International Mathematical Forum, Vol. 15, 2020, no. 8, 429 - 444 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2020.912145

(L, M)-Smooth Ideal Structures

M. A. Abdel-Sattar

Department of Mathematics College of Science and Arts, King Khaled University 61913 Mhayal Asier, KSA and

Department of Mathematics and Computer Science Faculty of Science, Beni-Suef University, Egypt

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2020 Hikari Ltd.

Abstract

In this paper we establish the concept of (L,M)—smooth ideal and (L,M)—smooth local map of (L,M)—smooth ideals with (L,M)—smooth topologies. We study a new sort of (L,M)—smooth ideal and (L,M)—smooth local map namely (L,M)—smooth ideal and r—smooth open local map. Many of its characterizations, properties and connections between it and other corresponding fuzzy notions are studied.

Mathematics Subject Classification: 54A40, 06D35, 03B52

Keywords: (L, M)-smooth topological spaces, (L, M)- smooth ideal, r-smooth open local map, r-smooth quasi H-closed, r-smooth L-open, r-smooth L-closed and $F\mathcal{I}$ -continuous

1 Introduction

. Šostak [16] introduced the notion of (L, \wedge) — fuzzy topological spaces as a generalization of L—topological spaces. Höhle and Šostak [11] substitute a complete quasi-monoidal lattice (or GL-monoid) instead of a completely distributive lattice or a unit interval. Also they introduced the concept of L—filters for a complete quasi-monoidal lattice L which is the dual of fuzzy ideals. Many authors[1-10,12-15,17,18,19,20] studied the structures of fuzzy topology and the structures of fuzzy filters, fuzzy ideals and fuzzy smooth ideals. Ramadan, Abdel-Sattar and Kim [14] studied the concept of a smooth

ideals in [0,1]-smooth topological spaces. Abdel-Sattar [2] studied some structures of $(L,\odot)-$ smooth topological spaces and their properties. In [6] he studied the concept of L-smooth ideals and L-smooth ideal bases in $(L,\odot)-$ smooth topological spaces. In [19] we study some results of fuzzy ideals since the lattice is the closed interval I=[0,1]. In this paper we establish the structures of (L,M)-smooth ideal by (L,M)-smooth topological spaces [22]. The concept of r-smooth open local map, new space namely (L,M)-smooth ideal topological spaces and many of its characterizations are studied.

2 Preliminaries

Throughout this paper, let X be a nonempty set. $L = (L, \leq, \vee, \odot, ', 0, 1)$ denotes a completely distributive lattice with order-reversing involution 'which has the least and greatest elements, say 0 and 1, respectively. Let L^X be the family of all L-fuzzy subsets of X. For $\alpha \in L$, $\underline{\alpha}(x) = \alpha$ for all $x \in X$. A

fuzzy point, x_t for $t \in L$ is an element of L^X such that, for $y \in X$,

$$x_t(y) = \begin{cases} t & \text{if } y = x, \\ 0 & \text{if } y \neq x. \end{cases}$$

The set of all fuzzy points in X is denoted by Pt(X). A fuzzy point $x_t \in \lambda$ iff $t \leq \lambda(x)$. A fuzzy set λ is quasi-coincident with μ , denoted by $\lambda q \mu$, if there exists $x \in X$ such that $\lambda(x) + \mu(x) > 1$. If λ is not quasi-coincident with μ , we denote $\lambda \overline{q} \mu$. All the other notations and the other definitions are standard in fuzzy set theory.

Definition 2.1. [11] A triple (L, \leq, \odot) is called a strictly two-sided, commutative quantale (stsc-quantale, for short) iff it satisfies the following properties:

- (L1) $L = (L, \leq, 1, 0)$ is a complete lattice.
- (L2) (L, \odot) is a commutative semigroup.
- (L3) $a = a \odot 1$, for each $a \in L$.
- (L4) \odot is a distributive over arbitrary joins, i.e. $(\bigvee_{i\in\Gamma}a_i)\odot b=\bigvee_{i\in\Gamma}(a_i\odot b).$

Example 2.2 [11] (1) Each frame is a stsc- quantale. In particular, the unite interval $([0,1], \leq, \vee, \wedge, 0, 1)$ is a stsc-quantale.

- (2) The unit interval with a left-continuous t-norm t, ($[0,1], \leq, t$), is a stsc-quantale.
 - (3) Every GL-monoid is a stsc-quantale.
- (4) Define a binary operation \odot on [0,1] by $x\odot y=\max\{0,x+y-1\}$. Then ($[0,1],\leq,\odot$) is a stsc-quantale.

Lemma 2.3 [**21**] For each $x, y, z, x_i, y_i, w \in L$, we have the following properties:

- $(1) \top \rightarrow x = x, \perp \odot x = \perp,$
- (2) if $y \le z$, then $x \odot y \le x \odot z$, $x \oplus y \le x \oplus z$, $x \to y \le x \to z$ and $z \to x \le y \to x$,
 - (3) $x \le y$ iff $x \to y = \top$,
 - $(4) (\wedge_i y_i)^* = \vee_i y_i^*, (\vee_i y_i)^* = \wedge_i y_i^*,$
 - $(5) x \to (\wedge_i y_i) = \wedge_i (x \to y_i),$
 - (6) $(\vee_i x_i) \to y = \wedge_i (x_i \to y),$
 - $(7) \ x \odot (\vee_i y_i) = \vee_i (x \odot y_i),$
 - $(8) (\wedge_i x_i) \oplus y = \wedge_i (x_i \oplus y),$
 - $(9) (x \odot y) \to z = x \to (y \to z) = y \to (x \to z),$
 - (10) $(x \odot y) = (x \to y^*)^*, x \oplus y = x^* \to y \text{ and } x \to y = y^* \to x^*,$
 - $(11) (x \to y) \odot (z \to w) \le (x \odot z) \to (y \odot w),$
 - (12) $x \to y \le (x \odot z) \to (y \odot z)$ and $(x \to y) \odot (y \to z) \le x \to z$,
 - $(13) (x \to y) \odot (z \to w) \le (x \oplus z) \to (y \oplus w),$
 - (14) $x \odot (x \to y) \le y$ and $y \le x \to (x \odot y)$,
 - $(15) (x \lor y) \odot (z \lor w) \le (x \lor z) \lor (y \odot w) \le (x \oplus z) \lor (y \odot w),$
 - $(16) \vee_{i \in \Gamma} x_i \to \vee_{i \in \Gamma} y_i \ge \wedge_{i \in \Gamma} (x_i \to y_i), \ \wedge_{i \in \Gamma} x_i \to \wedge_{i \in \Gamma} y_i \ge \wedge_{i \in \Gamma} (x_i \to y_i),$
 - $(17) (x \odot y) \odot (z \oplus w) \le (x \odot z) \oplus (y \odot w),$
 - (18) $z \to x \le (x \to y) \to (z \to y)$ and $(y \to z) \le (x \to y) \to (x \to z)$.
 - $(19) (x^*)^* = x$

All algebraic operations on L can be extended pointwise to the set L^X as follows: $\forall x \in X, \forall \lambda, \mu \in L^X$

- (1) $\lambda \le \mu \Longleftrightarrow \lambda(x) \le \mu(x)$,
- (2) $(\lambda \odot \mu)(x) = \lambda(x) \odot \mu(x)$,
- (3) $(\lambda \to \mu)(x) = \lambda(x) \to \mu(x)$.

Definition 2.4. [2,11,12] A mapping $\mathcal{T}: L^X \to M$ is called (L, M)—smooth topology on X if it satisfies the following conditions:

- (O1) $\mathcal{T}(\underline{0}) = \mathcal{T}(\underline{1}) = 1$, where $\underline{0}(x) = 0$ and $\underline{1}(x) = 1$ for all $x \in X$.
- (O2) $\mathcal{T}(\mu_1 \odot \mu_2) \ge \mathcal{T}(\mu_1) \odot \mathcal{T}(\mu_2)$, for any $\mu_1, \mu_2 \in L^X$.
- (O3) $\mathcal{T}(\bigvee_{i\in\Gamma}\mu_i) \geq \bigwedge_{i\in\Gamma}\mathcal{T}(\mu_i)$, for any $\{\mu_i\}_{i\in\Gamma} \subset L^X$.

An (L, M)-smooth topological spaces is called enriched if

(P) $\mathcal{T}(\alpha \odot \mu) \geq \mathcal{T}(\mu)$, for any $\mu \in L^X$, and $\alpha \in M$.

The pair (X, \mathcal{T}) is called (L, M) – smooth topological spaces (resp. enriched (L, M) – smooth topological spaces)

Let (X, \mathcal{T}) and (Y, \mathcal{T}') be two (L, M)-smooth topological spaces and $f: X \to Y$ be a mapping. Then f is said to be smooth *continuous* iff $\mathcal{T}'(\mu) \le \mathcal{T}(f^{-1}(\mu))$ for each $\mu \in L^Y$.

