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Abstract

We shall apply the results that Radford has achieved in order to
characterize the automorphisms of the biproducts to Taft algebras and
compute the concrete automorphisms of Taft algebras.
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1 Introduction

Biproducts have a well-established position in the theory of Hopf algebras over
a field k. They play a central role in the classification of pointed Hopf algebras
[1] and arise quite often in the classification of semisimple Hopf algebras. Given
a biproduct B × H, its structure is determined by Hopf algebra maps π :
B × H → H and j : H → B × H which satisfy π ◦ j = idH . A notion of
endomorphism (resp. automorphism) of the biproduct B×H is a Hopf algebra
endomorphism (resp. automorphism) F of B×H which satisfies π◦F = π and
F ◦ j = j. In [2], The author relaxed the condition F ◦ j = j and characterized
the automorphisms of B ×H which only satisfies the condition π ◦ F = π.

Taft algebra is an important Hopf algebra, and is isomorphic to a Radford
biproduct. The paper will focus on characterizing the automorphisms of Taft
algebras which satisfying the suitable conditions as what are considered in [2].

The paper is organized as follows. In Section 2, we recall some basic con-
cepts related to Hopf algebras. In Section 3, we shall characterize the auto-
morphisms of Taft algebras and the concrete corresponding bijection is given.
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2 Preliminary Results

Throughout the paper, we work over a fixed field k and freely use the results,
notations, and conventions of [3] and [4]. Let C be a coalgebra, the sigma
notation

∆(c) = c(1) ⊗ c(2),

for all c ∈ C will be used frequently later.

2.1 Module algebras

A left H-module algebra is a left H-module (B, ·), where B is an algebra over
k, such that

h · 1B = ε(h)1, h · (bb′) = (h(1) · b)(h(1) · b),

for all h ∈ H and b, b′ ∈ B.

Assume that (B, ·) is a left H-module algebra, the tensor product B ⊗H
of vector spaces has an algebra structure, referred to as the smash product,
defined by 1B⊗H = 1B ⊗ 1H and

(b⊗ h)(b′ ⊗ h′) = b(h(1) · b′)⊗ h(2)h′,

for all b, b′ ∈ B and h, h′ ∈ H. Typical notation for this algebra is B]H and
tensors b⊗ h are written b]h.

2.2 Comodule coalgebras

A left H-comodule coalgebra is a left H-comodule C with the comodule struc-
ture map ρ : C → H ⊗ C, ρ(c) = c[−1] ⊗ c[0], where C is a coalgebra over k,
such that

c[−1]εC(c[0]) = εC(c)1H , c(1)[−1]c(2)[−1] ⊗ c(1)[0] ⊗ c(2)[0] = c[−1] ⊗ c[0](1) ⊗ c[0](2),

for all c ∈ C.

Assume that (C, ρ) is a left H-comodule coalgebra, then the tensor product
C ⊗ H of vector spaces has a coalgebra structure, referred to as the smash
coproduct, defined by εC⊗H = εC ⊗ εH and

∆(c⊗ h) = c(1) ⊗ c(2)[−1]h(1) ⊗ c(2)[0] ⊗ h(2),

for all c ∈ C and h ∈ H. Typical notation for this coalgebra is C\H and
tensors c⊗ h are written c\h.
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2.3 Comodule algebras

A left H-comodule algebra is a left H-comodule (B, ρ), where B is an algebra
over k, such that

ρ(1B) = 1H ⊗ 1B, ρ(bb′) = b[−1]b
′
[−1] ⊗ b[0]b′[0], ∀b, b′ ∈ B.

2.4 Module coalgebras

A left H-module coalgebra is a left H-module (C, ·), where C is a coalgebra
over k, such that

εC(h · c) = εH(h)εC(c), ∆(h · c) = h(1) · c(1) ⊗ h(2) · c(2),

for all h ∈ H and c ∈ C.

2.5 Biproducts

Let B be both a algebra and a coalgebra (not necessarily a bialgebra). Assume
that B is both a left H-module algebra and a left H-comodule coalgebra, then
we have the smash product B]H and the smash coproduct B\H. If the vector
space B ⊗H is a bialgebra with the smash product algebra structure and the
smash coproduct coalgebra structure, then we call that B ⊗H is a biproduct
(or Radford biproduct) of B and H and is denoted B ×H. Tensors b⊗ h are
denoted b× h.

Theorem 2.1 The following statements are equivalent:

• B ⊗H is a bialgebra;

• 1. εB ∈Alg(B, k), ∆(1B) = 1B ⊗ 1B.

2. ∆(bb′) = b(1)(b(2)[−1] · b′(1))⊗ b(2)[0]b′(2), for all b, b′ ∈ B.

3. h(1)b[−1] ⊗ h(2) · b[0] = (h(1) · b)[−1]h(2) ⊗ (h(1) · b)[0].
4. B is both a left H-comodule algebra and a left H-module coalgebra.

Given a Radford biproduct B ×H, we have two Hopf algebra maps

π : B ×H → H, π(b× h) = εB(b)h,

for b ∈ B, h ∈ H and

j : H → B ×H, j(h) = 1B × h,

for h ∈ H which satisfy π ◦ j = idH . Let EndHopf (B × H, π) be the monoid
of all Hopf algebra endomorphisms F of B × H such that π ◦ F = π and



168 Leyang Sun, Yunze Song, Yuhan Zhao, Yue Sun and Quanguo Chen

let AutHopf (B × H, π) be its set of units. Thus, AutHopf (B × H, π) is the
group of Hopf algebra automorphisms F of B × H such that π ◦ F = π
under composition. In [2], Radford characterized EndHopf (B × H, π) (resp.
AutHopf (B ×H, π)) as follows:

Theorem 2.2 Let B×H be a biproduct, let π : B×H → H be the projection
from B×H onto H, and let FB,H be the set of pairs (L,R), where L : B → B
and R : H → B are maps which satisfy the following conditions:

(C1) L is an algebra endomorphism.

