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Abstract
In this paper we establish the concept of (L, M )—smooth ideal and
(L, M')—smooth local map of (L, M)—smooth ideals with (L, M)—smooth
topologies . We study a new sort of (L, M)—smooth ideal and (L, M )—smooth
local map namely (L, M)—smooth ideal and r—smooth open local map.
Many of its characterizations, properties and connections between it
and other corresponding fuzzy notions are studied.
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1 Introduction

Sostak [16] introduced the notion of (L,A)— fuzzy topological spaces as
a generalization of L—topological spaces. Hohle and Sostak [11] substitute
a complete quasi-monoidal lattice (or GL-monoid) instead of a completely
distributive lattice or a unit interval. Also they introduced the concept of
L—filters for a complete quasi-monoidal lattice L which is the dual of fuzzy
ideals. Many authors[1-10,12-15,17,18,19,20] studied the structures of fuzzy
topology and the structures of fuzzy filters,.fuzzy ideals and fuzzy smooth ide-
als. Ramadan, Abdel-Sattar and Kim [14] studied the concept of a smooth
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ideals in [0,1]-smooth topological spaces. Abdel-Sattar [2] studied some struc-
tures of (L, ®)— smooth topological spaces and their properties. In [6] he
studied the concept of L—smooth ideals and L-smooth ideal bases in (L, ®)—
smooth topological spaces. In [19] we study some results of fuzzy ideals since
the lattice is the closed interval I = [0, 1] . In this paper we establish the struc-
tures of (L, M)—smooth ideal by (L, M)— smooth topological spaces | 22].The
concept of r—smooth open local map, new space namely (L, M)— smooth ideal
topological spaces and many of its characterizations are studied.

2 Preliminaries

Throughout this paper, let X be a nonempty set. L = (L, <,V,®,/,0,1)
denotes a completely distributive lattice with order-reversing involution ’ which
has the least and greatest elements,say 0 and 1, respectively. Let L* be the
family of all L-fuzzy subsets of X. For a € L, a(z) = o for all z € X. A

fuzzy point, z; for t € L is an element of L~ such that, for y € X,
t ify=u,

(y) = { 0 ifya.
The set of all fuzzy points in X is denoted by Pt(X). A fuzzy point z;, € \ iff
t < Ax). A fuzzy set A is quasi-coincident with u, denoted by Ag p, if there
exists x € X such that A\(x)+p(z) > 1. If X is not quasi-coincident with p, we
denote A\ g p . All the other notations and the other definitions are standard
in fuzzy set theory.

Definition 2.1. [11] A triple (L, <,®) is called a strictly two-sided, com-
mutative quantale (stsc-quantale, for short ) iff it satisfies the following prop-
erties:

(L1) L = (L,<,1,0) is a complete lattice.
(L2) (L, ®) is a commutative semigroup.
(L3) a=a® 1, for each a € L.

)

@

(L4) ® is a distributive over arbitrary joins, i.e. (Vierai )©b =
Vier (@ ©).

Example 2.2 [11] (1) Each frame is a stsc- quantale. In particular, the
unite interval ( [0, 1], <,V,A,0,1) is a stsc-quantale.

(2) The unit interval with a left-continuous t-norm t, ( [0,1],<,t),is a
stsc-quantale.

(3) Every GL-monoid is a stsc-quantale.

(4) Define a binary operation ® on [0, 1] by x ®y = max{0,z+y—1}.Then
([0,1], <,®) is a stsc-quantale.
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Lemma 2.3 [ 21] For each z,y,z,z;,y;,w € L,we have the following
properties:

