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Abstract

In this paper we establish the concept of (L,M)−smooth ideal and
(L,M)−smooth local map of (L,M)−smooth ideals with (L,M)−smooth
topologies . We study a new sort of (L,M)−smooth ideal and (L,M)−smooth
local map namely (L,M)−smooth ideal and r−smooth open local map.
Many of its characterizations, properties and connections between it
and other corresponding fuzzy notions are studied.
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1 Introduction

. Šostak [16] introduced the notion of (L,∧)− fuzzy topological spaces as
a generalization of L−topological spaces. Höhle and Šostak [11] substitute
a complete quasi-monoidal lattice (or GL-monoid) instead of a completely
distributive lattice or a unit interval. Also they introduced the concept of
L−filters for a complete quasi-monoidal lattice L which is the dual of fuzzy
ideals. Many authors[1-10,12-15,17,18,19,20] studied the structures of fuzzy
topology and the structures of fuzzy filters,.fuzzy ideals and fuzzy smooth ide-
als. Ramadan, Abdel-Sattar and Kim [14] studied the concept of a smooth
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ideals in [0,1]-smooth topological spaces. Abdel-Sattar [2] studied some struc-
tures of (L,�)− smooth topological spaces and their properties. In [6] he
studied the concept of L−smooth ideals and L-smooth ideal bases in (L,�)−
smooth topological spaces. In [19] we study some results of fuzzy ideals since
the lattice is the closed interval I = [0, 1] . In this paper we establish the struc-
tures of (L,M)−smooth ideal by (L,M)− smooth topological spaces [ 22].The
concept of r−smooth open local map, new space namely (L,M)− smooth ideal
topological spaces and many of its characterizations are studied.

2 Preliminaries

Throughout this paper, let X be a nonempty set. L = (L,≤,∨,�,′ , 0, 1)
denotes a completely distributive lattice with order-reversing involution ′ which
has the least and greatest elements,say 0 and 1, respectively. Let LX be the
family of all L-fuzzy subsets of X. For α ∈ L, α(x) = α for all x ∈ X. A

fuzzy point, xt for t ∈ L is an element of LX such that, for y ∈ X,

xt(y) =

{
t if y = x,
0 if y 6= x.

The set of all fuzzy points in X is denoted by Pt(X). A fuzzy point xt ∈ λ iff
t ≤ λ(x). A fuzzy set λ is quasi-coincident with µ, denoted by λq µ, if there
exists x ∈ X such that λ(x)+µ(x) > 1. If λ is not quasi-coincident with µ, we
denote λ q µ . All the other notations and the other definitions are standard
in fuzzy set theory.

Definition 2.1. [11] A triple (L,≤,�) is called a strictly two-sided, com-
mutative quantale (stsc-quantale, for short ) iff it satisfies the following prop-
erties:

(L1) L = (L,≤, 1, 0) is a complete lattice.
(L2) (L,�) is a commutative semigroup.
(L3) a = a� 1, for each a ∈ L.
(L4) � is a distributive over arbitrary joins, i.e. (

∨
i∈Γ ai ) � b =∨

i∈Γ (ai � b).

Example 2.2 [11] (1) Each frame is a stsc- quantale. In particular, the
unite interval ( [0, 1],≤,∨,∧, 0, 1) is a stsc-quantale.

(2) The unit interval with a left-continuous t-norm t, ( [0, 1],≤, t),is a
stsc-quantale.

(3) Every GL-monoid is a stsc-quantale.
(4) Define a binary operation � on [0, 1] by x�y = max{0, x+y−1}.Then

( [0, 1],≤,�) is a stsc-quantale.
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Lemma 2.3 [ 21] For each x, y, z, xi, yi, w ∈ L,we have the following
properties:

(1) > → x = x, ⊥� x = ⊥,
(2) if y ≤ z, then x � y ≤ x � z, x ⊕y ≤ x ⊕ z, x → y ≤ x → z and

z → x ≤ y → x,

(3) x ≤ y iff x→ y = >,
(4) (∧iyi)∗ = ∨iy∗i , (∨iyi)∗ = ∧iy∗i ,
(5) x→ (∧iyi) = ∧i(x→ yi),

(6) (∨ixi)→ y = ∧i(xi → y),

(7) x� (∨iyi) = ∨i(x� yi),
(8) (∧ixi)⊕ y = ∧i(xi ⊕ y),

(9) (x� y)→ z = x→ (y → z) = y → (x→ z),

(10) (x� y) = (x→ y∗)∗, x⊕ y = x∗ → y and x→ y = y∗ → x∗,

(11) (x→ y)� (z → w) ≤ (x� z)→ (y � w),

(12) x→ y ≤ (x� z)→ (y � z) and (x→ y)� (y → z) ≤ x→ z,

(13) (x→ y)� (z → w) ≤ (x⊕ z)→ (y ⊕ w),

(14) x� (x→ y) ≤ y and y ≤ x→ (x� y),

(15) (x ∨ y)� (z ∨ w) ≤ (x ∨ z) ∨ (y � w) ≤ (x⊕ z) ∨ (y � w),

(16) ∨i∈Γ xi → ∨i∈Γyi ≥ ∧i∈Γ(xi → yi), ∧i∈Γ xi → ∧i∈Γyi ≥ ∧i∈Γ(xi → yi),

(17) (x� y)� (z ⊕ w) ≤ (x� z)⊕ (y � w),

(18) z → x ≤ (x→ y)→ (z → y) and (y → z) ≤ (x→ y)→ (x→ z).