Definition 2.5. [11] Let (L, *) and (L, \odot) be a stsc-quantale. An operation \odot dominates * if it satisfies: $\forall x_1, x_2, y_1, y_2 \in L \Rightarrow (x_1 * y_1) \odot (x_2 * y_2) \geq (x_1 \odot x_2) * (y_1 \odot y_2)$

Definition 2.6. [11] Let (L,*) and (L,\odot) be a stsc-quantale. An operation \odot dominates * if it satisfies: $\forall x_1, x_2, y_1, y_2 \in L \Rightarrow (x_1 * y_1) \odot (x_2 * y_2) \geq (x_1 \odot x_2) * (y_1 \odot y_2)$

Example 2.7. [11]

- (1) For any left- continuous t-norm $*, \land$ dominates * because $(x_1 * y_1) \land (x_2 * y_2) \ge (x_1 \land x_2) * (y_1 \land y_2)$.
- (2) Define t-norm as $x \odot y = \frac{x \ y}{x + y x \ y}$ and $x * y = x \ y$. Then \odot dominates *

Definition 2.8. [14] If X is a set, then an ideal on X is a nonempty $D^* \subset 2^X$ satisfying the following conditions:

- 1- $X \notin D^*$.
- 2- If $A, B \in D^* \Rightarrow A \cup B \in D^*$.
- 3- If $B \in D^*$ and $A \subset B \Rightarrow A \in D^*$, i.e., D^* is a lower set.

Definition 2.9. [14] If X is a set, then a preideal on X is a nonempty $D \subset I^X$ satisfying the following conditions:

- 1- $1 \notin D$.
- 2- If $\lambda, \mu \in D \Rightarrow \lambda \vee \mu \in D$.
- 3- If $\mu \in D$ and $\lambda < \mu \Rightarrow \lambda \in D$.

Definition 2.10. A map $I: L^X \times M \to L^X$ is called (L, M)-smooth interior operator on X iff I satisfies the following condations:

- $(I1) \ I(\underline{1}, r) = \underline{1} \text{ for all } r \in M.$
- (I2) $I(\lambda, r) \leq \lambda$ for all $r \in M$.
- (I3) If $\lambda \leq \mu$ and $r \leq s$, then $I(\lambda, s) \leq I(\mu, r)$.
- $(I4) \ I(\lambda \odot \mu, \ r \odot s) \ge \ I(\lambda, r) \odot I(\mu, s).$

The pair (X, I) is called (L, M)-smooth interior space.

The (L, M)- smooth interior operator I is called topological if $I(I(\lambda, r)) \ge I(\lambda, r), \ \forall \lambda \in L^X, \ r \in M$.

Let I_1 and I_2 be two (L, M)-smooth iterior operators on X. We say that I_1 is finer than I_2 (I_2 is coarser than I_1), denoted by $I_2 \leq I_1$, if $I_2(\lambda, r) \leq I_1(\lambda, r)$ for all $\lambda \in L^X$, $r \in M$.

Theorem 2.11. Let (X, τ) be (L, M) – smooth topological spaces . Then for each $r \in M, A \in L^X$, we define the operator $C_\tau : L^X \times M \to L^X$ as follows:

$$C_{\tau}(\mathcal{A}, r) = \bigwedge \{ \mathcal{B} \in L^{X} | \mathcal{A} \leq \mathcal{B}, \tau(\underline{1} - \mathcal{B}) \geq r \}.$$

For each $\mathcal{A}, \mathcal{B} \in L^X$ and $r, s \in M$, the operator C_{τ} satisfies the following conditions:

- (C1) $C_{\tau}(\underline{0},r) = \underline{0}$.
- (C2) $\mathcal{A} \leq C_{\tau}(\mathcal{A}, r)$.
- (C3) $C_{\tau}(\mathcal{A}, r) \vee C_{\tau}(\mathcal{B}, r) = C_{\tau}(\mathcal{A} \vee \mathcal{B}, r).$
- (C4) $C_{\tau}(\mathcal{A}, r) \leq C_{\tau}(\mathcal{A}, s)$ if $r \leq s$.
- (C5) $C_{\tau}(C_{\tau}(\mathcal{A}, r), r) = C_{\tau}(\mathcal{A}, r).$
- (C6) If $s = \bigvee \{r \in L_0 | C_\tau(\mathcal{A}, r) = \mathcal{A} \}$, then $C_\tau(\mathcal{A}, s) = \mathcal{A}$.

Definition 2.12. Let (X, τ) be (L, M) – smooth topological spaces, for each $A \in L^X$, $r \in M$. Then:

- (1) \mathcal{A} is called r-smooth regular open (**r-SRO**, for short) iff $\mathcal{A} = int_{\tau}(C_{\tau}(\mathcal{A}, r), r)$.
- (2) \mathcal{A} is called r-smooth preopen (**r-SPO**, for short) iff $\mathcal{A} \leq int_{\tau}(C_{\tau}(\mathcal{A}, r), r)$..

Definition 2.13. An (L, M)-smooth topological spaces (X, τ) is called r-smooth regular iff for each $\tau(A) \geq r$ and $r \in M$, $A = \bigvee \{ \mathcal{B} \in L^X | \tau(\mathcal{B}) \geq r, C_{\tau}(\mathcal{B}, r) = A \}$.

Definition 2.14. Let (X, τ) be (L, M)-smooth topological spaces, for each $A \in L^X$, $x_t \in P_t(X)$ and $r \in M$. Then, A is called r-open Q_τ -neighborhood of x_t (for short, $Q_\tau(x_t, r)$) if $x_t q A$ with $\tau(A) \geq r$.

Definition 2.15. Let $\underline{0} \notin \Theta$ be a subset of L^X . A mapping $\beta : \Theta \to M$ is called (L, M)-smooth base on X if it satisfies the following conditions:

- (1) $\beta(\underline{1}) = 1$,
- (2) $\beta(A_1 \odot A_2) \ge \beta(A_1) \odot \beta(A_2)$, for all $A_1, A_2 \in \Theta$.

Definition 2.16. Let $f:(X,\tau)\to (Y,\eta)$ be a mapping. Then,

- (1) f is called smooth continuous (S-continuous, for short) iff $\eta(A) \leq \tau(f^{-1}(A))$, for each $A \in L^Y$.
- (2) f is called smooth precontinuous (SP-continuous, for short) iff $f^{-1}(A)$ is **r-SPO** set for each $\eta(A) \geq r$.
- (3) f is called smooth almost continuous iff $\tau(f^{-1}(\mathcal{A})) \geq r$, for each $\mathcal{A} \in L^Y$ with $\mathcal{A} = int_{\eta}(C_{\eta}(\mathcal{A}, r), r)$.
- (4) f is called smooth weakly continuous iff $f^{-1}(\mathcal{A}) \leq int_{\tau}(f^{-1}(C_{\eta}(\mathcal{A}, r)), r)$ for each $\mathcal{A} \in L^{Y}$ and $r \in M$ with $\eta(\mathcal{A}) > r$.
- (5) f is called smooth strongly continuous iff $f(C_{\tau}(\mathcal{A}, r)) \leq f(\mathcal{A})$ for each $\mathcal{A} \in L^X$ and $r \in M$.

3 (L, M) – Smooth ideal and r-smooth open local map

Definition 3.1. A mapping $\mathcal{I}: L^X \to M$ is called (L, M)-smooth ideal on X if it satisfies the following conditions:

- $(I_1) \mathcal{I}(\underline{0}) = 1, \mathcal{I}(\underline{1}) = 0.$
- (I_2) If $A \leq \mathcal{B}$, then $\mathcal{I}(\mathcal{B}) \leq \mathcal{I}(A)$, for each $A, \mathcal{B} \in L^X$.
- (I_3) $\mathcal{I}(\mathcal{A} \vee \mathcal{B}) \geq \mathcal{I}(\mathcal{A}) \odot \mathcal{I}(\mathcal{B})$, for $\mathcal{A}, \mathcal{B} \in L^X$.

If \mathcal{I}_1 and \mathcal{I}_2 are (L, M)—smooth ideals on X, we say that \mathcal{I}_1 is finer than \mathcal{I}_2 (\mathcal{I}_2 is coarser than \mathcal{I}_1), denoted by $\mathcal{I}_2 \leq \mathcal{I}_1$, iff $\mathcal{I}_1(A) \leq \mathcal{I}_2(A)$ for $A \in L^X$.

The triple (X, τ, \mathcal{I}) is called (L, M)-smooth ideal topological space ((L, M)-sits, for short). For $\alpha \in M$, $(X, \tau_{\alpha}, \mathcal{I}_{\alpha})$ is fuzzy ideal topological space in the sense of Sarkar [18].