)T —z=2 Lox=1,

(2)ify<z,thenzoy<zoz,zdy<zdzzr—y<zx—z and
z—=x<y—uzx,

<y iff t 5>y=T,

4) (Nya)* = Vayis (Viga)™ = Ay,
) = (Aiyi) = Ni(@ = i),

) (Vizi) =y = Nz = y),
) T O (Viyi) = Vi(z © yi),

8) (/\zxz) Dy = /\i(iL‘Z’ ©® y),
)
0
1

10) (zoy)=(r =y ) 2dy=2"—>y and x > y =y* — x¥,

) (z=y)o0kE-2w) <(20z2) = (yow),

12) 22 y<(r®z2)=>(yoz)and (r > y) O (y = 2) <z — 2,

13) (2 2 1) © (2 > w) < (26 2) — (y & w),

M)zeo(rx—y) <y and y<z— (z0Oy),

15) (xVy) o (zVw)<(zVz)Vyow) <(zrdz)V(yOw),

16) Vier Ti — Vierly; = /\zer(xz — yl)» il Ti — NierlYi = /\ier(iﬂi — yi)>
I (zoy)ozaow) <(z62)d (yow),

1 ,<z—>1:§(x—>y) (z—=y)and (y — 2) < (z = y) = (r = 2).

19) (z*)* ==

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

8)
9)

All algebraic operations on L can be extended pointwise to the set L~ as
follows: Vo € X,V\, u € L~

(1) A < p= Ax) < plx),

(2) Ao p)(z) = Az) © p(z),

(3) (A = p)(@) = Ax) = p(x).

Definition 2.4. [2,11,12] A mapping 7 : L* — M is called (L, M')—smooth
topology on X if it satisfies the following conditions:

(0O1) T(0) =T(1) =1, where 0(z) = 0 and 1(z) = 1 for all x € X.

(02) Ty © pa) = T (1) © T (1), for any py, iy € LX.

2)
( 3) (\/zel" 1) > /\zEF T (1), for any {p, }ier C L*.
An (L, M')—smooth topological spaces is called enriched if

(P) T (@ ®u) > T(u),for any u € LX, and o € M.

The pair (X,7) is called (L, M)— smooth topological spaces ( resp. en-
riched (L, M)— smooth topological spaces )

Let (X, T) and (Y,7T") be two (L, M)—smooth topological spaces and f :
X — Y be a mapping. Then f is said to be smooth continuous iff T'(u) <
T(f(p)) for each p € LY.
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Definition 2.5. [11] Let (L, *) and (L, ®) be a stsc-quantale. An opera-
tion ® dominates * if it satisfies: Vaq, 29, y1,%2 € L = (x1xy1) © (19 % y2) >
(21 © 22) * (Y1 © Y2)

Definition 2.6. [11] Let (L, *) and (L, ®) be a stsc-quantale. An opera-
tion ® dominates * if it satisfies: Vaq, 29, y1,%2 € L = (x1xy1) © (2 % y2) >
(21 © x2) * (Y1 © Y2)

Example 2.7. [11]
(1) For any left- continuous t-norm #, A dominates * because (x1 * y1) A

(T2 % y2) > (21 A x2) * (Y1 A y2).

(2) Define t-norm as @y = ﬁ and zxy =2z y. Then ® dominates

Definition 2.8. [14] If X is a set, then an ideal on X is a nonempty D*
C 2% satisfying the following conditions:
- X ¢ D"
2-IfAB €D*= AUB € D*.
3-1If B eD*and ACB = A€ D*ie., D*is alower set.

Definition 2.9. [14] If X is a set, then a preideal on X is a nonempty
D C IX satisfying the following conditions:

- 1¢ D.

-t peD=AVueD.

3-If peD and A<pu= AeD.

Definition 2.10. A map [ : L* x M — L¥ is called (L, M)—smooth
interior operator on X iff I satisfies the following condations :

(I1) I(1,r) =1 forall r € M.

(12) I(A\,7) < X for all r € M.

(I3) If A <pand r <s, then I(\, s) < I(u,7).

(I4) IANOp, rO©s) > I(A\r)OI(,s).

The pair (X, ) is called (L, M)—smooth interior space.

The (L, M)— smooth interior operator I is called topological if

I(I(\r)>I(\r), YAeLX re M.

Let I and I be two (L, M )—smooth iterior operators on X. We say that I;
is finer than I, (15 is coarser than Iy), denoted by I < Iy, if Iy(A\,7) < I1(A\, 1)
for all A € LX,r € M.

