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Abstract

In this paper some kind of function spaces between posets are consedered.
Characterizations of continuity of posets via this kind of function spaces
are given. Main results are: (1) The function space from a poset to a
CD-lattice L forms an L-fuzzy topology; (2) A poset is a continuous
poset iff for some non-singleton CD-lattice L, the function space from
the poset to L in pointwise order forms a CD-lattice iff for all CD-lattices
L, function spaces from the poset to L are all CD-lattices.
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1 Introduction

In 1972, Dana Scott introduced the notion of continuous lattices in order to
provide models for the semantics of programming languages (see [9]). Later,
a more general notion of continuous posets was introduced and extensively
studied (see [2]-[10]). It should be noted that a distinctive feature of the theory
of continuous posets is that many of the considerations are closely interlinked
with topological ideas. The Scott topology, as an order-theoretical topology,
is of fundamental importance in domain theory. Xu in [10] gave an interesting
characterization that a poset L is continuous iff the lattice σ(L) of all Scott-
open subsets of L is a CD-lattice. With this understanding and some more
mathematical considerations, we introduce a new concept of function spaces
from posets to CD-lattices / L-domains. With these concepts we can draw
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more links among mathematical structures. It is well known that the unit
interval I = [0, 1] is a CD-lattice and the set IX of all maps from a set X to I
in pointwise order is also a CD-lattice. Now a question arises: the set [I→ I] of
all Scott continuous maps from I to I in pointwise order is a CD-lattice or not?
The answer to this question turns out to be yes. To justify this, we develop
some ideals and successfully give a comprehensive characterization theorem for
the continuity of the underlying poset.

2 Preliminaries

We quickly recall some basic notions and results (see, for example, [2, 8]).
Let P be a poset. A principal ideal (resp., principal filter) is a set of the

form ↓x = {y ∈ P : y ≤ x} (resp., ↑ y = {x ∈ P : y ≤ x}). A subset A of P
is said to be bounded above if A has an upper bound in P . A poset in which
every directed set has a sup is called a directed complete poset (in short, dcpo).
A complete lattice which is completely distributive is called a CD-lattice. A
poset in which every principal ideal is a complete lattice is called an L-poset.

An order-reversing involution on a poset P is a map ′ : P → P which is
anti-order preserving with x′′ = x for all x ∈ P . On the unit interval I, there
is a canonical involution ′ : I→ I defined by x′ = 1− x.

We say that x approximates y in a poset P , written x� y if whenever D is
directed and supD ≥ y, then x ≤ d for some d ∈ D. The poset P is said to be
continuous if every element is the directed sup of elements that approximate
it.

A continuous dcpo is also called a domain. A domain which is also an
L-poset is called an L-domain. It is well known that in a continuous poset, the
approximating relation � has the interpolation property

(INT): x� z ⇒ ∃y ∈ P such that x� y � z.
An upper set U of P is said to be Scott open if for any directed set D ⊆ P ,

∨↑D ∈ U implies U ∩ D 6= ∅. All the Scott open sets of P form a topology,
called the Scott topology, denoted σ(P ). The complement of a Scott open set
is called a Scott closed set. If a map f : P → Q is continuous from spaces
(P, σ(P )) to (Q, σ(Q)), then f is said to be Scott continuous.

The following two propositions are well known and can be found in [2].

Proposition 2.1. In a continuous poset P , for each x ∈ P , the set ↑↑x =
{y ∈ P : x� y} is a Scott open set, and these sets form a basis for the Scott
topology of P .

Proposition 2.2. A map g : P → Q between posets is Scott continuous iff g
preserves all existing directed sups.

The poset of all Scott continuous maps from posets P to Q in pointwise
order will be denoted by [P → Q]. The topology generated by all the principal
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filters ↑ y (resp., all the principal ideals ↓ x) of P as subbasic closed sets is
called the lower topology (resp., upper topology) and denoted ω(P ) (resp.,
ν(P )). The common refinement σ(P ) ∨ ω(P ) of σ(P ) and ω(P ) is called the
Lawson topology, denoted λ(P ).

Lemma 2.3. (see [2]) The Scott topology is equal to the upper topology on
every CD-lattice.

Proof. By Proposition VII-3.5 in [2], every CD-lattice is a hypercontinuous lat-
tice. And by Theorem VII-3.4 in [2], the Scott topology is the upper topology
in a hypercontinuous lattice. The assertion of the lemma is thus clear.

Lemma 2.4. (see [8]) Let X be a set and L a CD-lattice. Then the set LX of
all maps from X to L in pointwise order is a CD-lattice and order isomorphic
to the product lattice

∏
x∈X L.