Definition 3.2. Let (X, τ, \mathcal{I}) be (L, M)—sits and $\mathcal{A} \in L^X$. Then the r-smooth open local map $\mathcal{A}_r^{\star}(\tau, \mathcal{I})$ of \mathcal{A} is the union of all fuzzy points x_t such that if $\mathcal{B} \in Q(x_t, r)$ and $\mathcal{I}(\mathcal{C}) \geq r$ then there is at least one $y \in X$ for which $\mathcal{B}(y) + \mathcal{A}(y) - 1 > \mathcal{C}(y)$.

there exists $\mathcal{B} \in Q(x_t, r)$ such that for every $y \in X$, $\mathcal{B}(y) + \mathcal{A}(y) - 1 \leq \mathcal{C}(y)$, for some $\mathcal{I}(\mathcal{C}) \geq r$. $\mathcal{A}_r^{\star}(\tau, \mathcal{I})$ is the set of fuzzy points at which \mathcal{A} does not have the property r-fuzzy open locally.

We will occasionally write \mathcal{A}_r^{\star} or $\mathcal{A}_r^{\star}(\mathcal{I})$ for $\mathcal{A}_r^{\star}(\tau,\mathcal{I})$ and it will cause no ambiguity.

Example 3.3.Let (X, τ, \mathcal{I}) be (L, M)-sits. The simplest fuzzy ideal on X is $\mathcal{I}^0: L^X \to M$ where

$$\mathcal{I}^{0}(\mathcal{C}) = \begin{cases} 1, & \text{if } \mathcal{C} = \underline{0}, \\ 0, & \text{otherwise.} \end{cases}$$

If we take $\mathcal{I} = \mathcal{I}^0$, for each $\mathcal{A} \in L^X$ we have $\mathcal{A}_r^{\star} = C_{\tau}(\mathcal{A}, r)$.

Theorem 3.4. Let (X, τ) be (L, M) – smooth topological space and \mathcal{I}_1 , \mathcal{I}_2 be two (L, M)-smooth ideals of X. Then for each $r \in M$ and $\mathcal{A}, \mathcal{B} \in L^X$.

- (1) If $A \leq \mathcal{B}$, then $A_r^* \leq \mathcal{B}_r^*$.
- (2) If $\mathcal{I}_1 \leq \mathcal{I}_2$, then $\mathcal{A}_r^{\star}(\mathcal{I}_1, \tau) \geq \mathcal{A}_r^{\star}(\mathcal{I}_2, \tau)$.
- (3) $\mathcal{A}_r^{\star} = C_{\tau}(\mathcal{A}_r^{\star}, r) \leq C_{\tau}(\mathcal{A}, r).$
- $(4) (\mathcal{A}_r^{\star})_r^{\star} \leq \mathcal{A}_r^{\star}.$
- (5) $(\mathcal{A}_r^{\star} \vee \mathcal{B}_r^{\star}) = (\mathcal{A} \vee \mathcal{B})_r^{\star}.$
- (6) If $\mathcal{I}(\mathcal{B}) \geq r$, then $(\mathcal{A} \vee \mathcal{B})_r^{\star} = \mathcal{A}_r^{\star} \vee \mathcal{B}_r^{\star} = \mathcal{A}_r^{\star}$.
- (7) If $\tau(\mathcal{B}) \geq r$, then $(\mathcal{B} \odot \mathcal{A}_r^*) \leq (\mathcal{B} \odot \mathcal{A})_r^*$.

(8)
$$(\mathcal{A}_r^{\star} \odot \mathcal{B}_r^{\star}) \geq (\mathcal{A} \odot \mathcal{B})_r^{\star}$$
.

Proof. (1) Suppose there exist $A \in L^X$ and $r \in M$ such that $A_r^* \not\leq B_r^*$, there exist $x \in X$ and $t \in M$ such that

$$\mathcal{A}_r^{\star}(x) \ge t > \mathcal{B}_r^{\star}(x).$$

Since $\mathcal{B}_r^{\star}(x) < t$, there exists $\mathcal{D} \in Q(x_t, r)$ with $\mathcal{I}(\mathcal{C}) \geq r$ such that for every $y \in X$, we have,

$$\mathcal{D}(y) + \mathcal{B}(y) - 1 \le \mathcal{C}(y).$$

Since $A \leq \mathcal{B}$, $\mathcal{D}(y) + A(y) - 1 \leq \mathcal{C}(y)$. So, $A_r^*(x) < t$, and this is a contradiction . Thus, $A_r^* \leq \mathcal{B}_r^*$.

(2) Suppose that, $\mathcal{A}_r^{\star}(\mathcal{I}_1, \tau) \ngeq \mathcal{A}_r^{\star}(\mathcal{I}_2, \tau)$, then there exist $x \in X$ and $t \in M$ such that

$$\mathcal{A}_r^{\star}(\mathcal{I}_1, \tau)(x) < t \leq \mathcal{A}_r^{\star}(\mathcal{I}_2, \tau)(x).$$

Since $\mathcal{A}_r^{\star}(\mathcal{I}_1, \tau)(x) < t$, there exists $\mathcal{D} \in Q(x_t, r)$ with $\mathcal{I}_1(\mathcal{C}) \geq r$ such that for every $y \in X$, we have, $\mathcal{D}(y) + \mathcal{A}(y) - 1 \leq \mathcal{C}(y)$. Since $\mathcal{I}_2(\mathcal{C}) \geq \mathcal{I}_1(\mathcal{C}) \geq r$, $\mathcal{D}(y) + \mathcal{A}(y) - 1 \leq \mathcal{C}(y)$. Thus, $\mathcal{A}_r^{\star}(\mathcal{I}_2, \tau)(x) < t$. It is a contradiction. Thus, $\mathcal{A}_r^{\star}(\mathcal{I}_1, \tau) \geq \mathcal{A}_r^{\star}(\mathcal{I}_2, \tau)$.

(3) We show that $\mathcal{A}_r^* \leq C_\tau(\mathcal{A}, r)$. Suppose that, $\mathcal{A}_r^* \nleq C_\tau(\mathcal{A}, r)$, then there exist $x \in X$ and $t \in M$ such that

$$\mathcal{A}_r^{\star}(x) \ge t > C_{\tau}(\mathcal{A}, r)(x).$$

Since $\mathcal{A}_r^{\star}(x) \geq t$, $x_t \in \mathcal{A}_r^{\star}$. So there is at least one $y \in X$ for each $\mathcal{D} \in Q(x_t, r)$ and $\mathcal{I}(\mathcal{C}) \geq r$ such that $\mathcal{D}(y) + \mathcal{A}(y) > \mathcal{C}(y) + 1$. Therefore, $x_t \in C_{\tau}(\mathcal{A}, r)$. It is a contradiction. Hence, $\mathcal{A}_r^{\star} \leq C_{\tau}(\mathcal{A}, r)$.

Now we show that $\mathcal{A}_r^* \geq C_\tau(\mathcal{A}_r^*, r)$. Suppose that, $\mathcal{A}_r^* \ngeq C_\tau(\mathcal{A}_r^*, r)$, then there exist $x \in X$ and $t \in M$ such that

$$\mathcal{A}_r^{\star}(x) < t < C_{\tau}(\mathcal{A}_r^{\star}, r)(x).$$

Since $C_{\tau}(\mathcal{A}_{r}^{\star},r)(x) > t$, $x_{t} \in C_{\tau}(\mathcal{A}_{r}^{\star},r)$. So, there at last one $y \in X$ with $\mathcal{B} \in Q(x_{t},r)$ such that $\mathcal{B}(y) + \mathcal{A}_{r}^{\star}(y) > 1$. Therefore, $\mathcal{A}_{r}^{\star}(y) \neq 0$. Let $s = \mathcal{A}_{r}^{\star}(y)$. Then $y_{s} \in \mathcal{A}_{r}^{\star}$ and $s + \mathcal{B}(y) > 1$, so that $\mathcal{B} \in Q(y_{s},r)$. Now $y_{s} \in \mathcal{A}_{r}^{\star}$ implies there is at least one $x' \in X$ such that $\mathcal{D}(x') + \mathcal{A}(x') - 1 > \mathcal{C}(x')$ for all $\mathcal{I}(\mathcal{C}) \geq r$ and $\mathcal{D} \in Q(y_{s},r)$. This is also true for \mathcal{B} . So there is at least one $x'' \in X$ such that $\mathcal{B}(x'') + \mathcal{A}(x'') - 1 > \mathcal{C}(x'')$. Since \mathcal{B} is an arbitrary and $\mathcal{B} \in Q(x_{t},r)$, then, $\mathcal{A}_{r}^{\star}(x) > t$. It is a contradiction. Thus $\mathcal{A}_{r}^{\star} \geq C_{\tau}(\mathcal{A}_{r}^{\star},r)$.