Theorem 2.11. Let (X, 7) be (L, M)— smooth topological spaces .Then
for each r € M, A € LX, we define the operator C;, : LX x M — L¥ as follows:

C.(Ar)= N{BeLX|A<B,7(1-B) >r}.
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For each A,B € L* and r,s € M, the operator C, satisfies the following
conditions:

(C1) C,(0,7) = 0.
C2) A< C (A, 7).

C3) Cr(A,r) VvV Cr(B,r)=C.(AV B,r).
Cr(A,r) <Cr(A,s) if r <s.
C5) C(Cr(A,r), 1) = C(A, 7).

(C2)
(C3) C
(C4)
(C5)
(C6)

C6) If s = \/{r € Ly|C(A,1r) = A}, then C (A, s) = A.

Definition 2.12. Let (X,7) be (L, M)— smooth topological spaces, for
each A € LX,r € M. Then:

(1) Ais called r-smooth regular open (r-SRO, for short) iff A = int.(C-(A,r),r).

(2) Ais called r-smooth preopen (r-SPO, for short) iff A < int, (C,(A,r),7)..

Definition 2.13. An (L, M)—smooth topological spaces (X, 7) is called r—smooth
regular iff for each 7(A) > 7 andr € M, A= \/{B € LX|7(B) > r,C,(B,r) =
A}

Definition 2.14. Let (X, 7) be (L, M)—smooth topological spaces, for each
A€ LX, € P(X) and r € M. Then, A is called r—open Q,-neighborhood
of x; (for short, Q,(x¢, 7)) if x,qA with 7(A) > r.

Definition 2.15. Let 0 € © be a subset of LX. A mapping 3 : © — M
is called (L, M)—smooth base on X if it satisfies the following conditions:

(1) B(1) =1,

(2) B(A1 © AQ) > ,6(./41) ®© 5(./42), for all A, A; € O.
Definition 2.16. Let f: (X,7) — (Y,n) be a mapping. Then,

(1) f s called smooth continuous (S-continuous, for short) iff n(A) <
7(f71(A)), for each A € LY.

(2) f is called smooth precontinuous (SP-continuous, for short) iff f=*(.A)
is r-SPO set for each n(A) > r

(3) f is called smooth almost continuous iff 7(f~*(A)) > r, for each
A€ LY with A = int,(C,(A,r),r) .

(4) f is called smooth weakly continuous iff f~1(A) < int,(f~1(C,(A,r)),7)
for each A € LY and r € M with n(A) >r .

(5) f is called smooth strongly continuous iff f(C,(A,7)) < f(A) for each
AelXandre M.
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3 (L,M)— Smooth ideal and r—smooth open
local map

Definition 3.1. A mapping Z : LX — M is called (L, M)—smooth ideal on
X if it satisfies the following conditions:

(1) Z(0) = 1, Z(1) = 0,

(L) If A < B, then Z(B) < Z(A), for each A, B € L*.

(I3) Z(AV B) > Z(A) © Z(B), for A, B € L*~.

If 7y and Z; are (L, M)—smooth ideals on X, we say that Z; is finer than
T, (I, is coarser than 7,), denoted by Z, < 7y, iff Z;(A) < Z,(A) for A € L*.

The triple (X,7,Z) is called (L, M)—smooth ideal topological space (
(L, M)—sits, for short ). For o € M, (X,74,Z,) is fuzzy ideal topological
space in the sense of Sarkar [18].

Definition 3.2. Let (X,7,Z) be (L, M)-sits and A € L¥. Then the 1-
smooth open local map A%(7,Z) of A is the union of all fuzzy points x; such
that if B € Q(z,7) and Z(C) > r then there is at least one y € X for which
B(y) + Aly) —1>C(y).

there exists B € Q(x,r) such that for every y € X, B(y) + A(y) — 1 < C(y),
for some Z(C) > r. AX(7,Z) is the set of fuzzy points at which A does not
have the property r—fuzzy open locally.

We will occasionally write A% or AX(Z) for Ax(7,7) and it will cause no
ambiguity.

