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Abstract

Power options provide market participants with great flexibility and
extensive leverage over ordinary options. In this paper, we investigate
the power option pricing problem based on uncertainty theory, in which
the price of the underlying asset follows the Ornstein-Uhlenbeck model
involving an uncertain fractional differential equation, and we derive the
pricing formulas of European power options. Finally, some numerical
experiments are performed to illustrate the results.
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1 Introduction

With the rapid development of financial markets, people’s demand for financial
products is increasing. As the core of financial derivatives, an option contract
is a right rather than an obligation that gives the investors of the contract to
purchase the underlying asset at a specific price, the strike price and a certain
period of time. Power options gave the market participants great flexibility
and leverage over ordinary options.

At present, mathematics play an increasingly important role in the financial
field. The theory of option pricing can be traced back to the beginning of
the 20th century. Black and Scholes [1] used the Ito’s formula in options
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pricing according to the theory of stochastic analysis. They promoted the
application and development of mathematics in the finance markets. In the
modern stock markets, investors evaluate the potential of a stock based on its
development trend. Liu [4] proposed a mathematical theory called uncertainty
theory to study the uncertainty. Based on the uncertainty theory, Zhu [10] gave
an essential result which was called the equation of optimality in uncertain
optimal control. Sheng and Zhu [8] studied an optimistic value model for a
class of uncertain optimal control problems, and applied the model to solve
the portfolio problem.

Nowadays, the application of differential equation in options pricing is in-
creasing. Zhang et al. [9] studied the pricing of power options and they deduced
the pricing formulas of power options. Dai et al. [2] calculated the option pric-
ing formulas based on the Ornstein-Uhlenbeck exponential model. Zhu [11]
introduced the concepts of the Riemann-Liouville type and Caputo type of
uncertain fractional differential equations (UFDEs). UFDEs are used to de-
scribe the memory and historical properties of systems. Inspired by the above
researches, we will use the UFDEs to study the pricing of power options under
the Ornstein-Uhlenbeck model.

The layout of this paper is as follows. The second part mainly introduces
some basic concepts and results. In the third part, we will introduce the
Ornstein-Uhlenbeck model with an UFDE. In the fourth part, we present the
option pricing formulas based on the UFDEs, and we give examples to calculate
the options price. In the fifth part, a brief conclusion will be given.

2 Preliminary notes

Liu [4] introduced some basic concepts in uncertainty theory. The most fun-
damental concepts of these are four basic axioms, the expected value and the
definition of an uncertain differential equation. UFDFs have different defini-
tions, the most common ones are Caputo type and Riemann-Liouville type.
Zhu [11] introduced the concepts of the two types of UFDEs based on the
uncertainty theory. The Caputo type of UFDE with initial value conditions is
defined by  cDpXt = f(t,Xt) + g(t,Xt)

dCt
dt

,∈ [0, T ]

X
(k)
t |t=0 = xk, k = 0, 1 · · ·n− 1

(1)

where Ct is a Liu process, cDpXt represents the Caputo fractional derivative of
p (n− 1 < p ≤ n). The definitions of fractional derivative can be seen in [11].
The above UFDE with initial value conditions is equivalent to an uncertain
fractional integral equation. Therefore, the Caputo type of UFDE (1) has a
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solution as follows

Xt =
n−1∑
k=0

xkt
k

Γ(k + 1)
+

1

Γ(p)

∫ t

0

(t− s)p−1f(s,Xs)ds

+
1

Γ(p)

∫ t

0

(t− s)p−1g(s,Xs)dCs. (2)

In order to solve the UFDEs, Lu and Zhu [5] investigated the relations between
the solution and α-path of an UFDE. Assume that α ∈ (0, 1), a Caputo type
of UFDE (1) with initial value conditions is called to have an α-path Xα

t which
solves the associated fractional differential equation

cDpXα
t = f(t,Xα

t )+ | g(t,Xα
t ) | Φ−1(α) (3)

with the same intial value conditions, where Φ−1(α) is an inverse standard
normal uncertainty distribution, that is

Φ−1(α) =

√
3

π
ln

α

1− α
. (4)

If the function J(x1, x2, · · · , xl) increases strictly with respect to x1, x2, · · · , xm
and decreases strictly with respect to xm+1, xm+2, · · · , xl, then, by Lu and
Zhu [5], we have

E[J(X1, X2, · · · , Xl)] =

∫ 1

0

J(Xα
1 , X

α
2 , · · · , Xα

m, X
1−α
m+1, · · · , X1−α

l )dα (5)

where Xi is the solution of (1) and Xα
i is the corresponding α-path.