- (4) Form (3), we have $(\mathcal{A}_r^{\star})_r^{\star} = C_{\tau}((\mathcal{A}_r^{\star})_r^{\star}, r) \leq C_{\tau}(\mathcal{A}_r^{\star}, r) = \mathcal{A}_r^{\star}$.
- (5) (\Rightarrow) Since $\mathcal{A}, \mathcal{B} \leq \mathcal{A} \vee \mathcal{B}$. By (1), we have $\mathcal{A}_r^{\star} \leq (\mathcal{A} \vee \mathcal{B})_r^{\star}$ and $\mathcal{B}_r^{\star} \leq (\mathcal{A} \vee \mathcal{B})_r^{\star}$. Hence $\mathcal{A}_r^{\star} \vee \mathcal{B}_r^{\star} \leq (\mathcal{A} \vee \mathcal{B})_r^{\star}$.
- (\Leftarrow) Suppose that $(\mathcal{A}_r^{\star} \vee \mathcal{B}_r^{\star}) \not\geq (\mathcal{A} \vee \mathcal{B})_r^{\star}$, then there exist $x \in X$ and $t \in M$ such that

$$(\mathcal{A}_r^{\star} \vee \mathcal{B}_r^{\star})(x) < t \leq (\mathcal{A} \vee \mathcal{B})_r^{\star}(x).$$

Since $(\mathcal{A}_r^{\star} \vee \mathcal{B}_r^{\star})(x) < t$, $\mathcal{A}_r^{\star}(x) < t$ or $\mathcal{B}_r^{\star}(x) < t$. So, there exists $\mathcal{D}_1 \in Q(x_t, r)$ such that for every $y \in X$ and for some $\mathcal{I}(\mathcal{C}_1) \geq r$ we have,

$$\mathcal{D}_1(y) + \mathcal{A}(y) - 1 \le \mathcal{C}_1(y).$$

Similarly there exists $\mathcal{D}_2 \in Q(x_t, r)$ such that for every $y \in X$ and for some $\mathcal{I}(\mathcal{C}_2) \geq r$ we have,

$$\mathcal{D}_2(y) + \mathcal{B}(y) - 1 \le \mathcal{C}_2(y).$$

Since $\mathcal{D} = \mathcal{D}_1 \odot \mathcal{D}_2 \in Q(x_t, r)$ and by $(I_3), \mathcal{I}(\mathcal{C}_1 \vee \mathcal{C}_2) \geq r$. Thus, for every $y \in X$, $\mathcal{D}(y) + (\mathcal{A} \vee \mathcal{B})(y) - 1 \leq (\mathcal{C}_1 \vee \mathcal{C}_2)(y)$. Therefore, $(\mathcal{A} \vee \mathcal{B})_r^*(x) < t$. It is a contradiction. Hence $\mathcal{A}_r^{\star} \vee \mathcal{B}_r^{\star} \geq (\mathcal{A} \vee \mathcal{B})_r^{\star}$.

(6), (7) and (8) are obvious.
$$\Box$$

Example 3.5. [19]. Define $\tau, \mathcal{I}: L^X \to M$, where L = M = I = [0, 1] as follows:

$$\tau(\mathcal{B}) = \begin{cases} 1, & \text{if } \mathcal{B} \in \{\underline{1}, \underline{0}\}, \\ \frac{1}{2}, & \text{if } \mathcal{B} = \underline{0.8}, \\ \frac{1}{2}, & \text{if } \mathcal{B} = \underline{0.7}, \\ 0, & \text{otherwise}, \end{cases} \qquad \mathcal{I}(\mathcal{C}) = \begin{cases} 1, & \text{if } \mathcal{C} = \underline{0}, \\ \frac{1}{2}, & \text{if } \mathcal{C} = \underline{0.3}, \\ \frac{2}{3}, & \text{if } \underline{0} < \mathcal{B} < \underline{0.3}, \\ 0, & \text{otherwise}. \end{cases}$$

Then, $\underline{0} = (\underline{0.4}^{\star}_{\frac{1}{2}})^{\star}_{\frac{1}{2}} \neq \underline{0.4}^{\star}_{\frac{1}{2}} = \underline{0.2}.$

Theorem 3.6. Let (X, τ, \mathcal{I}) be (L, M)-sits, and $\{A_i : i \in J\} \subset L^X$. Then:

- $(1) (\bigvee (\mathcal{A}_i)_r^* : i \in J) \le (\bigvee \mathcal{A}_i : i \in J)_r^*.$ $(2) (\bigwedge \mathcal{A}_i : i \in J)_r^* \le (\bigwedge (\mathcal{A}_i)_r^* : i \in J).$

Proof. (1) Since $A_i \leq \bigvee A_i$, for each $i \in J$, by Theorem 3.4(1), we have $(\mathcal{A}_i)_r^{\star} \leq (\bigvee \mathcal{A}_i)_r^{\star}$, for each $i \in J$. This implies $(\bigvee (\mathcal{A}_i)_r^{\star} : i \in J) \leq (\bigvee \mathcal{A}_i : i \in J)$ $J)_r^{\star}$.

(2) Since
$$\bigwedge A_i \leq A_i$$
, $(\bigwedge A_i)_r^* \leq (A_i)_r^*$, for each $i \in J$. Thus, $(\bigwedge A_i : i \in J)_r^* \leq (\bigwedge (A_i)_r^* : i \in J)$.

Remark 3.7. For each (X, τ, \mathcal{I}) and $A \in L^X$, we can defines

$$Cl^{\star}(\mathcal{A}, r) = \mathcal{A} \vee \mathcal{A}_{r}^{\star}, \quad int^{\star}(\mathcal{A}, r) = \mathcal{A} \odot [\underline{1} - (\underline{1} - \mathcal{A})_{r}^{\star}].$$

Clearly, Cl^* is a fuzzy closure operator and $\tau^*(\mathcal{I})$ is the (L, M)- smooth topology generated by Cl^* . i.e.,

$$\tau^{\star}(\mathcal{I})(\mathcal{A}) = \bigvee \{r|\ Cl^{\star}(\underline{1} - \mathcal{A}, r) = \underline{1} - \mathcal{A}\}.$$

Now if, $\mathcal{I} = \mathcal{I}^0$ then $Cl^*(\mathcal{A}, r) = \mathcal{A} \vee \mathcal{A}_r^* = \mathcal{A} \vee C_\tau(\mathcal{A}, r) = C_\tau(\mathcal{A}, r)$, for $\mathcal{A} \in L^X$. So, $\tau^*(\mathcal{I}^0) = \tau$.

Theorem 3.8. Let (X, τ, \mathcal{I}) be (L, M)-sits, $r \in M$ and $\mathcal{A} \in L^X$. Then

- (1) $int^{\star}(\mathcal{A} \vee \mathcal{B}, r) \leq int^{\star}(\mathcal{A}, r) \vee int^{\star}(\mathcal{B}, r)$.
- (2) $int_{\tau}(\mathcal{A}, r) \leq int^{\star}(\mathcal{A}, r) \leq \mathcal{A} \leq Cl^{\star}(\mathcal{A}, r) \leq C_{\tau}(\mathcal{A}, r)$.
- (3) $Cl^{\star}(\underline{1} \mathcal{A}, r) = \underline{1} int^{\star}(\mathcal{A}, r)$ and $\underline{1} Cl^{\star}(\mathcal{A}, r) = int^{\star}(\underline{1} \mathcal{A}, r)$.
- (4) $int^{\star}(\mathcal{A} \odot \mathcal{B}, r) = int^{\star}(\mathcal{A}, r) \odot int^{\star}(\mathcal{B}, r).$

Proof. (1) and (2) Follows directly from definition Cl^* , int^* and C_{τ} .