(19) (x∗)∗ = x

All algebraic operations on L can be extended pointwise to the set LX as
follows: ∀x ∈ X, ∀λ, µ ∈ LX

(1) λ ≤ µ⇐⇒ λ(x) ≤ µ(x),

(2) (λ� µ)(x) = λ(x)� µ(x),

(3) (λ→ µ)(x) = λ(x)→ µ(x).

Definition 2.4. [2,11,12] A mapping T : LX →M is called (L,M)−smooth
topology on X if it satisfies the following conditions:

(O1) T (0) = T (1) = 1, where 0(x) = 0 and 1(x) = 1 for all x ∈ X.

(O2) T (µ1 � µ2) ≥ T (µ1)� T (µ2), for any µ1, µ2 ∈ LX .
(O3) T (

∨
i∈Γ µi) ≥

∧
i∈Γ T (µi), for any {µi}i∈Γ ⊂ LX .

An (L,M)−smooth topological spaces is called enriched if

(P) T (α� µ) ≥ T (µ),for any µ ∈ LX , and α ∈M.

The pair (X, T ) is called (L,M)− smooth topological spaces ( resp. en-
riched (L,M)− smooth topological spaces )

Let (X, T ) and (Y, T ′) be two (L,M)−smooth topological spaces and f :
X → Y be a mapping. Then f is said to be smooth continuous iff T ′(µ) ≤
T (f−1(µ)) for each µ ∈ LY .
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Definition 2.5. [11] Let (L, ∗) and (L,�) be a stsc-quantale. An opera-
tion � dominates ∗ if it satisfies: ∀x1, x2, y1, y2 ∈ L⇒ (x1 ∗ y1)� (x2 ∗ y2) ≥
(x1 � x2) ∗ (y1 � y2)

Definition 2.6. [11] Let (L, ∗) and (L,�) be a stsc-quantale. An opera-
tion � dominates ∗ if it satisfies: ∀x1, x2, y1, y2 ∈ L⇒ (x1 ∗ y1)� (x2 ∗ y2) ≥
(x1 � x2) ∗ (y1 � y2)

Example 2.7. [11]
(1) For any left- continuous t-norm ∗,∧ dominates ∗ because (x1 ∗ y1) ∧

(x2 ∗ y2) ≥ (x1 ∧ x2) ∗ (y1 ∧ y2).

(2) Define t-norm as x�y = x y
x +y − x y

and x∗y = x y. Then � dominates
∗.

Definition 2.8. [14] If X is a set, then an ideal on X is a nonempty D∗

⊂ 2X satisfying the following conditions:
1- X /∈ D∗.
2- If A,B ∈ D∗ ⇒ A ∪B ∈ D∗.
3- If B ∈ D∗ and A ⊂ B ⇒ A ∈ D∗, i.e.,D∗ is a lower set.

Definition 2.9. [14] If X is a set, then a preideal on X is a nonempty
D ⊂ IX satisfying the following conditions:

1- 1 /∈ D.
2- If λ, µ ∈ D ⇒ λ ∨ µ ∈ D.
3- If µ ∈ D and λ ≤ µ ⇒ λ ∈ D.

Definition 2.10. A map I : LX × M → LX is called (L,M)−smooth
interior operator on X iff I satisfies the following condations :

(I1) I(1 , r) = 1 for all r ∈M.
(I2) I(λ, r) ≤ λ for all r ∈M.
(I3) If λ ≤ µ and r ≤ s, then I(λ, s) ≤ I(µ, r).
(I4) I(λ� µ, r � s) ≥ I(λ, r)� I(µ, s).
The pair (X, I ) is called (L,M)−smooth interior space.
The (L,M)− smooth interior operator I is called topological if

I (I (λ, r)) ≥ I(λ, r), ∀λ ∈ LX , r ∈M.
Let I1 and I2 be two (L,M)−smooth iterior operators on X. We say that I1

is finer than I2 (I2 is coarser than I1), denoted by I2 ≤ I1, if I2(λ, r) ≤ I1(λ, r)
for all λ ∈ LX , r ∈M.