Definition 2.5. (see [8]) Let L be a complete lattice.
(1) The complete way-below relation “/” in L is defined for all a, b ∈ L,

a / b⇔ (∀S ⊆ L, b ≤ supS ⇒ ∃s ∈ S, a ≤ s);
(2) If a ∈ L and B ⊆ {t ∈ L : t / a} with supB = a, then B is called a

minimal set of a in L. We will use β(a) to denote any one of the minimal sets
of a ∈ L.

(3) A non-top element p ∈ L is called a prime if ∀s, t ∈ L with s ∧ t ≤ p
implies s ≤ p or t ≤ p.

(4) A non-zero element x ∈ L is called a join irreducible element (also
called a co-prime) if ∀s, t ∈ L with x ≤ s ∨ t implies x ≤ s or x ≤ t. The
set of all join irreducible elements of L is denoted by M(L). If a minimal set
β(a) ⊆M(L), then the minimal set is called a molecular minimal set. We will
use β∗(a) to denote one of the molecular minimal sets of a ∈ L.

Lemma 2.6. (see [8]) Let L be a complete lattice. Then L is a CD-lattice iff
for all a ∈ L, a has a minimal set iff for all a ∈ L, a has a molecular minimal
set.

Lemma 2.7. (see [10]) A poset P is continuous iff its Scott topology is a
CD-lattice.

3 Scott function spaces and intrinsic fuzzy topolo-

gies

Definition 3.1. Let P be a poset and L an L-domain (with an order-reversing
involution). All the Scott continuous maps f : P → L in pointwise order is
denoted by [P → L], and called the Scott function space of P to L.
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The following two propositions give operational properties with respect to
joins and meets for the Scott function space [P → L].

Proposition 3.2. Let P be a poset and L a CD-lattice (with an order-reversing
involution). If fi : P → L (i ∈ J , an index set) is a family of Scott continuous
maps, then f : P → L defined for all x ∈ P , f(x) =

∨
fi(x), is also a Scott

continuous map.

Proof. Since L is a CD-lattice, by Lemma 2.3, the Scott topology σ(L) is equal
to the upper topology ν(L). And to show the continuity of f , it suffices to
show for any t ∈ L, f−1(↓ t) is a Scott closed set in P . It is easy to check that
f−1(↓ t) =

⋂
fi
−1(↓ t). As a meet of some Scott closed sets of P , f−1(↓ t) is

Scott closed, as desired.

Proposition 3.3. Let P be a poset and L a CD-lattice (with an order-reversing
involution). If f and g : P → L are Scott continuous, then h : P → L defined
for all x ∈ P , h(x) = f(x) ∧ g(x), is also Scott continuous.

Proof. Let A be a directed set of P . Then by the definition of h, continuity of
f and g, as well as the completely distributivity of L, we have

h(supA) = f(supA) ∧ g(supA)

= (sup f(A)) ∧ (sup g(A))

= sup(a,b)∈A×A(f(a) ∧ g(b))

= supc∈A(f(c) ∧ g(c))

= supc∈Ah(c)

So, h(supA) = suph(A). By Proposition 2.2, h is Scott continuous, as desired.

Theorem 3.4. Let P be a poset and L a CD-lattice (with an order-reversing
involution). Then the Scott function space forms a stratified L-fuzzy topology
on P in the sense of [8] that all the constant maps, joins of families of opens
and meet of two opens are open, called the (intrinsic) Scott L-fuzzy topology of
P .

Proof. It follows from Proposition 3.2 and 3.3

Theorem 3.5. Let P be a poset and L a CD-lattice (with an order-reversing
involution). Then the Scott L-fuzzy topology [P → L] is just the induced L-
fuzzy topology of the Scott topology (in the sense of [8]) of P , hence the name
Scott L-fuzzy topology.

Proof. It is easy to check by Lemma 2.3 that [P → L] = ωL(σ(P )) := {f |f :
P → L,∀t ∈ L, f−1(↓ t) ∈ σ∗(P ), }, where σ∗(P ) is the lattice of all Scott
closed sets of P .
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4 Continuity of posets via Scott function spaces

It follows from [7] that for a set X and an L-domain L, the set [X → L] = LX

in pointwise order is an L-domain. If X is replaced with a continuous poset
P , then [P → L] is also an L-domain. If in addition, the L-domain L is a
CD-lattice, is [P → L] a CD-lattice? To answer this question we need some
preparations.

The following result (see [1]) is due to Raney.