(3) Since

$$Cl^{\star}(\underline{1} - \mathcal{A}, r) = \underline{1} - \mathcal{A} \vee (\underline{1} - \mathcal{A})_{r}^{\star} = \underline{1} - \mathcal{A} \vee [\underline{1} - (\underline{1} - (\underline{1} - \mathcal{A})_{r}^{\star})]$$
$$= \underline{1} - [\mathcal{A} \odot (\underline{1} - (\underline{1} - \mathcal{A})_{r}^{\star})] = \underline{1} - int^{\star}(\mathcal{A}, r).$$

(4) From Theorem 3.4 (5), we have

$$int^{\star}(\mathcal{A} \odot \mathcal{B}, r) = (\mathcal{A} \odot \mathcal{B}) \odot [\underline{1} - (\underline{1} - (\mathcal{A} \odot \mathcal{B}))_{r}^{\star}]$$

$$= (\mathcal{A} \odot \mathcal{B}) \odot [\underline{1} - [(\underline{1} - \mathcal{A}) \vee (\underline{1} - \mathcal{B})]_{r}^{\star}]$$

$$= (\mathcal{A} \odot \mathcal{B}) \odot [\underline{1} - [(\underline{1} - \mathcal{A})_{r}^{\star} \vee (\underline{1} - \mathcal{B})_{r}^{\star}]]$$

$$= (\mathcal{A} \odot [\underline{1} - (\underline{1} - \mathcal{A})_{r}^{\star}]) \odot (\mathcal{B} \odot [\underline{1} - (\underline{1} - \mathcal{B})_{r}^{\star}])$$

$$= int^{\star}(\mathcal{A}, r) \odot int^{\star}(\mathcal{B}, r).$$

Theorem 3.9. Let (X, τ_1, \mathcal{I}) and (X, τ_2, \mathcal{I}) be (L, M)-sits's and $\tau_1 \leq \tau_2$. Then

- $(1) \mathcal{A}_r^{\star}(\tau_2, \mathcal{I}) \leq \mathcal{A}_r^{\star}(\tau_1, \mathcal{I}).$
- $(2) \ \tau_1^{\star}(\mathcal{I}) \leq \tau_2^{\star}(\mathcal{I}).$

Proof. (1) Suppose that $\mathcal{A}_r^{\star}(\tau_2, \mathcal{I}) \nleq \mathcal{A}_r^{\star}(\tau_1, \mathcal{I})$, then there exist $x \in X$ and $t \in M$ such that

$$\mathcal{A}_r^{\star}(\tau_2, \mathcal{I})(x) \ge t > \mathcal{A}_r^{\star}(\tau_1, \mathcal{I})(x).$$

Since $\mathcal{A}_r^{\star}(\tau_1, \mathcal{I})(x) < t$, there exist $\mathcal{D} \in Q_{\tau_1}(x_t, r)$ with $\mathcal{I}(\mathcal{C}) \geq r$ such that for every $y \in X$, $\mathcal{D}(y) + \mathcal{A}(y) - 1 \leq \mathcal{C}(y)$. Since $\tau_1 \leq \tau_2$, $\mathcal{D} \in Q_{\tau_2}(x_t, r)$. Thus, $\mathcal{A}_r^{\star}(\tau_2, \mathcal{I})(x) < t$. It is a contradiction.

(2) Clearly,
$$\tau_1^{\star}(\mathcal{I}) \leq \tau_2^{\star}(\mathcal{I})$$
, as $\mathcal{A}_r^{\star}(\tau_2, \mathcal{I}) \leq \mathcal{A}_r^{\star}(\tau_1, \mathcal{I})$.

Theorem 3.10. Let (X, τ, \mathcal{I}_1) and (X, τ, \mathcal{I}_2) be (L, M)-sits's and $\mathcal{I}_1 \leq \mathcal{I}_2$. Then

- (1) $\mathcal{A}_r^{\star}(\mathcal{I}_1, \tau) \geq \mathcal{A}_r^{\star}(\mathcal{I}_2, \tau)$.
- $(2) \ \tau_1^{\star}(\mathcal{I}_1) \leq \tau_2^{\star}(\mathcal{I}_2).$

Theorem 3.11. Define the mapping $\beta: \Theta \to L$ on X by

$$\beta(\mathcal{A}) = \bigvee \{ \tau(\mathcal{B}) \odot \mathcal{I}(\mathcal{C}) | \mathcal{A} = \mathcal{B} \odot (\underline{1} - \mathcal{C}) \}.$$

The β is base for the (L, M)-smooth topology τ^* .

Proof. (1) Since $\mathcal{I}(\underline{0}) = 1$, $\beta(\underline{1}) = 1$.

(2) Suppose there exist $A_1, A_2 \in \Theta$ such that $\beta(A_1 \odot A_2) \ngeq \beta(A_1) \odot \beta(A_2)$. There exists $t \in M$ such that

$$\beta(\mathcal{A}_1 \odot \mathcal{A}_2) < t \leq \beta(\mathcal{A}_1) \odot \beta(\mathcal{A}_2).$$

Since $\beta(\mathcal{A}_1) \geq t$ and $\beta(\mathcal{A}_2) \geq t$, there exist $\mathcal{B}_1, \mathcal{B}_2, \mathcal{C}_1, \mathcal{C}_2 \in \Theta$ with $\mathcal{A}_1 = \mathcal{B}_1 \odot (\underline{1} - \mathcal{C}_1)$ and $\mathcal{A}_2 = \mathcal{B}_2 \odot (\underline{1} - \mathcal{C}_2)$ such that $\beta(\mathcal{A}_1) \geq \tau(\mathcal{B}_1) \odot \mathcal{I}(\mathcal{C}_1) \geq t$ and $\beta(\mathcal{A}_2) \geq \tau(\mathcal{B}_2) \odot \mathcal{I}(\mathcal{C}_2) \geq t$. Therefore,

$$\mathcal{A}_{1} \odot \mathcal{A}_{2} = (\mathcal{B}_{1} \odot (\underline{1} - \mathcal{C}_{1})) \odot (\mathcal{B}_{2} \odot (\underline{1} - \mathcal{C}_{2}))$$

$$= (\mathcal{B}_{1} \odot \mathcal{B}_{2}) \odot ((\underline{1} - \mathcal{C}_{1}) \odot (\underline{1} - \mathcal{C}_{2}))$$

$$= (\mathcal{B}_{1} \odot \mathcal{B}_{2}) \odot (\underline{1} - (\mathcal{C}_{1} \vee \mathcal{C}_{2}))$$

Hence,

$$\beta(\mathcal{A}_1 \odot \mathcal{A}_2) \ge \tau(\mathcal{B}_1 \odot \mathcal{B}_2) \odot \mathcal{I}(\mathcal{C}_1 \vee \mathcal{C}_2)$$

$$\ge \tau(\mathcal{B}_1) \odot \tau(\mathcal{B}_2) \odot \mathcal{I}(\mathcal{C}_1) \odot \mathcal{I}(\mathcal{C}_2)$$

$$= (\tau(\mathcal{B}_1) \odot \mathcal{I}(\mathcal{C}_1)) \odot (\tau(\mathcal{B}_2) \odot \mathcal{I}(\mathcal{C}_2)) \ge t.$$

It is a contradiction. Thus, $\beta(A_1 \odot A_2) \ge \beta(A_1) \odot \beta(A_2)$. \square

Theorem 3.12. Let (X, τ) be (L, M)-smooth topological space and $\mathcal{I}_1, \mathcal{I}_2$ be two (L, M)-smooth ideals on X. Then, for any $A \in L^X$ and $r \in M$,

$$(1) \mathcal{A}_r^{\star}(\mathcal{I}_1 \odot \mathcal{I}_2, \tau) = \mathcal{A}_r^{\star}(\mathcal{I}_1, \tau) \vee \mathcal{A}_r^{\star}(\mathcal{I}_2, \tau).$$

$$(2) \ \mathcal{A}_r^{\star}(\mathcal{I}_1 \vee \mathcal{I}_2, \tau) = \mathcal{A}_r^{\star}(\mathcal{I}_1, \tau^{\star}(\mathcal{I}_2, \cdot)) \odot \mathcal{A}^{\star}(\mathcal{I}_2, \tau^{\star}(\mathcal{I}_1)).$$

Proof. (1) Suppose that $\mathcal{A}_r^{\star}(\mathcal{I}_1 \odot \mathcal{I}_2, \tau) \nleq \mathcal{A}_r^{\star}(\mathcal{I}_1, \tau) \vee \mathcal{A}_r^{\star}(\mathcal{I}_2, \tau)$, there exist $x \in X$ and $t \in M$ such that

$$\mathcal{A}_r^{\star}(\mathcal{I}_1 \odot \mathcal{I}_2, \tau)(x) \geq t > \mathcal{A}_r^{\star}(\mathcal{I}_1, \tau) \vee \mathcal{A}_r^{\star}(\mathcal{I}_2, \tau)(x).$$

Since $\mathcal{A}_r^{\star}(\mathcal{I}_1, \tau) \vee \mathcal{A}_r^{\star}(\mathcal{I}_2, \tau)(x) < t$, $\mathcal{A}_r^{\star}(\mathcal{I}_1, \tau)(x) < t$ and $\mathcal{A}_r^{\star}(\mathcal{I}_2, \tau)(x) < t$. Now, $\mathcal{A}_r^{\star}(\mathcal{I}_1, \tau)(x) < t$, implies there exist $\mathcal{D}_1 \in Q_{\tau}(x_t, r)$ and for some $\mathcal{I}_1(\mathcal{C}_1) \geq r$ such that for every $y \in X$, $\mathcal{D}_1(y) + \mathcal{A}(y) - 1 \leq \mathcal{C}_1(y)$. Again, $\mathcal{A}_r^{\star}(\mathcal{I}_2, \tau)(x) < t$, implies there exists $\mathcal{D}_2 \in Q_{\tau}(x_t, r)$ and for some $\mathcal{I}_2(\mathcal{C}_2) \geq r$ such that for each $y \in X$, $\mathcal{D}_2(y) + \mathcal{A}(y) - 1 \leq \mathcal{C}_2(y)$. Therefore, $(\mathcal{D}_1 \odot \mathcal{D}_2)(y) + \mathcal{A}(y) - 1 \leq (\mathcal{C}_1 \odot \mathcal{C}_2)(y)$, for every $y \in X$. Since $(\mathcal{D}_1 \odot \mathcal{D}_2) \in Q_{\tau}(x_t, r)$ and $(\mathcal{I}_1 \odot \mathcal{I}_2)(\mathcal{C}_1 \odot \mathcal{C}_2) \geq r$, $\mathcal{A}_r^{\star}(\mathcal{I}_1 \odot \mathcal{I}_2, \tau) < t$, and this is a contradiction. So that $\mathcal{A}_r^{\star}(\mathcal{I}_1 \odot \mathcal{I}_2, \tau) \leq \mathcal{A}_r^{\star}(\mathcal{I}_1, \tau) \vee \mathcal{A}^{\star}(\mathcal{I}_2, \tau)$.