Theorem 2.11. Let (X, τ) be (L,M)− smooth topological spaces .Then
for each r ∈M,A ∈ LX , we define the operator Cτ : LX×M → LX as follows:

Cτ (A, r) =
∧
{B ∈ LX |A ≤ B, τ(1− B) ≥ r}.
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For each A,B ∈ LX and r, s ∈ M, the operator Cτ satisfies the following
conditions:

(C1) Cτ (0, r) = 0.

(C2) A ≤ Cτ (A, r).
(C3) Cτ (A, r) ∨ Cτ (B, r) = Cτ (A ∨ B, r).
(C4) Cτ (A, r) ≤ Cτ (A, s) if r ≤ s.

(C5) Cτ (Cτ (A, r), r) = Cτ (A, r).
(C6) If s =

∨
{r ∈ L0|Cτ (A, r) = A}, then Cτ (A, s) = A.

Definition 2.12. Let (X, τ) be (L,M)− smooth topological spaces, for
each A ∈ LX , r ∈M . Then:

(1)A is called r-smooth regular open (r-SRO, for short) iffA = intτ (Cτ (A, r), r).
(2)A is called r-smooth preopen (r-SPO, for short) iffA ≤ intτ (Cτ (A, r), r)..

Definition 2.13. An (L,M)−smooth topological spaces (X, τ) is called r−smooth
regular iff for each τ(A) ≥ r and r ∈M, A =

∨
{B ∈ LX |τ(B) ≥ r, Cτ (B, r) =

A}.

Definition 2.14. Let (X, τ) be (L,M)−smooth topological spaces, for each
A ∈ LX , xt ∈ Pt(X) and r ∈ M . Then, A is called r−open Qτ -neighborhood
of xt (for short, Qτ (xt, r)) if xtqA with τ(A) ≥ r.

Definition 2.15. Let 0 6∈ Θ be a subset of LX . A mapping β : Θ → M
is called (L,M)−smooth base on X if it satisfies the following conditions:

(1) β(1) = 1,

(2) β(A1 �A2) ≥ β(A1)� β(A2), for all A1,A2 ∈ Θ.
Definition 2.16. Let f : (X, τ)→ (Y, η) be a mapping. Then,

(1) f is called smooth continuous (S-continuous, for short) iff η(A) ≤
τ(f−1(A)), for each A ∈ LY .

(2) f is called smooth precontinuous (SP-continuous, for short) iff f−1(A)
is r-SPO set for each η(A) ≥ r.

(3) f is called smooth almost continuous iff τ(f−1(A)) ≥ r, for each
A ∈ LY with A = intη(Cη(A, r), r) .

(4) f is called smooth weakly continuous iff f−1(A) ≤ intτ (f
−1(Cη(A, r)), r)

for each A ∈ LY and r ∈M with η(A) ≥ r .

(5) f is called smooth strongly continuous iff f(Cτ (A, r)) ≤ f(A) for each
A ∈ LX and r ∈M .
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3 (L,M) − Smooth ideal and r−smooth open

local map

Definition 3.1. A mapping I : LX →M is called (L,M)−smooth ideal on
X if it satisfies the following conditions:

(I1) I(0) = 1, I(1) = 0.
(I2) If A ≤ B, then I(B) ≤ I(A), for each A,B ∈ LX .
(I3) I(A ∨ B) ≥ I(A)� I(B), for A,B ∈ LX .

If I1 and I2 are (L,M)−smooth ideals on X, we say that I1 is finer than
I2 (I2 is coarser than I1), denoted by I2 ≤ I1, iff I1(A) ≤ I2(A) for A ∈ LX .

The triple (X, τ, I) is called (L,M)−smooth ideal topological space (
(L,M)−sits, for short ). For α ∈ M, (X, τα, Iα) is fuzzy ideal topological
space in the sense of Sarkar [18].

Definition 3.2. Let (X, τ, I) be (L,M)−sits and A ∈ LX . Then the r-
smooth open local map A?r(τ , I) of A is the union of all fuzzy points xt such
that if B ∈ Q(xt, r) and I(C) ≥ r then there is at least one y ∈ X for which
B(y) +A(y)− 1 > C(y).
there exists B ∈ Q(xt, r) such that for every y ∈ X, B(y) +A(y) − 1 ≤ C(y),
for some I(C) ≥ r. A?r(τ , I) is the set of fuzzy points at which A does not
have the property r−fuzzy open locally.

We will occasionally write A?r or A?r(I) for A?r(τ , I) and it will cause no
ambiguity.

Example 3.3.Let (X, τ, I) be (L,M)−sits. The simplest fuzzy ideal on
X is I0 : LX →M where

I0(C) =

{
1, if C = 0,
0, otherwise.

If we take I = I0, for each A ∈ LX we have A?r = Cτ (A, r).

