by Hopf algebra maps 7 :
BxH — H and j : H — B x H which satisfy m o j = idg. A notion of
endomorphism (resp. automorphism) of the biproduct B x H is a Hopf algebra
endomorphism (resp. automorphism) F of B x H which satisfies mo F' = 7 and
Foj=j. In [2], The author relaxed the condition F'oj = j and characterized
the automorphisms of B x H which only satisfies the condition 7 o F' = 7.
Taft algebra is an important Hopf algebra, and is isomorphic to a Radford
biproduct. The paper will focus on characterizing the automorphisms of Taft
algebras which satisfying the suitable conditions as what are considered in [2].
The paper is organized as follows. In Section 2, we recall some basic con-
cepts related to Hopf algebras. In Section 3, we shall characterize the auto-
morphisms of Taft algebras and the concrete corresponding bijection is given.

LCorresponding author



166 Leyang Sun, Yunze Song, Yuhan Zhao, Yue Sun and Quanguo Chen

2 Preliminary Results

Throughout the paper, we work over a fixed field k and freely use the results,
notations, and conventions of [3] and [4]. Let C' be a coalgebra, the sigma
notation

A(c) = ¢y @ ¢z,

for all ¢ € C will be used frequently later.

2.1 Module algebras

A left H-module algebra is a left H-module (B, ), where B is an algebra over
k, such that

h-1p = 5(h)17 h - (bb/> = (h(l) ) b)(h(l) ) b)?

for all h € H and b,V € B.

Assume that (B,-) is a left H-module algebra, the tensor product B @ H
of vector spaces has an algebra structure, referred to as the smash product,
defined by 1ggy = 15 ® 15 and

(b@h) (' @) = b(hay - V) @ hyl,

for all b,b’ € B and h,h’ € H. Typical notation for this algebra is BfH and
tensors b ® h are written bfh.

2.2 Comodule coalgebras

A left H-comodule coalgebra is a left H-comodule C' with the comodule struc-
ture map p : C = H ® C, p(c) = ¢j_1) ® cp}, where C' is a coalgebra over k,
such that

c-nec(cpy) = ec(e)lu, cay-1ce)-1 ® cuyn ® c@)o = -1 @ ) ® o)),

for all c € C.

Assume that (C, p) is a left H-comodule coalgebra, then the tensor product
C ® H of vector spaces has a coalgebra structure, referred to as the smash
coproduct, defined by ey = cc ® ey and

Alc® h) = cay @ c)-1ha) ® c2)) @ hz),

for all ¢ € C and h € H. Typical notation for this coalgebra is C'tH and
tensors ¢ ® h are written ch.
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2.3 Comodule algebras

A left H-comodule algebra is a left H-comodule (B, p), where B is an algebra
over k, such that

p(lB) =1 ®1p, p(bb,) = b[_l}bl[fl] (24 b[o]b/[o], Vb, b € B.

2.4 Module coalgebras

A left H-module coalgebra is a left H-module (C,-), where C' is a coalgebra
over k, such that

eo(h-c) =eu(h)ec(c), Alh-c) = hay - ca) @ bz - ¢2),

forall he H and ce C.

2.5 Biproducts

Let B be both a algebra and a coalgebra (not necessarily a bialgebra). Assume
that B is both a left H-module algebra and a left H-comodule coalgebra, then
we have the smash product BfH and the smash coproduct BfH. If the vector
space B ® H is a bialgebra with the smash product algebra structure and the
smash coproduct coalgebra structure, then we call that B ® H is a biproduct
(or Radford biproduct) of B and H and is denoted B x H. Tensors b ® h are
denoted b X h.

Theorem 2.1 The following statements are equivalent:
e B® H is a bialgebra,

[ 1. B EAlg(B,k’), A(]-B):lB(X)]-B
2. A(bb/) = b(l)(b(g)[,l] . bl(l)) X b(z)[o]b/(2)7 for all b, b € B.
3. hybi-y) @ bz - b = (ha) - D)-11h) @ (hay - D).
4. B s both a left H-comodule algebra and a left H-module coalgebra.

Given a Radford biproduct B x H, we have two Hopf algebra maps
m:Bx H— H n(bxh)=cep(b)h,
for b€ B,h € H and
j:H— BxH,j(h)=1p X h,

for h € H which satisfy 7 o j = idy. Let Endy,,f(B x H,m) be the monoid
of all Hopf algebra endomorphisms F' of B x H such that m o F' = 7 and
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let Autpe,f(B x H,m) be its set of units. Thus, Auty,,s(B x H,m) is the
group of Hopf algebra automorphisms F' of B x H such that o F = =
under composition. In [2], Radford characterized Endpy,,f(B x H, ) (resp.
Autyepr(B x H, 7)) as follows:

Theorem 2.2 Let BXx H be a biproduct, let m : BxH — H be the projection
from B x H onto H, and let Fg g be the set of pairs (L,R), where L: B — B
and R : H — B are maps which satisfy the following conditions:

(C1) L is an algebra endomorphism.