Also, $\mathcal{I}_1, \mathcal{I}_2 \geq \mathcal{I}_1 \odot \mathcal{I}_2$, so by Theorem 3.4(2), $\mathcal{A}_r^{\star}(\mathcal{I}_1 \odot \mathcal{I}_2) \geq \mathcal{A}_r^{\star}(\mathcal{I}_1) \vee \mathcal{A}^{\star}(\mathcal{I}_2)$. Then, $\mathcal{A}_r^{\star}(\mathcal{I}_1 \odot \mathcal{I}_2, \tau) = \mathcal{A}_r^{\star}(\mathcal{I}_1, \tau) \vee \mathcal{A}^{\star}(\mathcal{I}_2, \tau)$.

(2) Suppose that $\mathcal{A}_r^{\star}(\mathcal{I}_1 \vee \mathcal{I}_2, \tau) \ngeq \mathcal{A}_r^{\star}(\mathcal{I}_1, \tau^{\star}(\mathcal{I}_2,)) \odot \mathcal{A}^{\star}(\mathcal{I}_2, \tau^{\star}(\mathcal{I}_1))$, then there exist $x \in X$ and $t \in M$ such that

$$\mathcal{A}_r^{\star}(\mathcal{I}_1 \vee \mathcal{I}_2, \tau)(x) < t \leq \mathcal{A}_r^{\star}(\mathcal{I}_1, \tau^{\star}(\mathcal{I}_2, \cdot))(x) \odot \mathcal{A}^{\star}(\mathcal{I}_2, \tau^{\star}(\mathcal{I}_1))(x)$$

Since $\mathcal{A}_r^{\star}(\mathcal{I}_1 \vee \mathcal{I}_2, \tau)(x) < t$, there exists $\mathcal{D} \in Q_{\tau}(x_t, r)$, such that for every $y \in X$, and for some $(\mathcal{I}_1 \vee \mathcal{I}_2)(\mathcal{C}) \geq r$, $\mathcal{D}(y) + \mathcal{A}(y) - 1 \leq \mathcal{C}(y)$. Therefore, by heredity of L-smooth ideals and $\tau \leq \tau^{\star}$ we can find $\mathcal{D}_1 \in Q_{\tau^{\star}(\mathcal{I}_1)}(x_t, r)$ or $\mathcal{D}_2 \in Q_{\tau^{\star}(\mathcal{I}_2)}(x_t, r)$ such that for every $y \in X$, $\mathcal{D}_1(y) + \mathcal{A}(y) - 1 \leq \mathcal{C}_1(y)$, or $\mathcal{D}_2(y) + \mathcal{A}(y) - 1 \leq \mathcal{C}_2(y)$, for some $\mathcal{I}_2(\mathcal{C}_2) \geq r$ or $\mathcal{I}_1(\mathcal{C}_1) \geq r$. This implies $\mathcal{A}^{\star}(\mathcal{I}_2, \tau^{\star}(\mathcal{I}_1))(x) < t$ or $\mathcal{A}^{\star}(\mathcal{I}_1, \tau^{\star}(\mathcal{I}_2))(x) < t$. It is a contradiction. Thus, $\mathcal{A}_r^{\star}(\mathcal{I}_1 \vee \mathcal{I}_2, \tau) \geq \mathcal{A}_r^{\star}(\mathcal{I}_1, \tau^{\star}(\mathcal{I}_2, \tau)) \odot \mathcal{A}^{\star}(\mathcal{I}_2, \tau^{\star}(\mathcal{I}_1))$.

Conversely, similarly $\mathcal{A}_r^{\star}(\mathcal{I}_1 \vee \mathcal{I}_2, \tau) \leq \mathcal{A}_r^{\star}(\mathcal{I}_1, \tau^{\star}(\mathcal{I}_2, \cdot)) \odot \mathcal{A}^{\star}(\mathcal{I}_2, \tau^{\star}(\mathcal{I}_1))$. An important result follows from the above theorem that $\tau^{\star}(\mathcal{I})$ and $[\tau^{\star}(\mathcal{I})]^{\star}(\mathcal{I})$ (in short $\tau^{\star\star}$) are equal for any (L, M)-smooth ideal on X.

Corollary 3.13. Let (X, τ, \mathcal{I}) be (L, M)-sits. For any $\mathcal{A} \in L^X$ and $r \in M$. Then $\mathcal{A}_r^{\star}(\mathcal{I}) = \mathcal{A}_r^{\star}(\mathcal{I}, \tau^{\star})$ and $\tau^{\star}(\mathcal{I}) = \tau^{\star\star}$.

Proof. Putting $\mathcal{I}_1 = \mathcal{I}_2$ in Theorem 3.12(2), we have required result.

Corollary 3.14. Let (X, τ) be (L, M)-smooth topological space and $\mathcal{I}_1, \mathcal{I}_2$ be two (L, M)-smooth ideals on X. Then,

$$(1) \ \tau^{\star}(\mathcal{I}_1 \vee \mathcal{I}_2) = [\tau^{\star}(\mathcal{I}_2)]^{\star}(\mathcal{I}_1) = [\tau^{\star}(\mathcal{I}_1)]^{\star}(\mathcal{I}_2).$$

$$(2) \ \tau^{\star}(\mathcal{I}_1 \odot \mathcal{I}_2) = \tau^{\star}(\mathcal{I}_1) \odot \tau^{\star}(\mathcal{I}_2).$$

Proof. proof is easily by using Theorem 3.12(2).

Definition 3.15. For (L, M)-smooth topological space (X, τ) with (L, M)-smooth ideal \mathcal{I} , τ is said to be smooth open compatible with \mathcal{I} , denoted by $\tau \sim \mathcal{I}$, if for each $\mathcal{A} \in L^X$, $x_t \in \mathcal{A}$, and $\mathcal{C} \in L^X$ with $\mathcal{I}(\mathcal{C}) \geq r$ there exists $\mathcal{D} \in Q_{\tau}(x_t, r)$ such that $\mathcal{D}(y) + \mathcal{A}(y) - 1 \leq \mathcal{C}(y)$ holds for every $y \in X$, then $\mathcal{I}(\mathcal{A}) \geq r$.

Definition 3.16. Let $\{\mathcal{B}_j : j \in J\}$ be a indexed family of smooth set of X such that $\mathcal{B}_j q \mathcal{A}$ for each $j \in J$ where $\mathcal{A} \in L^X$. Then $\{\mathcal{B}_j : j \in J\}$ is said to be a r-smooth quasi-cover of \mathcal{A} iff $\mathcal{A}(y) + \bigvee_{j \in J} (\mathcal{B}_j)(y) \geq 1$ for every $y \in X$.

Further, let (X, τ) be (L, M)—smooth topological space, for each $\tau(\mathcal{B}_j) \geq r$. Then this r—smooth quasi-cover will be called smooth quasi open-cover of \mathcal{A} .

Theorem 3.17. Let (X, τ) be (L, M) – smooth topological space with (L, M) – smooth ideal \mathcal{I} on X. Then the following conditions are equivalent.

- (1) $\tau \sim \mathcal{I}$.
- (2) If for every $A \in L^X$ has r-smooth quasi open-cover of $\{\mathcal{B}_j : j \in J\}$ such that for each j, $A(y) + \mathcal{B}_j(y) 1 \leq \mathcal{C}(y)$, for every $y \in X$ and for some $\mathcal{I}(\mathcal{C}) \geq r$, then $\mathcal{I}(A) \geq r$.
 - (3) For every $A \in L^X$, $A \odot A_r^* = \underline{0}$ implies $\mathcal{I}(A) \geq r$.
- (4) For every $A \in L^X$, $\mathcal{I}(\widetilde{A}) \geq r$, where $\widetilde{A} = \bigvee x_t$ such that $x_t \in A$ but $x_t \notin A_r^*$.
 - (5) For every $\tau^*(\underline{1} \mathcal{A}) \ge r$, $\mathcal{I}(\widetilde{\mathcal{A}}) \ge r$.
 - (6) For every $A \in L^X$, if A contains no $B \neq \underline{0}$ with $B \leq B_r^*$, then $\mathcal{I}(A) \geq r$.