3 Uncertain stock model

According to the long-term trend of stock prices, Peng and Yao [7] proposed an
uncertain mean-reverting model. In order to prevent the influence of excessive
growth of stock prices on the financial market, Dai et al. [2] use the logarithmic
function to convert it as a nonlinear model, which is called Ornstein-Uhlenbeck
model.

The research of the above model is based on uncertain differential equa-
tions. However, in the actual market, future asset price are not only related
to current price, but also related to the price for a quite long period of time.
Fractional differential derivatives can describe the process of memory and ge-
netic characteristics well. Lu et al. [6] studied the pricing problem of Asian
options in which the underlying asset price follows an UFDE. However, the
change of the underlying asset price is very complex. The asset price under
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the Ornstein-Uhlenbeck stock model based on uncertain fractional differential
equation of the Caputo type is as follows:

dXt = rXtdt

cDpYt = µ(1− a ln(Yt))Yt + σYt
dCt
dt

Y
(k)
t |t=0 = yk, k = 0, 1 · · ·n− 1.

(6)

According to Eq. (2) the solution of model (6) is as the followings

Yt =
n−1∑
k=0

ykt
k

Γ(k + 1)
+

1

Γ(p)

∫ t

0

(t− s)p−1µ(1− a ln(Ys))ds

+
1

Γ(p)

∫ t

0

(t− s)p−1σYsdCs. (7)

Because the model (6) is nonlinear, there is no analytical solution to the UFDE.
Lu and Zhu [5] proposed a numerical algorithm for solving an UFDE with
initial value conditions.

4 Expected value-based model

In the section, we introduce the pricing problem of European power options
according to expected value-based model, which reflects the average trend of
Ornstein-Uhlenbeck model (6). According to the idea of option pricing in
Zhang et al. [9], the price of the European power call option with an order m,
an expiration time T and a strike price K is fc = exp(−rT )E[(Y m

T −K)+] and
the price of the European power put option is fp = exp(−rT )E[(K − Y m

T )+].
Then we can get the following theorems.

Theorem 4.1. Assume that a European power call option with an order m
of the stock model (6) has an expiration time T and a strike price K. Then
the European power call option pricing formula is

fc = exp(−rT )

∫ 1

0

[(Y α
T )m −K]+dα (8)

Proof. According to Eq. (3), we can get the following equation

cDpY α
t = µ(1− a ln(Y α

t ))Y α
t + | σY α

t | Φ−1(α) (9)

According to Eq. (5), the pricing formula of power call option is

fc = E[J(YT )] =

∫ 1

0

J(Y α
T )dα = exp(−rT )

∫ 1

0

[(Y α
T )m −K]+dα. (10)

Thus, the pricing formula (8) for model (6) can be verified.
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Theorem 4.2. Assume that a European power put option with an order m
of the stock model (6) has an expiration time T and a strike price K. Then
the European power put option pricing formula is

fp = exp(−rT )

∫ 1

0

[K − (Y α
T )m]+dα. (11)

Proof. The proof of the theorem is similar to that of Theorem 4.1.

Theorem 4.3. The price fc of the European power call option is increasing
with respect to the power m when Y α

T > 1, decreasing when Y α
T < 1, and

decreasing with respect to the riskless interest rate r and the strick price K.

Proof. (i) Noting that as the power m increases, the value of the (Y α
T )m

increases when Y α
T > 1, the fc of formula (10) increases respect to m. When

Y α
T < 1, the value of the (Y α

T )m decreases with respect to the power m, that is
to say fc decreases with respect to the power m. (ii) Note that the value of the

integration
∫ 1

0
[(Y α

T )m − K]+dα keeps unchanged as the riskless interest rate
r changes. Because the exp(−rT ) is decreasing with respect to the riskless
interest rate r, so is the price fc of the European power call option. (iii) As
the strike price K increases, the value of the integral function [(Y α

T )m −K]+

decreases, so the price fc of the European power call option decreases. The
theorem is proved.

For Theorem 4.1, by using the inverse uncertainty distribution of YT , an
algorithm is proposed to calculate the Y α

T . Then according to the pricing
formula, fc can be obtained.