Theorem 3.4. Let (X, τ) be (L,M)− smooth topological space and I1, I2

be two (L,M)−smooth ideals of X. Then for each r ∈M and A,B ∈ LX .
(1) If A ≤ B, then A?r ≤ B?r .
(2) If I1 ≤ I2, then A?r(I1, τ) ≥ A?r(I2, τ).
(3) A?r = Cτ (A?r, r) ≤ Cτ (A, r).
(4) (A?r)?r ≤ A?r.
(5) (A?r ∨ B?r) = (A ∨ B)?r.
(6) If I(B) ≥ r, then (A ∨ B)?r = A?r ∨ B?r = A?r.
(7) If τ(B) ≥ r, then (B �A?r) ≤ (B �A)?r.
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(8) (A?r � B?r) ≥ (A� B)?r.

Proof. (1) Suppose there exist A ∈ LX and r ∈ M such that A?r 6≤ B?r ,
there exist x ∈ X and t ∈M such that

A?r(x) ≥ t > B?r(x).

Since B?r(x) < t, there exists D ∈ Q(xt, r) with I(C) ≥ r such that for every
y ∈ X, we have,

D(y) + B(y)− 1 ≤ C(y).

Since A ≤ B, D(y)+A(y)−1 ≤ C(y). So, A?r(x) < t, and this is a contradiction
. Thus, A?r ≤ B?r .

(2) Suppose that, A?r(I1, τ) � A?r(I2, τ), then there exist x ∈ X and t ∈M
such that

A?r(I1, τ)(x) < t ≤ A?r(I2, τ)(x).

Since A?r(I1, τ)(x) < t, there exists D ∈ Q(xt, r) with I1(C) ≥ r such that
for every y ∈ X, we have, D(y) + A(y) − 1 ≤ C(y). Since I2(C) ≥ I1(C) ≥ r,
D(y) +A(y)− 1 ≤ C(y). Thus, A?r(I2, τ)(x) < t. It is a contradiction . Thus,
A?r(I1, τ) ≥ A?r(I2, τ).

(3) We show that A?r ≤ Cτ (A, r). Suppose that, A?r � Cτ (A, r), then there
exist x ∈ X and t ∈M such that

A?r(x) ≥ t > Cτ (A, r)(x).

Since A?r(x) ≥ t, xt ∈ A?r. So there is at least one y ∈ X for each D ∈ Q(xt, r)
and I(C) ≥ r such that D(y) +A(y) > C(y) + 1. Therefore, xt ∈ Cτ (A, r). It
is a contradiction. Hence, A?r ≤ Cτ (A, r).

Now we show that A?r ≥ Cτ (A?r, r). Suppose that, A?r � Cτ (A?r, r), then
there exist x ∈ X and t ∈M such that

A?r(x) < t < Cτ (A?r, r)(x).

Since Cτ (A?r, r)(x) > t, xt ∈ Cτ (A?r, r). So, there at last one y ∈ X with
B ∈ Q(xt, r) such that B(y)+A?r(y) > 1. Therefore, A?r(y) 6= 0. Let s = A?r(y).
Then ys ∈ A∗r and s + B(y) > 1, so that B ∈ Q(ys, r). Now ys ∈ A?r implies
there is at least one x

′ ∈ X such that D(x
′
)+A(x

′
)−1 > C(x′

) for all I(C) ≥ r
and D ∈ Q(ys, r). This is also true for B. So there is at least one x

′′ ∈ X such
that B(x

′′
) + A(x

′′
) − 1 > C(x′′

). Since B is an arbitrary and B ∈ Q(xt, r),
then, A?r(x) > t. It is a contradiction. Thus A?r ≥ Cτ (A?r, r).
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(4) Form (3), we have (A?r)?r = Cτ ((A?r)?r, r) ≤ Cτ (A?r, r) = A?r.

(5) (⇒) Since A,B ≤ A ∨ B. By (1), we have A?r ≤ (A ∨ B)?r and
B?r ≤ (A ∨ B)?r. Hence A?r ∨ B?r ≤ (A ∨ B)?r.

(⇐) Suppose that (A?r ∨B?r) � (A∨B)?r, then there exist x ∈ X and t ∈M
such that

(A?r ∨ B?r)(x) < t ≤ (A ∨ B)?r(x).

Since (A?r ∨ B?r)(x) < t, A?r(x) < t or B?r(x) < t. So, there exists D1 ∈ Q(xt, r)
such that for every y ∈ X and for some I(C1) ≥ r we have,

D1(y) +A(y)− 1 ≤ C1(y).

Similarly there exists D2 ∈ Q(xt, r) such that for every y ∈ X and for some
I(C2) ≥ r we have,

D2(y) + B(y)− 1 ≤ C2(y).

Since D = D1 � D2 ∈ Q(xt, r) and by (I3), I(C1 ∨ C2) ≥ r. Thus, for every
y ∈ X, D(y) + (A∨B)(y)− 1 ≤ (C1 ∨ C2)(y). Therefore, (A∨B)?r(x) < t. It is
a contradiction. Hence A?r ∨ B?r ≥ (A ∨ B)?r.