Proof. We prove most of the equivalent conditions which ultimately prove all the equivalence.

- $(1)\Rightarrow(2)$: Let $\{\mathcal{B}_j: j\in J\}$ be a smooth quasi open-cover of $\mathcal{A}\in L^X$ such that for $j\in J$, $\mathcal{A}(y)+\mathcal{B}_j(y)-1\leq \mathcal{C}(y)$, for every $y\in X$ and for some $\mathcal{I}(\mathcal{C})\geq r$. Therefore, as $\{\mathcal{B}_j: j\in J\}$ is r-smooth quasi open-cover of \mathcal{A} , for each $x_t\in \mathcal{A}$, there exist at least one $\mathcal{B}_{j\circ}$ such that $x_tq\mathcal{B}_{j\circ}$ and for every $y\in X$, $\mathcal{A}(y)+\mathcal{B}_{j\circ}(y)-1\leq \mathcal{C}(y)$, for some $\mathcal{I}(\mathcal{C})\geq r$. Obviously, $\mathcal{B}_{j\circ}\in Q_{\tau}(x_t,r)$. By (1), we have $\mathcal{I}(\mathcal{A})\geq r$.
- $(2)\Rightarrow(1)$: Clear from the fact that a collection of $\{\mathcal{B}_j: j\in J\}$ which contains at least one $\mathcal{B}_{j\circ}\in Q_{\tau}(x_t,r)$, of each fuzzy point of \mathcal{A} , constitutes a smooth quasi-open cover of \mathcal{A} .

- (1) \Rightarrow (3): Let $\mathcal{A} \odot \mathcal{A}_r^{\star} = \underline{0}$, for every $y \in X$, $x_t \in \mathcal{A}$ implies $x_t \notin \mathcal{A}_r^{\star}$. Then there exists $\mathcal{D} \in Q(x_t, r)$ and $\mathcal{I}(\mathcal{C}) \geq r$ such that for every $y \in X$, $\mathcal{D}(y) + \mathcal{A}(y) 1 \leq \mathcal{C}(y)$. Since $\mathcal{D} \in Q_{\tau}(x_t, r)$. By (1), we have $\mathcal{I}(A) \geq r$.
- $(3)\Rightarrow(1)$: For every $x_t\in\mathcal{A}$, there exist an $\mathcal{D}\in Q_{\tau}(x_t,r)$ such that for every $y\in X,\ \mathcal{D}(y)+\mathcal{A}(y)-1\leq \mathcal{C}(y)$, for some $\mathcal{I}(\mathcal{C})\geq r$. This implies $x_t\notin\mathcal{A}_r^{\star}$. Now, there are two cases: either $\mathcal{A}_r^{\star}=\underline{0}$ or $\mathcal{A}_r^{\star}\neq\underline{0}$ but $t>\mathcal{A}_r^{\star}\neq\underline{0}$. Let, if possible, $x_t\in\mathcal{A}$ such that $t>\mathcal{A}_r^{\star}\neq\underline{0}$. Let $t'=\mathcal{A}_r^{\star}(x)$. Then $x_{t'}\in\mathcal{A}_r^{\star}(x)$. Also, $x_{t'}\in\mathcal{A}$. Thus, for every $\mathcal{V}\in Q_{\tau}(x_t,r)$ for every $\mathcal{I}(\mathcal{C})\geq r$, there is at least one $y\in X$ such that $\mathcal{V}(y)+\mathcal{A}(y)-1>\mathcal{C}(y)$. Since $x_{t'}\in\mathcal{A}$, this contradicts the assumption for every fuzzy point of \mathcal{A} . So, $\mathcal{A}_r^{\star}=\underline{0}$. That means, $x_t\in\mathcal{A}$, implies $x_t\notin\mathcal{A}_r^{\star}$. Now this is true for every $\mathcal{A}\in L^X$. So, for every $\mathcal{A}\in L^X$, $\mathcal{A}\odot\mathcal{A}_r^{\star}=\underline{0}$. Hence, by(3), we have $\mathcal{I}(\mathcal{A})\geq r$, which implies $\tau\sim\mathcal{I}$.
- $(3)\Rightarrow (4)$: Let $x_t\in \widetilde{\mathcal{A}}$. Then, $x_t\in \mathcal{A}$ but $x_t\not\in \mathcal{A}_r^{\star}$. So, there exist an $\mathcal{D}\in Q_{\tau}(x_t,r)$ such that for every $y\in X$, $\mathcal{D}(y)+\mathcal{A}(y)-1\leq \mathcal{C}(y)$, for some $\mathcal{I}(\mathcal{C})\geq r$. Since $\widetilde{\mathcal{A}}\leq \mathcal{A}$, So for every $y\in X$, $\mathcal{D}(y)+\widetilde{\mathcal{A}}(y)-1\leq \mathcal{C}(y)$ for some $\mathcal{I}(\mathcal{C})\geq r$. Therefore, $x_t\not\in \widetilde{\mathcal{A}}_r^{\star}$ implies that $\widetilde{\mathcal{A}}_r^{\star}=\underline{0}$ or $\widetilde{\mathcal{A}}_r^{\star}\neq\underline{0}$ but $t>\widetilde{\mathcal{A}}_r^{\star}$. Let $x_{t'}\in P_t(X)$ such that $t'\leq \widetilde{\mathcal{A}}_r^{\star}(x)< t$, i.e., $x_{t'}\in \widetilde{\mathcal{A}}_r^{\star}$. Then, for each $\mathcal{V}\in Q_{\tau}(x_{t'},r)$ and for each $\mathcal{I}(\mathcal{C})\geq r$ there is at least one $y\in X$ such that $\mathcal{V}(y)+\widetilde{\mathcal{A}}(y)-1>\mathcal{C}(y)$ Since $\widetilde{\mathcal{A}}\leq \mathcal{A}$, then so for each $\mathcal{V}\in Q_{\tau}(x_{t'},r)$ and for each $\mathcal{I}(\mathcal{C})\geq r$ there is at least one $y\in X$ such that $\mathcal{V}(y)+\mathcal{A}(y)-1>\mathcal{C}$. This implies $x_{t'}\in \mathcal{A}_r^{\star}$. But as t'< t, $x_t\in \widetilde{\mathcal{A}}$ implies $x_{t'}\in \widetilde{\mathcal{A}}$, and therefore, $x_{t'}\notin \mathcal{A}_r^{\star}$. This is a contradiction. Hence, $\mathcal{A}_r^{\star}=\underline{0}$, so that $x_t\in \widetilde{\mathcal{A}}$ implies $x_t\notin \widetilde{\mathcal{A}}_r^{\star}$ with $\widetilde{\mathcal{A}}_r^{\star}=\underline{0}$. Thus, $\widetilde{\mathcal{A}}\odot \widetilde{\mathcal{A}}_r^{\star}=\underline{0}$, for every $\mathcal{A}\in I^X$. Hence, by (3), $\mathcal{I}(\widetilde{\mathcal{A}})\geq r$.
 - $(4) \Rightarrow (5)$: Straightforward.
- $(4)\Rightarrow(6)$: Let $\mathcal{A}\in L^X$, \mathcal{A} contains $\mathcal{B}\neq\underline{0}$ with $\mathcal{B}\leq\mathcal{B}_r^{\star}$. Then, for every $\mathcal{A}\in L^X$, $\mathcal{A}=\widetilde{\mathcal{A}}\vee(\mathcal{A}\odot\mathcal{A}_r^{\star})$. Therefore, $\mathcal{A}_r^{\star}=(\widetilde{\mathcal{A}}\vee(\mathcal{A}\odot\mathcal{A}_r^{\star}))_r^{\star}=\widetilde{\mathcal{A}}_r^{\star}\vee(\mathcal{A}\odot\mathcal{A}_r^{\star})_r^{\star}$. by Theorem 3.4(5).
- Now by (4), we have $\mathcal{I}(\widetilde{\mathcal{A}}) \geq r$, then $\widetilde{\mathcal{A}}_r^* = \underline{0}$. Hence, $(\mathcal{A} \odot \mathcal{A}_r^*)_r^* = \mathcal{A}_r^*$ but $\mathcal{A} \odot \mathcal{A}_r^* \leq \mathcal{A}_r^*$, then $\mathcal{A} \odot \mathcal{A}_r^* \leq (\mathcal{A} \odot \mathcal{A}_r^*)_r^*$. This contradicts the hypothesis about every fuzzy $\mathcal{A} \in L^X$, if $\underline{0} \neq \mathcal{B} \leq \mathcal{A}$ with $\mathcal{B} \leq \mathcal{B}_r^*$. Therefore, $\mathcal{A} \odot \mathcal{A}_r^* = \underline{0}$, so that $\mathcal{A} = \widetilde{\mathcal{A}}$ by (4), we have $\mathcal{I}(\mathcal{A}) \geq r$.
- (6) \Rightarrow (4): Since, for every $\mathcal{A} \in L^X$, $\mathcal{A} \odot \mathcal{A}_r^* = \underline{0}$ Therefore, by (6), as \mathcal{A} contains no non-empty fuzzy subset \mathcal{B} with $\mathcal{B} \leq \mathcal{B}_r^*$, $\mathcal{I}(\mathcal{A}) \geq r$.
- (5) \Rightarrow (1): For every $\mathcal{A} \in L^X$, $x_t \in \mathcal{A}$, there exist an $\mathcal{D} \in Q_{\tau}(x_t, r)$ such that $\mathcal{D}(y) + \mathcal{A}(y) 1 \leq \mathcal{C}(y)$ holds for every $y \in X$ and for some $\mathcal{I}(\mathcal{C}) \geq r$. This