(C2) epo L =ep,

(C3) A(L(b)) = L{ba))R(bez)j-11) ® L(bez)p0)), ¥b € B.

(C4) p(L(b)) = by @ L(bg), Y0 € B.

(C4) L(hay-b)R(h@) = R(hay) (k) - L(b)),¥b € B and h € H.
(C5) R(hH') = R(h))(he - R(K)), Vh, W' € H.

(C6) R(1y) = 15.

(C7) R is a coalgebra map.

(C7) p(R(h)) = ha)S(h) ® R(h),Vh € H.

Then

1. The function Fpug — Endye,s(B x H, ), described by (L,R) — F,
where
F(b X h) = ,C(b)R(h(l)) X h(g),

for allb e B and h € H, is a bijection.

2. Suppose (L, R) € Fpu. Then, F €Auty,,r(B x H, ) if and only if L
18 a biyjection.

3 Automorphisms of Taft algebras

Let n > 2 be a natural number and g an n-th primitive root of unity. The
Taft algebra is
T, =k(g,z|g" = 1,2" = 0, gx = qxy).

The structure of a Hopf algebra on T}, is such that g is group-like, z is (1, g)-
primitive, that is, A(z) = 2 ® 1+ g ®x with S(z) = —g~'z. When n = 2 note
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that we recover Sweedler’s Hopf algebra H,. The Taft algebra is isomorphic
to a Radford biproduct
Ty = klx] /(2" )4k Zy,

(send G~ 1®gand X — 2 ® 1), where g -z = gz and p(z) = g ® .
For k[z]/(x™)tkZ,, we can describe the projection 7 : klz|/(z™)tkZ,, — k7,
as follows:

1@¢@)=¢, 12" ®¢)=0,1<i<n—-1,0<j<n-1

Now, we shall characterize the automorphisms of the Radford biproduct

Theorem 3.1 R : kZ, — k[z]/(z") which satisfy the conditions of Lemma
3in [2]isnoe.

Proof Observe that {1,g,¢% ---,¢" '} is a basis of kZ,. For ¢'(1 <i <
n — 1), we write R(¢") = apl + anx + -+ + a; 12" . Using (d) of Lemma
3, we have

p(R(g’L)) = p(a,,iol + a1 r “+ -+ a’i,’n—lxn_l)
=apl®1+a19@x+---+ ai,n—lgn_l @ 21

and
gZS(gZ) 0% R(g’) =1® ((Iiol +apxr+ -+ ai,n_la:”_l)
== aigl & 1 + aill QR +---+ am_ll ® l‘n_1>.
Thus it follows that a;; = -+ =a;,—1 =0(1 <i<n—1). Forany 1 <i,j <

n — 1, using (a) of Lemma 3, we have that R(¢""7) = a;4,01 and
R(gN(g" - R(¢7)) = ainl(g’ - ajol) = aipajo.

Thus it follows that a;4;0 = apajo. Using (¢) of Lemma 3, for any ¢, it
follows that a?o = a0. By a;yj0 = aioajo, we can gain ajg = agy = -+ - = Ap_10.
Furthermore, the desired R is R(¢") = 1,(0 <i <n —1), i.e., for all h € kZ,,
R(h) =e(h)1.

From the above theorem and then using Proposition 1 in [2], we can obtain
L € Autyp popt (k[z]/(2™)). Next, we shall characterize all the L.

Theorem 3.2 Autyp popt(k[z]/(2")) and k* are isomorphic groups. Pre-
cisely, the map
k™ — Autyp nops(klx]/(2")), t — L,

is a group isomorphism, where L; is given by L(x") = t'z".
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Proof Observe that {1,z,z?% --- 2"} is a basis of k[z]/(z"). For 2°(1 <
i <n—1), wewrite L(z') = bigl + bz + -+ b 12" ' Using (d) of Lemma
2 in [2], we have

p<£(1ﬂ)) = p(biol +bjx+ -+ bi,nfll'nil)
=bplR@1+brgRx+ -+ bm_lgn—1 @ 21

and

gi (029 »C(,I'Z> — gz & (blol —+ bilx + e+ bi,n—1$n_1)
= biogi ®1+ bilgi Qr+ -+ bi,n—lgi ® 2L

Thus it follows that b;; = 0,7 # j, and £(z") = b;az'. Since L is an algebra
endomorphism, we can get b;yj;y; = b;b;; and bog = 1. If b; (0 <7 <n—1)
are subject to the above relationships, the conditions (b), (c) and (e) of
Lemma 2 in [2] are naturally satisfied. By b;1j;+; = bi;bj;, it follows that
bii = (b11)"(1 <4 < n—1). For an element ¢ € k*, the corresponding element
Li(z') = tiat.
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