Algorithm: (The pricing of European power call option)
Step 1: Give T ; Let α = 0 and the step length ∆α; Set Z = 0 and M = 0;
Step 2: Set α← α + ∆α; M = M + 1;
Step 3: By using the predictor-corrector method proposed by Diethelm

et al. [3] at each grid tj, j = 1, 2, · · · , N (Here we divide the interval [0, T ]
into N pieces, and the step length of the method be h = T/N), calculate the
following fractional differential equation with the initial conditions

cDpY α
t = f(t, Y α

t )+ | g(t, Y α
t ) | Φ−1(α), Y

(k)
t |t=0 = yk, k = 0, 1 · · ·n− 1;

Step 4: Output iteration results Y α
T ;

Step 5: If (Y α
T )m −K < 0, set Z(α) = 0; if (Y α

T )m −K > 0, set Z(α) =
(Y α

T )m −K; Set Z = Z + Z(α);
Step 6: If α + ∆α < 1, return to step 2;
Step 7: Calculate fc as following: fc = exp(−rT )Z/M .

Example 4.4. Assume the uncertain stock model (6) has the parameters as
follows: the power m = 2, the riskless interest rate r = 0.08, the log-diffusion
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σ = 0.35 and µ = 0.08, a = 2, p = 0.1. Consider a European call option with
a strike price K = 4, Y0 = 3 and an expiration time T = 2. The parameters of
the above algorithm are N = 100, h = T/N = 0.02. Then the European power
call option price is fc = 5.49.

For Example 4.4, we keep other parameters remain unchanged and then
we can calculate the price of the European power call option with different m.
The results are shown in Table 1.

Table 1: The price of European power call options with different value of m
Methods m=0.8 m=1 m=1.3 m=1.5 m=1.8

fc 0.03 0.14 0.73 1.53 3.52
Methods m=2.1 m=2.3 m=2.5 m=2.8 m=3

fc 6.73 9.87 14.14 23.68 33.19

Then we keep the other variables unchanged and only change the value of
order p. The options price are calculated and the results are shown in the
following Table 2.

Table 2: The price of European power call options with different value of p
Methods p=0.1 p=0.2 p=0.3 p=0.4 p=0.5

fc 5.49 5.94 6.34 6.69 6.96
Methods p=0.6 p=0.7 p=0.8 p=0.9 p=1

fc 7.17 7.32 7.41 7.45 7.44

It can be seen that the price of the European power call option fluctuates
greatly with the slight change of m in Table 1. When the stock price has big
fluctuation in the market, the value of m can be adjusted appropriately to
mitigate the impact of market fluctuations. Besides, the price of the options
varies with the change of p in Table 2. Accurately, fc increases with respect
to p when 0 < p < 1.

Then we will show the influence of some parameters (m, r,K) on the value
of fc by concrete figures. When we explore the relationship between fc and
the parameters, we keep the others parameters unchanged.

Example 4.5. Assume the uncertain stock model (6) has the parameters as
follows: the power m = 2, the riskless interest rate r = 0.08, the log-diffusion
σ = 0.35 and µ = 0.08, a = 2, p = 0.1. Consider a European call option with a
strike price K = 0.8, Y0 = 0.2 and an expiration time T = 2. The parameters
of the above algorithm are N = 100, h = T/N = 0.02. Then the European
power call option price is fc = 0.049.
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Based on Example 4.5, we use the figures to verify the monotonicity be-
tween fc and the parameters (m, r,K). As shown in Figure 1. With the change
of m, fc firstly decreases and then increases, which is consistent with Theorem
4.3(i). Next, we verify the monotonicity of fc with respect to r and K respec-
tively, keeping the other parameters of Example 4.5 unchanged, and we get
the Figure 2. We can see fc decreases with respect to r and K, respectively,
which is consistent with actual financial markets.
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Figure 1: European power call option price fc with respect to m
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Figure 2: European power call option price fc with respect to r and K

5 Conclusion

This paper mainly studies the pricing of European power options in uncertain
financial markets. The exponential of power options can prevent the financial
market changing caused by the violent fluctuations of the underlying assets.
The UFED is used to describe the changing process of stock price, and the
pricing formulas of European power options are calculated based on expected
value criterion. In the future, we will explore whether this model can be applied
to real financial markets.
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