implies $x_t \notin \mathcal{A}_r^{\star}$. Let $\mathcal{B} = \mathcal{A} \vee \mathcal{A}_r^{\star}$. Then, $\mathcal{B}_r^{\star} = (\mathcal{A} \vee \mathcal{A}_r^{\star})_r^{\star} = \mathcal{A}_r^{\star} \vee (\mathcal{A}_r^{\star})_r^{\star} = \mathcal{A}_r^{\star}$ by Theorem 3.4(4). So, $Cl^{\star}(\mathcal{B}, r) = \mathcal{B} \vee \mathcal{B}_r^{\star} = \mathcal{B}$. That means $\tau^{\star}(\underline{1} - \mathcal{B}) \geq r$. Therefore, by (5), we have $\mathcal{I}(\mathcal{B}) \geq r$.

Again, For any $x_t \in P_t(X)$, $x_t \notin \widetilde{\mathcal{B}}_r^{\star}$ implies $x_t \in \mathcal{B}$ but $x_t \notin \mathcal{B}_r^{\star} = \mathcal{A}_r^{\star}$ So, as $\mathcal{B} = \mathcal{A} \vee \mathcal{A}_r^{\star}$, $x_t \in \mathcal{A}$. Now, by hypothesis about \mathcal{A} , we have for every $x_t \in \mathcal{A}_r^{\star}$. So, $\widetilde{\mathcal{B}} = \mathcal{A}$. Hence, $\mathcal{I}(\mathcal{A}) \geq r$, i.e., $\tau \sim \mathcal{I}$.

Theorem 3.18. Let (X, τ) be (L, M) – smooth topological space with (L, M) – smooth ideal \mathcal{I} , on X. Then the following are equivalent and implied by $\tau \sim \mathcal{I}$.

- (1) For every $A \in L^X$, $A \odot A_r^* = \underline{0}$ implies $A_r^* = \underline{0}$.
- (2) For every $A \in L^X$, $\widetilde{A}_r^* = \underline{0}$.
- (3) For every $A \in L^X$, $A \odot A_r^* = A_r^*$.

Proof. Clear from Theorem 3.17.

An important consequence of Theorem 3.18 is the following corollary.

Corollary 3.19. Let $\tau \sim \mathcal{I}$. Then $\beta(\tau, \mathcal{I})$, a base for τ^* , and also $\beta(\tau, \mathcal{I}) = \tau^*$.

Proof. Clear.

4 Conclusion

A smoothing by using fuzzy logic gives rather good results. In particular smoothing of ideals , r—smooth open local map. (L, M)—smooth ideal topological spaces seem to be a good examples and corresponding concepts trace back to the (classic) fuzzy ideal structures. We feeling that we can be build a new mathematical object ((L, M)—smooth structures) where $L = (L, \leq , \vee, \odot, ', 0, 1)$ denotes a completely distributive lattice with order-reversing involution 'which has the least and greatest elements,say 0 and 1, respectively. This approach could be a subject of further studies.

References

- [1] M.A. Abdel-Sattar, (L, \odot) Smooth filters, International Mathematical Forum, 8 (2013), 633-646. https://doi.org/10.12988/imf.2013.13066
- [2] M.A.Abdel-Sattar, Some structures of (L, \odot) Smooth topological spaces, *Int. J. Appl. Math. Stat.*, **34** (2013), 104-117.

- [3] M.A. Abdel-Sattar, Some types of fuzzy filters in BL-algebras, *International Journal of Computational Cognition*, **9** (2011), 13-16.
- [4] M.A. Abdel-Sattar, Some structures of L-fuzzy topology, *J. Fuzzy Math.*, **14** (2006), 751-766.
- [5] M.A.Abdel-Sattar, Basic Structures of (L, \odot) -Smooth Syntopogenous, Applied Mathematical Sciences, 9 (2015), 6615 6628. https://doi.org/10.12988/ams.2015.510614
- [6] M.A. Abdel-Sattar and Y. M. Saber, A Study of L-Smooth Ideals in (L, \odot) -Smooth Topological Spaces, International Mathematical Forum, 9 (2014), 483 498. https://doi.org/10.12988/imf.2014.35100
- [7] M.E. Abd El-Monsef, A.A. Nasef and A.A.Salama, Some fuzzy topological operators via fuzzy ideals, *Chaos Solitons & Fractals*, **12** (2001), 2509-2515. https://doi.org/10.1016/s0960-0779(00)00228-9
- [8] C.L. Chang, Fuzzy topological spaces, *J. Math. Anal. Appl.*, **24** (1968), 182-190. https://doi.org/10.1016/0022-247x(68)90057-7
- [9] B. Hutton and I. Reilly, Separation axioms in fuzzy topological spaces., Fuzzy Sets Syst., 3 (1980), 93-104.
- [10] T.R. Hamlett and D. Jankovice, New topologies from old via ideals, Amer. Math. Monthly, **97** (4) (1990), 295-310. https://doi.org/10.1080/00029890.1990.11995593
- [11] U. Höhle and A.P. Sostak, Axiomatic foundation of fixed-basis fuzzy topology, Chapter 3 in Mathematics of fuzzy Sets, Logic, Topology and Measure Theory, Handbook of Fuzzy Series, Kluwer Academic Publisher, Dordrecht Boston, 1999. https://doi.org/10.1007/978-1-4615-5079-2_5
- [12] Y.C. Kim, The properties of (L, \odot) filters, Int. J. Contemp. Math. Sciences, 7 (2012), 631-640.
- [13] R.A. Mahmoud, Fuzzy ideals, fuzzy local functions and fuzzy topology, J. of Fuzzy Math., 5 (1) (1997), 165-172.
- [14] A.A. Ramadan, M.A. Abdel-Sattar and Y.C. Kim, Some properties of smooth ideals, *Indian J. Pure Appl. Math.*, **34** (2003), 247-264.
- [15] A. A. Ramadan, S.N. El-Deeb and M.A. Abdel-Sattar, On smooth topological spaces IV, Fuzzy Sets and Systems, 119 (2001), 473-482. https://doi.org/10.1016/s0165-0114(99)00083-4

[16] A.P. Šostak, On a fuzzy topological structure, Suppl. Rend. Circ. Matem. Palermo Ser. II, 11 (1985), 89-103.

- [17] A.P. Šostak, On some modifications of fuzzy topologies, *Mathematicki Vesnik*, **41** (1989), 51-64.
- [18] D. Sarkar, Fuzzy ideal theory, Fuzzy local function and generated fuzzy topology, Fuzzy Sets and Systems, **78** (1997), 117-123. https://doi.org/10.1016/s0165-0114(96)00032-2
- [19] Y. M. Saber and M.A. Abdel-Sattar, Ideals on Fuzzy Topological Spaces, Applied Mathematical Sciences, 8 (2014), 1667-1691. https://doi.org/10.12988/ams.2014.33194
- [20] Yasser Abdelghani and Ahmed Zahran, Ideal of fuzzy topological spaces: Fuzzy Topology Paperback, Noor Publishing (May 17, 2017).
- [21] R. Bĕlohavek, Fuzzy Relational Systems, Kluwer Academic Publishers, New York, 2002.
- [22] T. Kubiak and Śostak, Foundations of the theory of (L,M)-fuzzy topological spaces, Abstracts of the 30th Linz Semi-nar on Fuzzy Set Theory (U. Bodenhofer, B. De Baets, E.P. Klement and S. Saminger-Platz, eds), Johannes Kepler Universitat, Linz, 2009, pp. 70-73.

Received: December 1, 2020; Published: December 17, 2020