Example 3.3.Let (X,7,Z) be (L, M)—sits. The simplest fuzzy ideal on
X isZ°: LY - M where

IO(C)—{ 1, if C=0,

0, otherwise.

If we take Z = Z°, for each A € L* we have A* = C.(A,7).

Theorem 3.4. Let (X, 7) be (L, M)— smooth topological space and Z;, Z,
be two (L, M)—smooth ideals of X. Then for each r € M and A,B € L*.
(1) If A < B, then Ar < B;.

)

) A= CL (A%, 1) < Cr(A, 7).

) (A7) < A7

) (A7 V By) = (AV B);.

) If Z(B) > r, then (AV B)* = A* V B = A*.
) If 7(B) > r, then (B® A*) < (B® A)*.
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(8) (A7 ©B}) = (A B);.

Proof. (1) Suppose there exist A € L* and r € M such that A* £ By,
there exist z € X and ¢ € M such that

Ar(x) >t > Bi(z).

Since B (z) < t, there exists D € Q(z¢,r) with Z(C) > r such that for every
y € X, we have,

D(y) + B(y) — 1 < C(y).

Since A < B, D(y)+A(y)—1 < C(y). So, A*(x) < t, and this is a contradiction
. Thus, AX < B

(2) Suppose that, AX(Zy,7) # A%(Zs, 7), then there exist © € X and t € M
such that

AX(Th, ) (@) < t < ATy, 7)(2).

Since AX(Zy,7)(z) < t, there exists D € Q(xt, r) with Z;(C) > r such that
for every y € X, we have, D(y) + A(y) — 1 < C(y). Since Zy(C) > Z,(C) >,
D(y) + A(y) — 1 < C(y). Thus, AX(Zy, 7)(z) < t. It is a contradiction . Thus,
ATy, 1) > A(Ly, 7).

(3) We show that A% < C(A,r). Suppose that, A% £ C;(A,r), then there
exist x € X and t € M such that

Ar(z) >t > Cr (A, r)(x).

Since A*(x) > t, xy € A%. So there is at least one y € X for each D € Q(xy,r)
and Z(C) > r such that D(y) + A(y) > C(y) + 1. Therefore, z, € C-(A,r). It
is a contradiction. Hence, AX < C, (A, 7).

Now we show that AX > C. (A%, 7). Suppose that, Ar # C, (A% r), then
there exist z € X and ¢ € M such that

Ar(z) < t < O (A%, 1)(2).

Since C, (A, r)(z) > t, vy € C (A 1). So, there at last one y € X with
B € Q(x,r) such that B(y)+.A%(y) > 1. Therefore, A*(y) # 0. Let s = A*(y).
Then ys € A* and s + B(y) > 1, so that B € Q(ys,7). Now ys € A* implies
there is at least one ' € X such that D(z')+.A(z')—1 > C(z") for all Z(C) > r
and D € Q(ys,r). This is also true for B. So there is at least one #” € X such
that B(z") + A(z") — 1 > C(z"). Since B is an arbitrary and B € Q(xzy,7),
then, Ax(x) > t. It is a contradiction. Thus Af > C (A%, 7).
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(4) Form (3), we have (A})r = C-((AD)r,r) < C.(Axr) = Ar.
(5) (=) Since A,B < AV B. By (1), we have A% < (A V B)* and
Br < (AV B): Hence A5V B < (AV B):.

(<) Suppose that (AXV B}) # (AVB)Z, then there exist © € X and t € M
such that

(A7 V B)(x) <t < (AVB);(z).

Since (AXV B¥)(z) < t, Ax(x) < t or BX(x) < t. So, there exists D; € Q(xy,7)
such that for every y € X and for some Z(C;) > r we have,

Di(y) + Aly) —1 < Ci(y).

Similarly there exists Dy € @Q(x,r) such that for every y € X and for some
Z(Cy) > r we have,
Dy(y) + Bly) — 1 < Ca(y).

Since D = D; ® Dy € Q(ay,7) and by (I3), Z(C; V C3) > r. Thus, for every
ye X, D)+ (AVB)(y) —1 < (Cy VCq)(y). Therefore, (AV B)i(z) <t. Itis
a contradiction. Hence AV BX > (AV B);.