(6), (7) and (8) are obvious. �

Example 3.5. [19]. Define τ , I : LX → M , where L = M = I = [0, 1] as
follows:

τ(B) =


1, if B ∈ {1, 0},
1
2
, if B = 0.8,

1
2
, if B = 0.7,

0, otherwise,

I(C) =


1, if C = 0,
1
2
, if C = 0.3,

2
3
, if 0 < B < 0.3,

0, otherwise.

Then, 0 = (0.4?1
2

)?1
2

6= 0.4?1
2

= 0.2.

Theorem 3.6. Let (X, τ, I) be (L,M)−sits, and {Ai : i ∈ J} ⊂ LX .
Then:

(1) (
∨

(Ai)?r : i ∈ J) ≤ (
∨
Ai : i ∈ J)?r.

(2) (
∧
Ai : i ∈ J)?r ≤ (

∧
(Ai)?r : i ∈ J).

Proof. (1) Since Ai ≤
∨
Ai, for each i ∈ J, by Theorem 3.4(1), we have

(Ai)?r ≤ (
∨
Ai)?r, for each i ∈ J. This implies (

∨
(Ai)?r : i ∈ J) ≤ (

∨
Ai : i ∈

J)?r.

(2) Since
∧
Ai ≤ Ai, (

∧
Ai)?r ≤ (Ai)?r, for each i ∈ J. Thus, (

∧
Ai : i ∈

J)?r ≤ (
∧

(Ai)?r : i ∈ J). �
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Remark 3.7. For each (X, τ, I) and A ∈ LX , we can defines

Cl?(A, r) = A ∨A?r, int?(A, r) = A� [1− (1−A)?r].

Clearly, Cl? is a fuzzy closure operator and τ ?(I) is the (L,M)− smooth
topology generated by Cl∗. i.e.,

τ ?(I)(A) =
∨
{r| Cl?(1−A, r) = 1−A}.

Now if, I = I0 then Cl?(A, r) = A ∨ A∗r = A ∨ Cτ (A, r) = Cτ (A, r), for
A ∈ LX . So, τ ?(I0) = τ .

Theorem 3.8. Let (X, τ, I) be (L,M)−sits, r ∈M and A ∈ LX . Then
(1) int?(A ∨ B, r) ≤ int?(A, r) ∨ int?(B, r).
(2) intτ (A, r) ≤ int?(A, r) ≤ A ≤ Cl?(A, r) ≤ Cτ (A, r).
(3) Cl?(1−A, r) = 1− int?(A, r) and 1− Cl?(A, r) = int?(1−A, r).
(4) int?(A� B, r) = int?(A, r)� int?(B, r).

Proof. (1) and (2) Follows directly from definition Cl?, int? and Cτ .
(3) Since

Cl?(1−A, r) = 1−A ∨ (1−A)?r = 1−A ∨ [1− (1− (1−A)?r)]

= 1− [A� (1− (1−A)?r)] = 1− int?(A, r).

(4) From Theorem 3.4 (5), we have

int?(A� B, r) = (A� B)� [1− (1− (A� B))?r]

= (A� B)� [1− [(1−A) ∨ (1− B)]?r]

= (A� B)� [1− [(1−A)?r ∨ (1− B)?r]]

= (A� [1− (1−A)?r])� (B � [1− (1− B)?r])

= int?(A, r)� int?(B, r). �

Theorem 3.9. Let (X, τ 1, I) and (X, τ 2, I) be (L,M)−sits’s and τ 1 ≤ τ 2.
Then

(1) A?r(τ 2, I) ≤ A?r(τ 1, I).
(2) τ ?1(I) ≤ τ ?2(I).

Proof. (1) Suppose that A?r(τ 2, I) � A?r(τ 1, I), then there exist x ∈ X
and t ∈M such that

A?r(τ 2, I)(x) ≥ t > A?r(τ 1, I)(x).
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Since A?r(τ 1, I)(x) < t, there exist D ∈ Qτ1(xt, r) with I(C) ≥ r such that for
every y ∈ X, D(y) + A(y) − 1 ≤ C(y). Since τ 1 ≤ τ 2, D ∈ Qτ2(xt, r). Thus,
A?r(τ 2, I)(x) < t. It is a contradiction.

(2) Clearly, τ ?1(I) ≤ τ ?2(I), as A?r(τ 2, I) ≤ A?r(τ 1, I). �

Theorem 3.10. Let (X, τ, I1) and (X, τ, I2) be (L,M)−sits’s and I1 ≤ I2.
Then

(1) A?r(I1, τ) ≥ A?r(I2, τ).
(2) τ ?1(I1) ≤ τ ?2(I2).

Proof. Obvious. �

Theorem 3.11. Define the mapping β : Θ→ L on X by

β(A) =
∨
{τ(B)� I(C)| A = B � (1− C)}.