(C2) εB ◦ L = εB,

(C3) ∆(L(b)) = L(b(1))R(b(2)[−1])⊗ L(b(2)[0]),∀b ∈ B.

(C4) ρ(L(b)) = b[−1] ⊗ L(b[0]),∀b ∈ B.

(C4) L(h(1) · b)R(h(2)) = R(h(1))(h(2) · L(b)),∀b ∈ B and h ∈ H.

(C5) R(hh′) = R(h(1))(h(2) · R(h′)), ∀h, h′ ∈ H.

(C6) R(1H) = 1B.

(C7) R is a coalgebra map.

(C7) ρ(R(h)) = h(1)S(h(3))⊗R(h(2)),∀h ∈ H.

Then

1. The function FB,H → EndHopf (B × H, π), described by (L,R) 7→ F ,
where

F (b× h) = L(b)R(h(1))× h(2),

for all b ∈ B and h ∈ H, is a bijection.

2. Suppose (L,R) ∈ FB,H . Then, F ∈AutHopf (B × H, π) if and only if L
is a bijection.

3 Automorphisms of Taft algebras

Let n ≥ 2 be a natural number and q an n-th primitive root of unity. The
Taft algebra is

Tq = k〈g, x|gn = 1, xn = 0, gx = qxy〉.

The structure of a Hopf algebra on Tq is such that g is group-like, x is (1, g)-
primitive, that is, ∆(x) = x⊗ 1 + g⊗x with S(x) = −g−1x. When n = 2 note
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that we recover Sweedler’s Hopf algebra H4. The Taft algebra is isomorphic
to a Radford biproduct

Tq ∼= k[x]/(xn)]kZn

(send G 7→ 1⊗ g and X 7→ x⊗ 1), where g · x = qx and ρ(x) = g ⊗ x.
For k[x]/(xn)]kZn, we can describe the projection π : k[x]/(xn)]kZn → kZn

as follows:

π(1⊗ gj) = gj, π(xi ⊗ gj) = 0, 1 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 1.

Now, we shall characterize the automorphisms of the Radford biproduct
k[x]/(xn)]kZn.

Theorem 3.1 R : kZn → k[x]/(xn) which satisfy the conditions of Lemma
3 in [2] is η ◦ ε.

Proof Observe that {1, g, g2, · · · , gn−1} is a basis of kZn. For gi(1 ≤ i ≤
n − 1), we write R(gi) = ai01 + ai1x + · · · + ai,n−1x

n−1. Using (d) of Lemma
3, we have

ρ(R(gi)) = ρ(ai01 + ai1x+ · · ·+ ai,n−1x
n−1)

= ai01⊗ 1 + ai1g ⊗ x+ · · ·+ ai,n−1g
n−1 ⊗ xn−1

and

giS(gi)⊗R(gi) = 1⊗ (ai01 + ai1x+ · · ·+ ai,n−1x
n−1)

= ai01⊗ 1 + ai11⊗ x+ · · ·+ ai,n−11⊗ xn−1).

Thus it follows that ai1 = · · · = ai,n−1 = 0(1 ≤ i ≤ n− 1). For any 1 ≤ i, j ≤
n− 1, using (a) of Lemma 3, we have that R(gi+j) = ai+j,01 and

R(gi)(gi · R(gj)) = ai01(gi · aj01) = ai0aj0.

Thus it follows that ai+j,0 = ai0aj0. Using (c) of Lemma 3, for any gi, it
follows that a2i0 = ai0. By ai+j,0 = ai0aj0, we can gain a10 = a20 = · · · = an−1,0.
Furthermore, the desired R is R(gi) = 1, (0 ≤ i ≤ n− 1), i.e., for all h ∈ kZn,
R(h) = ε(h)1.

From the above theorem and then using Proposition 1 in [2], we can obtain
L ∈ AutYD-Hopf (k[x]/(xn)). Next, we shall characterize all the L.

Theorem 3.2 AutYD-Hopf(k[x]/(xn)) and k× are isomorphic groups. Pre-
cisely, the map

k× → AutYD-Hopf(k[x]/(xn)), t 7→ Lt,

is a group isomorphism, where Lt is given by Lt(x
i) = tixi.
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Proof Observe that {1, x, x2, · · · , xn−1} is a basis of k[x]/(xn). For xi(1 ≤
i ≤ n− 1), we write L(xi) = bi01 + bi1x+ · · ·+ bi,n−1x

n−1. Using (d) of Lemma
2 in [2], we have

ρ(L(xi)) = ρ(bi01 + bi1x+ · · ·+ bi,n−1x
n−1)

= bi01⊗ 1 + bi1g ⊗ x+ · · ·+ bi,n−1g
n−1 ⊗ xn−1

and

gi ⊗ L(xi) = gi ⊗ (bi01 + bi1x+ · · ·+ bi,n−1x
n−1)

= bi0g
i ⊗ 1 + bi1g

i ⊗ x+ · · ·+ bi,n−1g
i ⊗ xn−1.

Thus it follows that bij = 0, i 6= j, and L(xi) = biix
i. Since L is an algebra

endomorphism, we can get bi+j,i+j = biibjj and b00 = 1. If bii (0 ≤ i ≤ n − 1)
are subject to the above relationships, the conditions (b), (c) and (e) of
Lemma 2 in [2] are naturally satisfied. By bi+j,i+j = biibjj, it follows that
bii = (b11)

i(1 ≤ i ≤ n− 1). For an element t ∈ k×, the corresponding element
Lt(x

i) = tixi.
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