(6), (7) and (8) are obvious. O

Example 3.5. [19]. Define 7,Z: LX — M , where L= M =1 =[0,1] as
follows:

1, if B e {1,0}, 1, if C=0,
1 if B=0.38 1, ifC=03
— 29 pSZio8) — 29 pSTL0S)
"B =41 =07, TO={2 to<B<0s
0, otherwise, 0, otherwise.

Theorem 3.6. Let (X,7,Z) be (L, M)—sits, and {A; : i € J} C L*.
Then:

(1) V(A7 ie ) < (VA= ve )y

(2) (NAi: i€ )y < (A(A)y: 1€ ).

Proof. (1) Since A; < \/ A;, for each i € J, by Theorem 3.4(1), we have
(A)r < (V Az, for each ¢ € J. This implies (\/(A)r:ie€ J) < (VA : i€
J)E.

(2) Since A A; < A;, (NA): < (A)r, for each i € J. Thus, (NA; : @ €
I < (N(A); i€ J). O
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Remark 3.7. For each (X,7,Z) and A € LY, we can defines
Clr(A,r)=AV A, int"(A,r)=A60[1—(1-A):].

Clearly, ClI* is a fuzzy closure operator and 7%(Z) is the (L, M)— smooth
topology generated by Cl*. i.e.,

(I)(A) = \/{r| CIr(1— Ar)=1- A},

Now if, Z = Z° then CI*(A,7) = AV A* = AV C.(A,r) = C,(A,r), for
Ae LX. So, 7(Z° = 7.

Theorem 3.8. Let (X,7,Z) be (L, M)—sits, r € M and A € L*. Then
(1) int*(AV B,r) < int*(A,r) Vint*(B,r).
(2) int (A, r) <int*(A,r) < A< CIHA,r) < C(Ar).
3)Cl*(1—A,r)=1—int*"(A,r)and 1 — ClI*(A,r) = int*(1 — A, ).
(4) int*(A® B,r) = int*(A,r) © int*(B,r).

Proof. (1) and (2) Follows directly from definition Cl*, int* and C.
(3) Since

CPL—Ar)=1—AV(L- A =1-AV[L— (1 (L —A))
— 1 [AG (1 — (1 - A)) = 1—int*(Ar).

(4) From Theorem 3.4 (5), we have

int*(AoB,r)=(AoB)ol—-(1-(A6B));]
(AoB)ol-[1-A)V(I-B)]

= (AoB)o[l-[1-A)7Vv(1-B8)l

= (Aoll-(1-A;)oeBoll-(1-B5)])

= nt*(A,r) ©int*(B,r). O

Theorem 3.9. Let (X,71,Z) and (X, 72,Z) be (L, M)—sits’s and 7; < 7.
Then

(1) A(r3, T) < A1, ).

(2) T1(Z) < 75(2).

Proof. (1) Suppose that AX(72,Z) £ A%(71,Z), then there exist z € X
and t € M such that

Ax (70, T)(x) > t > A(11, T) ().
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Since AX(71,Z)(z) < t, there exist D € Q. (x4, ) with Z(C) > r such that for
every y € X, D(y) + A(y) — 1 < C(y). Since 71 < 79, D € Qr, (x4, 7). Thus,
A¥(19,Z)(x) < t. It is a contradiction.

(2) Clearly, 75(Z) < 75(2), as A%(79,7) < A%(11,7). O

Theorem 3.10. Let (X, 7,7Z;) and (X, 7,Z,) be (L, M)—sits’s and Z; < Zs.
Then

(1) A(Zy,7) = AX(Zs, 7).

(2) T1(Z1) < 73(Z2).

Proof. Obvious. U
Theorem 3.11. Define the mapping 5:© — L on X by

B(A) = \/{r(B) o Z(C)| A=Bo (1-C)}.
The g is base for the (L, M)—smooth topology 7*.