The β is base for the (L,M)−smooth topology τ ?.

Proof. (1) Since I(0) = 1, β(1) = 1.
(2) Suppose there exist A1,A2 ∈ Θ such that β(A1�A2) � β(A1)�β(A2).

There exists t ∈M such that

β(A1 �A2) < t ≤ β(A1)� β(A2).

Since β(A1) ≥ t and β(A2) ≥ t, there exist B1,B2, C1, C2 ∈ Θ with A1 =
B1 � (1 − C1) and A2 = B2 � (1 − C2) such that β(A1) ≥ τ(B1) � I(C1) ≥ t
and β(A2) ≥ τ(B2)� I(C2) ≥ t. Therefore,

A1 �A2 = (B1 � (1− C1))� (B2 � (1− C2))

= (B1 � B2)� ((1− C1)� (1− C2))

= (B1 � B2)� (1− (C1 ∨ C2))

Hence,

β(A1 �A2) ≥ τ(B1 � B2)� I(C1 ∨ C2)

≥ τ(B1)� τ(B2)� I(C1)� I(C2)

= (τ(B1)� I(C1))� (τ(B2)� I(C2)) ≥ t.

It is a contradiction. Thus, β(A1 �A2) ≥ β(A1)� β(A2). �

Theorem 3.12. Let (X, τ) be (L,M)−smooth topological space and I1, I2

be two (L,M)−smooth ideals on X. Then, for any A ∈ LX and r ∈M,
(1) A?r(I1 � I2, τ) = A?r(I1, τ) ∨ A?r(I2, τ).
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(2) A?r(I1 ∨ I2, τ) = A?r(I1, τ
?(I2, ))�A?(I2, τ

?(I1)).

Proof. (1) Suppose that A?r(I1 � I2, τ) � A?r(I1, τ) ∨ A?r(I2, τ), there ex-
ist x ∈ X and t ∈M such that

A?r(I1 � I2, τ)(x) ≥ t > A?r(I1, τ) ∨ A?r(I2, τ)(x).

Since A?r(I1, τ)∨A?r(I2, τ)(x) < t, A?r(I1, τ)(x) < t and A?r(I2, τ)(x) < t. Now,
A?r(I1, τ)(x) < t, implies there exist D1 ∈ Qτ (xt, r) and for some I1(C1) ≥ r
such that for every y ∈ X,D1(y) +A(y)− 1 ≤ C1(y). Again, A?r(I2, τ)(x) < t,
implies there exists D2 ∈ Qτ (xt, r) and for some I2(C2) ≥ r such that for each
y ∈ X,D2(y) +A(y)− 1 ≤ C2(y). Therefore, (D1 �D2)(y) +A(y)− 1 ≤ (C1 �
C2)(y), for every y ∈ X. Since (D1�D2) ∈ Qτ (xt, r) and (I1�I2)(C1�C2) ≥ r,
A?r(I1 � I2, τ) < t, and this is a contradiction. So that A?r(I1 � I2, τ) ≤
A?r(I1, τ) ∨ A?(I2, τ).

Also, I1, I2 ≥ I1�I2, so by Theorem 3.4(2), A?r(I1�I2) ≥ A?r(I1)∨A?(I2).
Then, A?r(I1 � I2, τ) = A?r(I1, τ) ∨ A?(I2, τ).

(2) Suppose that A?r(I1 ∨ I2, τ) � A?r(I1, τ
?(I2, )) � A?(I2, τ

?(I1)), then
there exist x ∈ X and t ∈M such that

A?r(I1 ∨ I2, τ)(x) < t ≤ A?r(I1, τ
?(I2, ))(x)�A?(I2, τ

?(I1))(x)

Since A?r(I1 ∨ I2, τ)(x) < t, there exists D ∈ Qτ (xt, r), such that for every
y ∈ X, and for some (I1 ∨ I2)(C) ≥ r, D(y) + A(y) − 1 ≤ C(y). Therefore,
by heredity of L−smooth ideals and τ ≤ τ ? we can find D1 ∈ Qτ?(I1)(xt, r) or
D2 ∈ Qτ?(I2)(xt, r) such that for every y ∈ X, D1(y) + A(y) − 1 ≤ C1(y), or
D2(y) + A(y) − 1 ≤ C2(y), for some I2(C2) ≥ r or I1(C1) ≥ r. This implies
A?(I2, τ

?(I1))(x) < t or A?(I1, τ
?(I2))(x) < t. It is a contradiction. Thus,

A?r(I1 ∨ I2, τ) ≥ A?r(I1, τ
?(I2, ))�A?(I2, τ

?(I1)).