Lemma 4.1. ([1, P.248, Theorem 20] and [2, Ex. IV-3.32]) A poset P is a
CD-lattice iff there is an embedding e : P → IM preserving arbitrary sups and
infs for some set M .

Lemma 4.2. Let P be a poset and 2 be the CD-lattice {0.1} with 0 < 1. Then
the Scott function space [P → 2] ∼= σ(P ).

Proof. Straightforward.

Lemma 4.3. Let POSET be the category of posets and Scott continuous maps.
For a poset P , define [P → ·] : POSET → POSET such that for T ∈
ob(POSET), one has [P → ·](T ) = [P → T ] and for (f : T → S) ∈
mor(POSET), one has [P → ·](f) = [id → f ], where [id → f ] : [P →
T ] → [P → S] is a map such that ∀h ∈ [P → T ], [id → f ](h) = f ◦ h. Then
[P → ·] is a functor.

Proof. Straightforward.

For this functor, as projections are all Scott continuous, we immediately
have

Lemma 4.4. (see [2, Lemma II-2.9]) For a poset P , the functor [P → ·]
preserves arbitrary products.

Theorem 4.5. (The characterization theorem) For a poset P , the fol-
lowing statements are equivalent:

(1) P is a continuous poset;
(2) [P → L] is a CD-lattice for all CD-lattice L;
(3) [P → L] is a CD-lattice for some nonsingleton CD-lattice L.

Proof. (1) ⇒ (2): Let L be a CD-lattice. Then by Lemma 4.1, there is an
embedding e : L → IM preserving arbitrary sups and infs for some set M .
Define E : [P → L]→ [P → IM ] such that ∀f ∈ [P → L], E(f) = e ◦ f . Then
it is easy to see that E is an embedding preserving arbitrary sups and infs. By
Lemma 4.4, the functor [P → ·] preserves products and [P → IM ] ∼= [P → I]M .
So, by Lemma 2.4 and Lemma 4.1, it suffices to show that [P → I] is a CD-
lattice. By Lemma 2.6, we need to show that ∀f ∈ [P → I], f has a minimal
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set. To show this, note that σ(P ) is a CD-lattice by (1) and Lemma 2.7. Thus
every element of σ(P ) has a molecular minimal set. So, for any a ∈ I, pick a
join irreducible element U ∈ σ(P ) such that U / f−1(↑↑a). By [7, Lemma 2.4],
we have F (a, U, f)� f , where F (a, U, f) is defined by

F (a, U, f)(x) =

{
a, if x ∈ U ;
0, otherwise.

Furthermore, if g, h ∈ [P → I] with g ∨ h ≥ f , then it is easy to check that

h−1(↑↑a) ∪ g−1(↑↑a) = (h ∨ g)−1(↑↑a)

⊇ f−1(↑↑a) ⊇ U.

Since U is join irreducible, U ⊆ h−1(↑↑a) or U ⊆ g−1(↑↑a) holds. Thus F (a, U, f) ≤
h or F (a, U, f) ≤ g. Combining this with F (a, U, f) � f , we see that
F (a, U, f) / f . Then it is straightforward to check that∨

a∈I

(
∨
b∈↓↓a

(
∨

V ∈β∗(f−1(↑↑a))
F (b, V, f))) = f.

This shows that {F (b, V, f)|b < a ∈ I, V ∈ β∗(f−1(↑↑a))} is a molecular mini-
mal set of f . Thus [P → I] is a CD-lattice and so is [P → L].
(2)⇒ (3): trivial.
(3) ⇒ (1): Suppose that there is a nonsingleton CD-lattice L such that
[P → L] is a CD-lattice. Define e : 2 = {0, 1} → L such that e(0) = 0
and e(1) = 1, where 0 is the least and 1 is the greatest elements of 2 and L.
Then e preserves arbitrary sups and infs. Define E : [P → 2] → [P → L]
such that ∀f ∈ [P → 2], E(f) = e ◦ f . Then E is an embedding preserv-
ing arbitrary sups and infs. By (3), [P → L] is a CD-lattice, and [P → 2]
as a sub-complete-lattice of [P → L] is also a CD-lattice. By Lemma 4.2,
σ(P ) ∼= [P → 2] is a CD-lattice. By Lemma 2.7, P is a continuous poset, as
desired.

It is easy to see by Lemma 4.2 that Theorem 4.5 is a generalization of
Lemma 2.7.

As Q (the rational numbles), R and I in the original orders are all contin-
uous posets, we have immediately the following

Corollary 4.6. The Scott function spaces [Q → I], [R → I] and [I → I]
of all Scott continuous functions from Q, R and I, respectively, to I, are all
CD-lattices.
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