Proof. (1) Since Z(0) =1, (1) = 1.
(2) Suppose there exist A;, Ay € O such that 5(A; ©As) # B( A1) ©B(Ay).
There exists ¢ € M such that

ﬁ(Al ® AQ) <t< B(.Al) O) 6(~A2)

Since (A1) > t and [(Ay) > t, there exist By, By,Ci,Co € © with A; =
Bl ® (l — Cl) and .AQ = BQ ® (l — Cg) such that B(Al) 2 T(Bl) @I(Cl) Z t
and [(Az2) > 7(B2) ® Z(Cy) > t. Therefore,

A0 A=B1010—-C)) o Bo(1—-C))

(BiOB) ©((L—C1) © (L —Cy))
= (BioOB)®(1—(CVC(y))

Hence,

B(AL ® As) > 7(B1 © By) ©Z(Cy V Cy)
> 7(B1) © 1(By) ©Z(Ch) ©®Z(Cy)
= (1(B) ©Z(C))) © (1(B2) @ Z(Cy)) > t.

\]

It is a contradiction. Thus, S(A; ® Az) > (A1) © B(Az). O

Theorem 3.12. Let (X, 7) be (L, M)—smooth topological space and Z;,Z,
be two (L, M)—smooth ideals on X. Then, for any A € LX and r € M,
(1) ATy © Iy, 7) = AN(Th, 7) V AX(Z2, 7).
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(2) A:(Il \/IQ,T) = A:(Il,T*(IQ, )) ® A*(IQ,T*<11)).

Proof. (1) Suppose that AX(Z; ® I, 7) £ AX(Zy,7) V A%(Zy, 7), there ex-
ist z € X and ¢ € M such that

AL 0Ly, 1) (x) >t > ALy, 1) VAL, 7)(2).

Since AX(Zy, T)VAL(Zo, 7)(z) < t, AN(Zy, 7)(2z) < t and A%(Zy, 7)(x) < t. Now,
AX(Zy,7)(x) < t, implies there exist Dy € Q,(x¢,7) and for some Z,(Cy) > r
such that for every y € X, D;(y) + A(y) — 1 < Ci(y). Again, AX(Zy, 7)(z) < t,
implies there exists Dy € Q. (24, 7) and for some Zy(Cy) > r such that for each
y € X, Dy(y) + A(y) — 1 < Ca(y). Therefore, (D; ©® Dy)(y) + A(y) — 1 < (C1 ®
Cy)(y), for every y € X. Since (D1 ©Ds) € Q (x4, 7) and (Z; ©Z3)(CL ©Cs) > 1,
ANZy ® Iy, 7) < t, and this is a contradiction. So that AX(Z; ® Iy, 7) <
.A:(Il, 7') V A*(IQ, 7').

Also, 7,,7T, > 7,®Z,, so by Theorem 3.4(2), AX(Z,0Z1y) > AX(Z)VA*(Z,).
Then, AXNZ) © Iy, 7) = AX(Zy, 7) V A (L, 7).

(2) Suppose that AX(Zy, V I, 1) # ANZi,7(12,)) © A*(Zy,7*(Z1)), then
there exist x € X and t € M such that

ANV Iy, 7)(x) <t < ATy, 75 (Zs,))(x) © A (Zy, 7(Z1)) ()

Since AX(Zy V Iy, 7)(x) < t, there exists D € Q,(x¢, 1), such that for every
y € X, and for some (Z; VZ,)(C) > r, D(y) + A(y) — 1 < C(y). Therefore,
by heredity of L—smooth ideals and 7 < 7% we can find Dy € Qr+(z,) (@, 7) Or
D2 € Qrv(z) (¢, 1) such that for every y € X, Di(y) + A(y) — 1 < Ci(y), or

Ds(y) + A(y) — 1 < Ca(y), for some Zy(C2) > 7 or Zy(Cy) > r. This implies
ALy, 7(Th))(z) < t or AY(Zy,7*(Z2))(z) < t. It is a contradiction. Thus,
A*(Il \/IQ, ) > .A*(Il, (IQ, )) © A*(IQ,T*(Il)).