Conversely, similarly A?r(I1 ∨ I2, τ) ≤ A?r(I1, τ
?(I2, ))�A?(I2, τ

?(I1)).
An important result follows from the above theorem that τ ?(I) and [τ ?(I)]?(I)

(in short τ ??) are equal for any (L,M)−smooth ideal onX. �

Corollary 3.13. Let (X, τ, I) be (L,M)−sits. For any A ∈ LX and r ∈ M.
Then A?r(I) = A?r(I, τ ?) and τ ?(I) = τ ??.

Proof. Putting I1 = I2 in Theorem 3.12(2), we have required result. �

Corollary 3.14. Let (X, τ) be (L,M)−smooth topological space and I1, I2

be two (L,M)−smooth ideals on X. Then,
(1) τ ?(I1 ∨ I2) = [τ ?(I2)]?(I1) = [τ ?(I1)]?(I2).
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(2) τ ?(I1 � I2) = τ ?(I1)� τ ?(I2).

Proof. proof is easily by using Theorem 3.12(2). �

Definition 3.15. For (L,M)−smooth topological space (X, τ) with (L,M)−
smooth ideal I, τ is said to be smooth open compatible with I, denoted by
τ ∼ I, if for each A ∈ LX , xt ∈ A, and C ∈ LX with I(C) ≥ r there exists
D ∈ Qτ (xt, r) such that D(y) +A(y) − 1 ≤ C(y) holds for every y ∈ X, then
I(A) ≥ r.

Definition 3.16. Let {Bj : j ∈ J} be a indexed family of smooth set of
X such that BjqA for each j ∈ J where A ∈ LX . Then {Bj : j ∈ J} is said
to be a r−smooth quasi-cover of A iff A(y)+

∨
j∈J(Bj)(y) ≥ 1 for every y ∈ X.

Further, let (X, τ) be (L,M)−smooth topological space, for each τ(Bj) ≥ r.
Then this r−smooth quasi-cover will be called smooth quasi open-cover of A.

Theorem 3.17. Let (X, τ) be (L,M)− smooth topological space with (L,M)−
smooth ideal I on X. Then the following conditions are equivalent.

(1) τ ∼ I.
(2) If for every A ∈ LX has r−smooth quasi open-cover of {Bj : j ∈ J}

such that for each j, A(y) + Bj(y) − 1 ≤ C(y), for every y ∈ X and for some
I(C) ≥ r, then I(A) ≥ r.

(3) For every A ∈ LX , A�A?r = 0 implies I(A) ≥ r.

(4) For every A ∈ LX , I(Ã) ≥ r, where Ã =
∨
xt such that xt ∈ A but

xt 6∈ A∗r.
(5) For every τ ?(1−A) ≥ r, I(Ã) ≥ r.

(6) For every A ∈ LX , if A contains no B 6= 0 with B ≤ B?r , then I(A) ≥ r.

Proof. We prove most of the equivalent conditions which ultimately prove
all the equivalence.

(1)⇒(2): Let {Bj : j ∈ J} be a smooth quasi open-cover of A ∈ LX

such that for j ∈ J, A(y) + Bj(y) − 1 ≤ C(y), for every y ∈ X and for some
I(C) ≥ r. Therefore, as {Bj : j ∈ J} is r−smooth quasi open-cover of A, for
each xt ∈ A, there exist at least one Bj◦ such that xtqBj◦ and for every y ∈ X,
A(y) + Bj◦(y) − 1 ≤ C(y), for some I(C) ≥ r. Obviously, Bj◦ ∈ Qτ (xt, r). By
(1), we have I(A) ≥ r.

(2)⇒(1): Clear from the fact that a collection of {Bj : j ∈ J} which
contains at least one Bj◦ ∈ Qτ (xt, r), of each fuzzy point of A, constitutes a
smooth quasi-open cover of A.



(L,M)−smooth ideal structures 441

(1)⇒(3): Let A � A?r = 0, for every y ∈ X, xt ∈ A implies xt 6∈ A?r.
Then there exists D ∈ Q(xt, r) and I(C) ≥ r such that for every y ∈ X,
D(y) +A(y)− 1 ≤ C(y). Since D ∈ Qτ (xt, r). By (1), we have I(A) ≥ r.

(3)⇒(1): For every xt ∈ A, there exist an D ∈ Qτ (xt, r) such that for every
y ∈ X, D(y) + A(y) − 1 ≤ C(y), for some I(C) ≥ r. This implies xt 6∈ A?r.
Now, there are two cases: either A?r = 0 or A?r 6= 0 but t > A?r 6= 0. Let, if
possible, xt ∈ A such that t > A?r 6= 0. Let t′ = A?r(x). Then xt′ ∈ A∗r(x). Also,
xt′ ∈ A. Thus, for every V ∈ Qτ (xt, r) for every I(C) ≥ r, there is at least
one y ∈ X such that V(y) +A(y) − 1 > C(y). Since xt′ ∈ A, this contradicts
the assumption for every fuzzy point of A. So, A?r = 0. That means, xt ∈ A,
implies xt 6∈ A∗r. Now this is true for every A ∈ LX . So, for every A ∈ LX ,
A�A?r = 0. Hence, by(3), we have I(A) ≥ r, which implies τ ∼ I.