Conversely, similarly AX(Z; V Iy, 7) < ATy, 7(Z2, ) © A (Zy, 7°(11)).
An important result follows from the above theorem that 7*(Z) and [7*(Z)]*(Z)
(in short 7*) are equal for any (L, M)—smooth ideal on X. O

Corollary 3.13. Let (X, 7,Z) be (L, M)—sits. For any A € LX and r € M.
Then AX(Z) = AX(Z,7*) and 7(Z) = 7.

Proof. Putting Z; = 7, in Theorem 3.12(2), we have required result. O

Corollary 3.14. Let (X,7) be (L, M )—smooth topological space and Z;,Z,
be two (L, M)—smooth ideals on X. Then,

(1) (T VL) = [T(I)]" () = [7(T)]"(Zo).
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(2) T*<Il ® IQ) = T*(Il) ® T*(I2>.
Proof. proof is easily by using Theorem 3.12(2). O

Definition 3.15. For (L, M)—smooth topological space (X, 1) with (L, M)—
smooth ideal Z, 7 is said to be smooth open compatible with Z, denoted by
7 ~ I, if for each A € L*, 2, € A, and C € LX with Z(C) > r there exists
D € Q,(xt,r) such that D(y) + A(y) — 1 < C(y) holds for every y € X, then
I(A)>r.

Definition 3.16. Let {B; : j € J} be a indexed family of smooth set of
X such that BjgA for each j € J where A € L*. Then {B; : j € J} is said
to be a r—smooth quasi-cover of A iff A(y)+V,c;(B;)(y) > 1for every y € X.

Further, let (X, 7) be (L, M)—smooth topological space, for each 7(B;) > r.
Then this r—smooth quasi-cover will be called smooth quasi open-cover of A.

Theorem 3.17. Let (X, 7) be (L, M)— smooth topological space with (L, M)—
smooth ideal Z on X. Then the following conditions are equivalent.

(1) T ~Z.

(2) If for every A € L* has r—smooth quasi open-cover of {B; : j € J}
such that for each j, A(y) + B;(y) — 1 < C(y), for every y € X and for some
Z(C) > r, then Z(A) > r.

(3) For every A € L*, A® A% = 0 implies Z(A) > 7.

(4) For every A € LX, Z(A) > r, where A = \/ 2, such that =, € A but
x & A7
(5) For every 7%(1 — A) > r, Z(A) > r.

(6) For every A € LX, if A contains no B # 0 with B < B*, then Z(A) > r.

Proof. We prove most of the equivalent conditions which ultimately prove
all the equivalence.

(1)=(2): Let {B; : j € J} be a smooth quasi open-cover of A € L
such that for j € J, A(y) + B;(y) — 1 < C(y), for every y € X and for some
Z(C) > r. Therefore, as {B; : j € J} is r—smooth quasi open-cover of A, for
each x; € A, there exist at least one Bj, such that x,¢g3;, and for every y € X,
A(y) + Bjo(y) — 1 < C(y), for some Z(C) > r. Obviously, Bj, € Q(x,7). By
(1), we have Z(A) > r.

(2)=(1): Clear from the fact that a collection of {B; : j € J} which
contains at least one Bj, € Q,(x,r), of each fuzzy point of A, constitutes a
smooth quasi-open cover of A.
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(1)=(3): Let A® Ax = 0, for every y € X, z; € A implies z; ¢ A~
Then there exists D € Q(xy,r) and Z(C) > r such that for every y € X,
D(y) + A(y) — 1 < C(y). Since D € Q. (¢, 7). By (1), we have Z(A) > r.

(3)=(1): For every z; € A, there exist an D € Q,(x,r) such that for every
y € X, D(y) + Aly) — 1 < C(y), for some Z(C) > r. This implies x; ¢ A”.
Now, there are two cases: either A7 = 0 or Ar # 0 but ¢t > A7 # 0. Let, if
possible, z; € A such that t > A% # 0. Let t' = Ax(x). Then xpy € A% (z). Also,
zy € A. Thus, for every V € Q. (x4,r) for every Z(C) > r, there is at least
one y € X such that V(y) + A(y) — 1 > C(y). Since zy € A, this contradicts
the assumption for every fuzzy point of A. So, AF = 0. That means, z; € A,
implies 7; ¢ A*. Now this is true for every A € L*. So, for every A € L¥,
A ® Ar = 0. Hence, by(3), we have Z(.A) > r, which implies 7 ~ Z.

(3)=(4): Let z;, € A. Then, 2, € A but 2, ¢ A?. So, there exist an
D € Q(zy,7) such that for every y € X, D(y) + A(y) — 1 < C(y), for some
Z(C) > r. Since A < A, So for every y € X, D(y) + A(y) — 1 < C(y) for some
Z(C) > r. Therefore, z; ¢ A* implies that A* = 0 or A* % 0 but ¢ > A*.
Let 2y € Py(X) such that ¢ < A*(z) < t, ie., 2y € A% Then, for each
V € Q.(zy,r) and for each Z(C) > r there is at least one y € X such that
V(y) + A(y) — 1 > C(y) Since A < A, then so for each V € Q,(xy,r) and for
each Z(C) > r there is at least one y € X such that V(y) +.A(y) —1 > C. This
implies zy € AX. But ast’ <t, x; € A implies xy € .Z and therefore, Ty & A
This is a contradiction. Hence, A% = 0, so that x; € A implies Ty ¢ A* with
A* = 0. Thus, A® A* = 0, for every A € IX. Hence, by (3), Z(A) > r.

(4)=(5): Straightforward.

(4)=(6): Let A € L*, A contains B # 0 with B < B*. Then, for every

Ae LX, A= AV(AGAY). Therefore, A* = (AV(AGA)): = AV (AG AN
by Theorem 3.4(5).
Now by (4), we have Z(A) > r, then A* = 0. Hence, (A ® A%)* = A* but
Ao A < Ax then A© AF < (AG Ar)r. This contradicts the hypothesis
about every fuzzy A € LX) if 0 # B < A with B < Br. Therefore, A® A* = 0,
so that A = A by (4), we have Z(A) > r.

(6)=>(4): Since, for every A € L*, A ® A* = 0 Therefore, by (6), as A
contains no non-empty fuzzy subset B with B < B, Z(A) > r.

(5)=>(1): For every A € L*, x; € A, there exist an D € Q, (x4, r) such that
D(y) + A(y) — 1 < C(y) holds for every y € X and for some Z(C) > r. This
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implies z; & A% Let B = AV A% Then, Bf = (AV A%): = Ar Vv (AD)r = Ax
by Theorem 3.4(4). So, Cl*(B,r) = BV Bf = B. That means 7*(1 — B) > r.
Therefore, by (5), we have Z(B) > r.

Again, For any z, € P,(X), =, ¢ B* implies , € B but z, ¢ B* = A
So, as B = AV A7, 2; € A. Now, by hypothesis about A, we have for every
z; € A% So, B= A. Hence, Z(A) > r, ie, 7 ~T. O

Theorem 3.18. Let (X, 7) be (L, M)— smooth topological space with (L, M)—
smooth ideal Z, on X. Then the following are equivalent and implied by 7 ~ Z.
(1) For every A € L*, A® Af = 0 implies A% = 0.
(2) For every A € LY, Ax = 0.
(3) For every A € L*, A® Ar = A2

Proof. Clear from Theorem 3.17. ]
An important consequence of Theorem 3.18 is the following corollary.
Corollary 3.19. Let 7 ~ Z. Then 3(7,Z), a base for 7%, and also 5(7,Z) = 7*.

Proof. Clear.

4 Conclusion

A smoothing by using fuzzy logic gives rather good results. In particular
smoothing of ideals , r—smooth open local map. (L, M)—smooth ideal topo-
logical spaces seem to be a good examples and corresponding concepts trace
back to the ( classic ) fuzzy ideal structures. We feeling that we can be build
a new mathematical object ( (L, M)—smooth structures ) where L = (L, <
,V,®,”,0,1) denotes a completely distributive lattice with order-reversing in-
volution ” which has the least and greatest elements,say 0 and 1, respectively.
This approach could be a subject of further studies.
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