(3)⇒(4): Let xt ∈ Ã. Then, xt ∈ A but xt 6∈ A?r. So, there exist an
D ∈ Qτ (xt, r) such that for every y ∈ X, D(y) + A(y) − 1 ≤ C(y), for some

I(C) ≥ r. Since Ã ≤ A, So for every y ∈ X, D(y) + Ã(y)− 1 ≤ C(y) for some

I(C) ≥ r. Therefore, xt 6∈ Ã?r implies that Ã?r = 0 or Ã?r 6= 0 but t > Ã?r.
Let xt′ ∈ Pt(X) such that t′ ≤ Ã?r(x) < t, i.e., xt′ ∈ Ã?r. Then, for each
V ∈ Qτ (xt′ , r) and for each I(C) ≥ r there is at least one y ∈ X such that

V(y) + Ã(y)− 1 > C(y) Since Ã ≤ A, then so for each V ∈ Qτ (xt′ , r) and for
each I(C) ≥ r there is at least one y ∈ X such that V(y)+A(y)−1 > C. This

implies xt′ ∈ A?r. But as t′ < t, xt ∈ Ã implies xt′ ∈ Ã, and therefore, xt′ 6∈ A?r.
This is a contradiction. Hence, A?r = 0, so that xt ∈ Ã implies xt 6∈ Ã?r with

Ã?r = 0. Thus, Ã � Ã∗r = 0, for every A ∈ IX . Hence, by (3), I(Ã) ≥ r.

(4)⇒(5): Straightforward.

(4)⇒(6): Let A ∈ LX , A contains B 6= 0 with B ≤ B?r . Then, for every

A ∈ LX , A = Ã∨(A�A?r). Therefore, A?r = (Ã∨(A�A?r))?r = Ã?r∨(A�A?r)?r.
by Theorem 3.4(5).

Now by (4), we have I(Ã) ≥ r, then Ã?r = 0. Hence, (A � A?r)?r = A?r but
A � A?r ≤ A?r, then A � A?r ≤ (A � A?r)?r. This contradicts the hypothesis
about every fuzzy A ∈ LX , if 0 6= B ≤ A with B ≤ B?r . Therefore, A�A?r = 0,

so that A = Ã by (4), we have I(A) ≥ r.

(6)⇒(4): Since, for every A ∈ LX , A � A?r = 0 Therefore, by (6), as A
contains no non-empty fuzzy subset B with B ≤ B?r , I(A) ≥ r.

(5)⇒(1): For every A ∈ LX , xt ∈ A, there exist an D ∈ Qτ (xt, r) such that
D(y) + A(y) − 1 ≤ C(y) holds for every y ∈ X and for some I(C) ≥ r. This
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implies xt 6∈ A?r. Let B = A ∨ A∗r. Then, B∗r = (A ∨ A∗r)?r = A?r ∨ (A?r)?r = A?r
by Theorem 3.4(4). So, Cl?(B, r) = B ∨ B?r = B. That means τ ?(1 − B) ≥ r.
Therefore, by (5), we have I(B) ≥ r.

Again, For any xt ∈ Pt(X), xt 6∈ B̃?r implies xt ∈ B but xt 6∈ B?r = A?r
So, as B = A ∨ A?r, xt ∈ A. Now, by hypothesis about A, we have for every

xt ∈ A?r. So, B̃ = A. Hence, I(A) ≥ r, i.e., τ ∼ I. �

Theorem 3.18. Let (X, τ) be (L,M)− smooth topological space with (L,M)−
smooth ideal I, on X. Then the following are equivalent and implied by τ ∼ I.

(1) For every A ∈ LX , A�A?r = 0 implies A∗r = 0.

(2) For every A ∈ LX , Ã?r = 0.

(3) For every A ∈ LX , A�A?r = A?r.

Proof. Clear from Theorem 3.17. �

An important consequence of Theorem 3.18 is the following corollary.

Corollary 3.19. Let τ ∼ I. Then β(τ , I), a base for τ ?, and also β(τ , I) = τ ?.

Proof. Clear.

4 Conclusion

A smoothing by using fuzzy logic gives rather good results. In particular
smoothing of ideals , r−smooth open local map. (L,M)−smooth ideal topo-
logical spaces seem to be a good examples and corresponding concepts trace
back to the ( classic ) fuzzy ideal structures. We feeling that we can be build
a new mathematical object ( (L,M)−smooth structures ) where L = (L,≤
,∨,�,′ , 0, 1) denotes a completely distributive lattice with order-reversing in-
volution ′ which has the least and greatest elements,say 0 and 1, respectively.
This approach could be a subject of further studies.
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